DIGITAL DESIGN PROBLEM

Problem 1 [0.5 points]
Implement a magnitude comparator circuit which compares two-bit binary numbers $A=A_1A_0$ and $B=B_1B_0$, and provides 3 outputs ($A>B$, $A=B$, $A<B$), using three 8-to-1 multiplexers and no additional gates.
Problem 2 [1.5 points]
A 4-input priority encoder with enable is shown below. When EI is 0, all outputs are 0. When EI is 1,
 i) and all 4 xi inputs are 0, EO is 1 and y1=y0=0
 ii) and not all 4 xi inputs are 0, EO is 0 and y1 and y0 are the binary encoding for the highest priority xi input that is 1 (For example, x3 is highest priority whose binary encoding is 11. x1 is lowest priority with binary encoding 01 and so on).

(a) [0.4 points] Draw a two-level NAND-gate implementation of this priority encoder. Assume both true and complementary inputs are available.

(b) [0.4 points] Draw a two-level NOR-gate implementation of this priority encoder. Assume both true and complementary inputs are available.

(c) [0.7 points] Draw a diagram of an 8-input priority encoder of the same type using two 4-input priority encoders and a few logic gates.
Problem 3 [2.0 points]
(a) [0.5 points] A basic lawn sprinkler system waters the lawn at 8am, once every 3 days. Its operation can be modeled as a Moore-style finite state machine, where a clock period is one day, and a binary output W indicates whether the sprinkler is activated (W=1) or not (W=0) on that day. Show the transition diagram for this sprinkler control system.

(b) [0.5 points] An advanced sprinkler system has a rain sensor. The presence of rain during a particular day is indicated by the binary input R (with values 0/1 indicating No/Yes rain). This sprinkler waters the lawn once every 3 days, assuming there has been no rain during previous 2 days. Show the transition diagram (Moore-style) for this advanced sprinkler system.

(c) [1.0 points] Implement the transition diagram of a sprinkler system in part (b) using a 4-bit counter with parallel load capability and external gates. The counter is specified by its operation table shown below. Use the most appropriate state assignment for this counter implementation. (Implementation means showing the block diagram with clearly labeled inputs/outputs, and derivation of the Boolean equations for control/data inputs of the counter).

Counter operation table:
(All functions are synchronous with a clock)

<table>
<thead>
<tr>
<th>Clear</th>
<th>Load</th>
<th>Count</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Clear</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>No change</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>Load</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Count up</td>
</tr>
</tbody>
</table>