
(a) Show how to implement any Boolean function of 10 variables using a ROM module (of size 256 x 8 bits) and a 4-to-1 multiplexer. (i.e., draw a block diagram showing how to connect these modules, and clearly indicate/label inputs and outputs for each module).

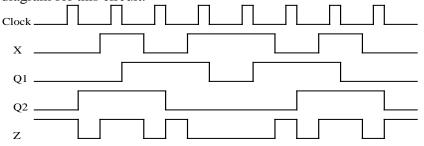
(b) Consider the following circuit implementing single input (x), single output (Z) sequence detector. Assuming the initial state is always Q1 Q2 Q3 =000, construct a *minimal* state table for a circuit that performs the same function as this circuit. What is the input pattern detected by this circuit?

Note: a minimal state table ~ state table with minimal number of states.

Solution

(a) Denote the function of 10 variables as F (x0, x1,...x7, x8, x9). Then ROM can implement any 4 Boolean functions of 8 variables, say x0, x1,..., x7. (these are ROM address lines). The remaining inputs x8, x9 serve as select inputs of a 4-to-1 multiplexer. The ROM outputs are forwarded to data inputs of the mux, effectively implementing an expansion of a 10-variable function over variables x8, x9, according to Shannon's theorem. That is, the data inputs to the Mux are:

 $I0 = F(x_0, ..., x_7, 0, 0)$ $I1 = F(x_0, ..., x_7, 0, 1)$ $I2 = F(x_0, ..., x_7, 1, 0)$ $I3 = F(x_0, ..., x_7, 1, 1)$


(b) Only four states can be reached from the initial state 000. The next-state table is shown below

$Q_1Q_2Q_3$	X=0	X=1	Ζ
A-000	000	100	0
B-100	010	100	0
C-010	000	101	0
D-101	010	100	1

This table has only 4 states. So this network can be implemented using just 2 flip-flops. This Moore-style sequence detector generates output Z=1 (in state D) if and only if the input pattern 101 is received.

Another Option for Part (b)

A synchronous sequential circuit has one input, X, one output, Z, and two flip-flops, Q1 and Q2. A timing diagram for the circuit is shown below (assuming zero delays in the FFs and the gates.) Is this circuit a Mealy or a Moore model circuit? Construct a transition table and diagram for this circuit.

Solution:

It is a Mealy model since the output changes when the input changes without the state changing.

Transition and Output Table:

Q2 Q1 X=0		X=1
0 0	10, 1	01, 0
01	11, 1	00, 0
10	00, 0	11, 1
11	01, 0	10.1