Solutions

PhD Preliminary Written Exam
Fall 2013

Problem 1
Communications
(1) (12 points) Suppose $Z_{i}, i=1, \ldots, n$ are i.i.d. random variables with the following distribution:

$$
Z_{i}= \begin{cases}-1 & \text { with prob. } p \\ 0 & \text { with prob. } 1-2 p \\ 1 & \text { with prob. } p\end{cases}
$$

Let,

$$
Z=\sum_{i=1}^{n} Z_{i}
$$

a. Find $\mathbb{E} Z$ and $\mathbb{E} Z^{2}$.
b. Find the characteristic function of Z.

Now consider a discrete time signal X_{i} is transmitted over an additive-noise channel. At the output of the channel we obtain $i=1, \ldots, n$:

$$
Y_{i}=X_{i}+Z_{i} .
$$

If $\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ is a Gaussian vector with covariance matrix $=10 I$, where I is an $n \times n$ identity matrix, then,
c. Find the Signal to Noise ratio for this channel when $p=0.2$.

Solution.

a. $\mathbb{E} Z_{i}=-p+0+p=0$.

$$
\mathbb{E} Z=\sum_{i} \mathbb{E} Z_{i}=0
$$

$$
\begin{aligned}
& \mathbb{E} Z_{i}^{2}=p+0+p=2 p \\
& \quad \mathbb{E} Z^{2}=\sum_{i} \mathbb{E} Z_{i}^{2}+\sum_{i} \sum_{j \neq i} \mathbb{E} Z_{i} \mathbb{E} Z_{j}=\sum_{i} \mathbb{E} Z_{i}^{2}=2 n p .
\end{aligned}
$$

b. Let $i^{2}=-1$.
$\mathbb{E} e^{i t Z}=\mathbb{E} e^{i t \sum_{j} Z_{j}}=\mathbb{E} \prod_{j} e^{i t Z_{j}}=\left(\mathbb{E} e^{i t Z_{j}}\right)^{n}=\left(p e^{-i t}+(1-2 p)+p e^{i t}\right)^{n}$.
c. \quad Signal power $=10$. Noise power $=2 \times 0.2=0.4 . \operatorname{SNR}=10 / 0.4=25$. ($10 \log 10 / 0.4=13.98 \mathrm{~dB}$.)
(2) (8 points) Suppose, you need to sample and transmit the following signal using an 8 -bit PCM (pulse code modulation):

$$
X(t)=32 \cos (8 \pi t)
$$

a. What is the bits/sec. transfer rate (assume Nyquist rate sampling)?
b. What is the mean square quantization error in the PCM? You can assume that the quantization noise is uniformly distributed.

Solution.

a. Here, the frequency of the signal is 4 Hz . Hence, Nyquist rate is 8 Hz . Each sample uses 8 bits. Therefore the transfer rate is $8 \cdot 8=64$ bits per second.
b. The range for the amplitude of the signal is $[-32,+32]$. There are 2^{8} levels of quantizations in the PCM. Hence, the quantization step size $\Delta \equiv 64 / 2^{8}=\frac{1}{4}$. Assume the quantization noise is uniform. I.e., the pdf of quantization noise is $=\frac{1}{\Delta}$ in the interval $[-\Delta / 2,+\Delta / 2]$.

So, mean square quantization error is,

$$
\frac{1}{\Delta} \int_{-\Delta / 2}^{\Delta / 2} x^{2} d x=\frac{1}{3 \Delta}\left(\Delta^{3} / 8+\Delta^{3} / 8\right)=\frac{\Delta^{2}}{12}=\frac{1}{192}
$$

Solutions

PhD Preliminary Written Exam
Fall 2013

Problem 1
Communications
(3) (20 points) Consider the following Octal Phase-Shift-Keying (PSK) scheme. Each of the 8 signal waveforms are represented as (below $f_{c}=1 \mathrm{~Hz}$):

$$
s_{n}(t)=\left|t-\frac{1}{2}\right| \cos \left(2 \pi f_{c} t+\frac{\pi}{4}(n-1)\right), \quad n=1,2, \ldots, 8, \quad 0 \leq t \leq 1
$$

a. Compute the energy of the signal waveform $s_{n}(t)$.
b. Write an basis for this set of signals. There should be only two signals in this basis.
c. Represent $s_{1}(t)$ and $s_{2}(t)$ as a linear combination of above two basis signals. 5
d. How many bits of information can be sent in the interval $0 \leq t \leq 1$? Suppose, signals with adjacent phases can be confuseed at the receiver. How many bits can still be sent so that information retrieval with certainty is possible? 5

Solution.

a. The PSK signals are time-shifts of one-another. Hence the energy of each of them is same. So without loss of generality we can take $n=1$ and by straightforward integration,

$$
\int_{0}^{1}\left(s_{n}(t)\right)^{2} d t=\frac{1}{2} \int_{0}^{1}(t-1 / 2)^{2} d t=\frac{1}{6}(1 / 8+1 / 8)=\frac{1}{24}
$$

b.

$$
\begin{aligned}
s_{n}(t) & =\left|t-\frac{1}{2}\right| \cos \left(2 \pi f_{c} t+\frac{\pi}{4}(n-1)\right) \\
& =\left|t-\frac{1}{2}\right| \cos 2 \pi f_{c} t \cos \frac{\pi}{4}(n-1)-\left|t-\frac{1}{2}\right| \sin 2 \pi f_{c} t \sin \frac{\pi}{4}(n-1) \\
& =\left[\cos \frac{\pi}{4}(n-1) \quad-\sin \frac{\pi}{4}(n-1)\right] \times\left[\left|t-\frac{1}{2}\right| \cos 2 \pi f_{c} t \quad\left|t-\frac{1}{2}\right| \sin 2 \pi f_{c} t\right]^{T}
\end{aligned}
$$

Hence the the basis is $\left\{\left|t-\frac{1}{2}\right| \cos 2 \pi f_{c} t,\left|t-\frac{1}{2}\right| \sin 2 \pi f_{c} t\right\}$.
c.

$$
\begin{gathered}
s_{1}(t)=\left|t-\frac{1}{2}\right| \cos 2 \pi f_{c} t \\
s_{2}(t)=\frac{1}{\sqrt{2}}\left|t-\frac{1}{2}\right| \cos 2 \pi f_{c} t-\frac{1}{\sqrt{2}}\left|t-\frac{1}{2}\right| \sin 2 \pi f_{c} t
\end{gathered}
$$

d. 3 bits.

2 bits, as one can send only 4 non-adjacent phases.

