Closed book, closed notes, calculators OK. The Communications problem consists of three parts, each comprising multiple questions, points as marked (point sum = 40 = perfect score); nominal duration = 1 hour.

Part A: All bits are not equal [sum of points = 17] The decision statistic at the output of the matched filter of a digital communication receiver can be written as $r = 3b_1+b_2+n$, where $b_1 \in \{-1,+1\}$, $b_2 \in \{-1,+1\}$ are independent bits, each one is equally likely to be -1 or +1, and n is a zero-mean unit-variance Gaussian random variable that is independent of b_1 , b_2 .

- [2 points] Draw the symbol constellation and mark the point coordinates.
- [3 points] Draw and label the decision regions of the detector that minimizes the symbol error rate (SER).
- [4 points] For the above detector, compute the bit error rate (BER) for b_1 ; express the result in terms of the $Q(\cdot)$ function.
- [5 points] Do the same for the BER for b_2 .
- [3 points] Can you think of an application or context where a system like this makes sense?

Part B: Quadrature Amplitude Modulation vs. Orthogonal Modulation [sum of points = 17]

- [2 points] Draw a 4-QAM constellation with average energy per bit $E_b = 1$ and compute the minimum distance between constellation points, d_{\min} . Your drawing should include the coordinates of the constellation points.
- [3 points] Repeat for a 16-QAM constellation with average energy per bit $E_b = 1$. For convenience, you may start with the prototype 16-QAM constellation $\{-3, -1, 1, 3\} \times \{-3, -1, 1, 3\}$, compute its average energy per bit, then scale it appropriately to bring it to $E_b = 1$.
- [3 points] Next, consider any $4-\perp$ modulation (i.e., orthogonal modulation of order 4) with average energy per bit $E_b = 1$. Write out the 4×1 coordinate vector for each of the 4 constellation points, and compute the associated d_{\min} .
- [3 points] Repeat for $16 \perp$ modulation with average energy per bit $E_b = 1$.
- [6 points] Compare QAM and ⊥ modulation on the basis of (and what you can extrapolate from) the above. What is their fundamental difference? Is there a 'hidden' price paid for the apparent advantage of one vs. the other?

Part C: Free lunch [sum of points = 6] In-phase / Quadrature modulation is special because it gives us a free orthogonal signaling dimension without expanding the bandwidth relative to pulse amplitude modulation.

- [3 points] Derive a condition relating the carrier frequency f_c to the symbol period T which ensures exact orthogonality of $\cos(2\pi f_c t)w(t)$ and $\sin(2\pi f_c t)w(t)$, where w(t) = u(t) u(t T) and u(t) is the unit step function.
- [3 points] Derive an alternative condition which ensures approximate orthogonality of $\cos(2\pi f_c t)w(t)$ and $\sin(2\pi f_c t)w(t)$.