Closed book, closed notes, calculators OK. The Communications problem consists of three parts, each comprising multiple questions, points as marked (point sum $=40=$ perfect score); nominal duration $=1$ hour.

Part A: All bits are not equal [sum of points $=17$] The decision statistic at the output of the matched filter of a digital communication receiver can be written as $r=3 b_{1}+b_{2}+n$, where $b_{1} \in\{-1,+1\}, b_{2} \in\{-1,+1\}$ are independent bits, each one is equally likely to be -1 or +1 , and n is a zero-mean unit-variance Gaussian random variable that is independent of b_{1}, b_{2}.

- [2 points] Draw the symbol constellation and mark the point coordinates.
- [3 points] Draw and label the decision regions of the detector that minimizes the symbol error rate (SER).
- [4 points] For the above detector, compute the bit error rate (BER) for b_{1}; express the result in terms of the $Q(\cdot)$ function.
- [5 points] Do the same for the BER for b_{2}.
- [3 points] Can you think of an application or context where a system like this makes sense?

Part B: Quadrature Amplitude Modulation vs. Orthogonal Modulation [sum of points $=17$]

- [2 points] Draw a 4-QAM constellation with average energy per bit $E_{b}=$ 1 and compute the minimum distance between constellation points, $d_{\text {min }}$. Your drawing should include the coordinates of the constellation points.
- [3 points] Repeat for a 16-QAM constellation with average energy per bit $E_{b}=1$. For convenience, you may start with the prototype 16-QAM constellation $\{-3,-1,1,3\} \times\{-3,-1,1,3\}$, compute its average energy per bit, then scale it appropriately to bring it to $E_{b}=1$.
- [3 points] Next, consider any $4-\perp$ modulation (i.e., orthogonal modulation of order 4) with average energy per bit $E_{b}=1$. Write out the 4×1 coordinate vector for each of the 4 constellation points, and compute the associated $d_{\text {min }}$.
- [3 points] Repeat for $16-\perp$ modulation with average energy per bit $E_{b}=1$.
- [6 points] Compare QAM and \perp modulation on the basis of (and what you can extrapolate from) the above. What is their fundamental difference? Is there a 'hidden' price paid for the apparent advantage of one vs. the other?

Part C: Free lunch [sum of points =6] In-phase / Quadrature modulation is special because it gives us a free orthogonal signaling dimension without expanding the bandwidth relative to pulse amplitude modulation.

- [3 points] Derive a condition relating the carrier frequency f_{c} to the symbol period T which ensures exact orthogonality of $\cos \left(2 \pi f_{c} t\right) w(t)$ and $\sin \left(2 \pi f_{c} t\right) w(t)$, where $w(t)=u(t)-u(t-T)$ and $u(t)$ is the unit step function.
- [3 points] Derive an alternative condition which ensures approximate orthogonality of $\cos \left(2 \pi f_{c} t\right) w(t)$ and $\sin \left(2 \pi f_{c} t\right) w(t)$.

