Q1 [14pts]

Consider the feedback interconnection shown in Figure 1 where \(G \) and \(K \) are proper transfer functions. Here it is assumed that a transfer function is of the form \(\frac{n(s)}{d(s)} \) where \(n \) and \(d \) are polynomials in \(s \) with no common factors. For the following questions answer if the statement is true or false. If true provide an example and if false provide a proof.

1. [7pts] There exist single-input, single-output proper transfer functions \(G \) and \(K \) such that \(\frac{1}{1+GK} \) and \(\frac{G}{1+GK} \) are stable but \(\frac{K}{1+GK} \) is not.

Solution: Let \(G = \frac{s-1}{s^2+1} \) and \(K = \frac{s+1}{s^2+2} \). Here \(\frac{1}{1+GK} = \frac{s-1}{(s+1)(s^2+2)} \), \(\frac{G}{1+GK} = \frac{s+1}{(s+1)(s^2+2)} \), and \(\frac{K}{1+GK} = \left(\frac{s+1}{s^2+2} \right)^2 \) are stable but \(\frac{K}{1+GK} = \frac{(s+1)^2}{(s^2+1)(s^2+2)} \) is not.

2. [7pts] There exist single-input, single-output proper transfer functions \(G \) and \(K \) such that \(\frac{1}{1+GK} \) and \(\frac{G}{1+GK} \) are stable but \(\frac{K}{1+GK} \) is not.

Solution: Suppose \(G = \frac{n_g(s)}{d_g(s)} \) and \(K = \frac{n_k(s)}{d_k(s)} \) where \(n_g, d_g, n_k \) and \(d_k \) are polynomials in \(s \). Then it follows that

\[
\begin{align*}
\frac{1}{1+GK} &= \frac{d_g d_k}{n_g n_k + d_g d_k}, \\
\frac{G}{1+GK} &= \frac{n_g d_k}{n_g n_k + d_g d_k}, \\
\frac{K}{1+GK} &= \frac{n_k d_g}{n_g n_k + d_g d_k},
\end{align*}
\]

\[
\frac{1}{1+GK} = \frac{d_g d_k}{n_g n_k + d_g d_k},
\]

unstable implies that there is a \(s_0 \) in the right half plane (rhp) that \((n_g n_k + d_g d_k)(s_0) = 0 \). Given that \(\frac{G}{1+GK} = \frac{n_g d_k}{n_g n_k + d_g d_k} \) and \(\frac{K}{1+GK} = \frac{n_k d_g}{n_g n_k + d_g d_k} \), are stable it follows that

\[
(n_g d_k)(s_0) = (n_k d_g)(s_0) = 0.
\]

As \((n_g d_k)(s_0) = 0 \) there are two cases

Case 1: Suppose \(n_g(s_0) = 0 \)

Then \(d_g(s_0) \neq 0 \) and thus from \((n_k d_g)(s_0) = 0, n_k(s_0) = 0 \). Thus \(d_k(s_0) \neq 0 \). Thus

\[
n_g(s_0)n_k(s_0) + d_g(s_0)d_k(s_0) = d_g(s_0)d_k(s_0) \neq 0
\]

which is a contradiction.

Case 2: Suppose \(d_k(s_0) = 0 \).

Then \(n_k(s_0) \neq 0 \). Thus from \((n_k d_g)(s_0) = 0, d_g(s_0) = 0 \). Thus \(n_g(s_0) \neq 0 \) and thus

\[
n_g(s_0)n_k(s_0) + d_g(s_0)d_k(s_0) = n_g(s_0)n_k(s_0) \neq 0
\]

which is a contradiction.
Consider the bode plot of a minimum-phase transfer function $G(s)$ (the bode plot shows in the magnitude plot $20 \log_{10} |G(j\omega)|$ in db on the Y axis).

1. [3pts] Draw the asymptotes on the bode plot. Use the asymptotes to determine the transfer function $G(s)$.

2. [3pts] (a)Determine the gain-crossover frequency (ω_{gc}) and the phase-crossover frequency (ω_{iso}). (b) Determine the phase and gain margin.

3. [3pts] Suppose the plant G is in a unity negative feedback interconnection with a controller K (see Figure 1). With the controller $K = k_p$ a positive real constant, find the smallest value of k_p such that the interconnection shown is unstable. (Hint: Use the gain margin to obtain the result).

4. [3pts] With $K = 1$ determine the steady state error due to a step input for the interconnection shown. Also, determine the steady state error due to a ramp input.

5. [3pts] Design a Proportional Integral (PI) controller, $K = k_p + \frac{k_i}{s}$, to increase the type with specifications (i) the gain crossover frequency has to be 100 rad/sec (ii) the phase margin has to be at least 40 degrees.
Solution 1.
Solution: The breakpoint frequencies are shown on the bode-plot (next page).
They are at 1 rad/sec, 100 rad/sec and 10000 rad/sec. All are poles.
Thus, the transfer function is of the form

\[G(s) = \frac{A}{(s+1)(s+100)(s+10000)}. \]

\[\Rightarrow G(0) = \frac{A}{10^2 \cdot 10^4} = \frac{A}{10^6} \]

but from the Bode plot \(20 \log_{10} |G(0)| = 20 \)
\[\Rightarrow |G(0)| = 10 \]

Note that \(|G(0)| = 0 \); hence, \(A \) is a positive constant and \(A = 10^7 \)

\[\Rightarrow G(s) = \frac{10^7}{(s+1)(s+100)(s+10000)} = \frac{10}{(s+1)(s+1000)(s+10^4)} \]
is the transfer function
Consider the bode plot of a plant G as given below.
Solution 2.

Solution: \(\omega_{gc} \) is the frequency at which

\[
\left| G(j \omega_{gc}) \right| = 1 \quad \omega_{gc} = 10 \text{ rad/Sec}
\]

From the Bode plot

Similarly the phase crosses \(\omega_{180} \) is the frequency where

\[
\angle G(j \omega_{180}) = -180^\circ
\]

and this occurs at \(\omega_{180} = 1000 \text{ rad/Sec} \).
Determine the phase margin and the gain margin

Solution: The gain margin is given by

\[GM = -20 \log_{10} |G(f(\pi/2)| \]

\[= 60 \text{ dB} \]

\[PM = 180 + \left| \angle G(f(\pi/2)) \right| \]

\[= 180 - 90 = 90 \text{ degrees} \]

[See Bode plot earlier.]
3. With the controller $K=k_p$ a positive real constant, find the smallest value of k_p such that the interconnection shown is unstable. Use the gain margin to obtain the result.

Solution:

The value of K_p is given by

$$20 \log_{10} k_p = GM$$

$$= 60 \text{dB}.$$

Thus, the smallest value of k_p that will destabilize the feedback interconnection is 1000.

$$\log_{10} k_p = \frac{60}{20} = 3$$

$$\Rightarrow k_p = 10^3 = 1000.$$
Solution to 4.

With $K=1$, determine the steady state error due to a step input for the interconnection shown. Also, determine the steady state error due to a ramp input. Determine the type of the system.

\[\text{Solution: } \begin{array}{c}
\xrightarrow{r} \quad e \quad \xrightarrow{K} \quad G \quad \xrightarrow{y}
\end{array} \]

In this case transfer function from r to e is

\[\frac{1}{1+4K} = \frac{1}{1+2} \]

and steady state error due to step is

\[\lim_{s \to 0} \mathcal{L} \{ e(s) \} = \lim_{s \to 0} \mathcal{L} \{ \left(\frac{1}{1+2} \right) \} = \frac{1}{1+2} \]

\[= \lim_{s \to 0} \frac{1}{1+2} \]

\[= \frac{1}{1+k_p}; \quad k_p = L(0) \]

\[L(0) = G(0) \ast w \] Such that

\[20 \log |L(0)| = 20 \log 8 \Rightarrow G(0) = 10 \]

and therefore $e_s = \frac{1}{10+1} = \frac{1}{11} \times 0.1$.
When \(r(t) = \text{ramp} \), \(e(t) = \left(\frac{1}{1+L} \right) \frac{1}{s^2} \)

and \(e(t) \) due to ramp is:

\[
\lim_{s \to 0} e(s) = \lim_{s \to 0} \frac{1}{s + 8L} \cdot \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s + 8L}
\]

\[
= \lim_{s \to 0} \frac{1}{k_v} \cdot \frac{1}{s + 8L}
\]

\[
k_v = \lim_{s \to 0} s \cdot e(s). \quad \text{As} \quad k = 1; \quad L = 6 \]

and \(k_v = \lim_{s \to 0} s \cdot e(s) = 0 \)

\[
\therefore \quad e(t) \text{ due to ramp} = 0
\]

The system is Type 0; it does not track steps with zero steady state error.
Design a Proportional Integral (PI) controller, K, to increase the type. Additional specification is that the gain crossover frequency has to 100 rad/sec and to have a PM of 40 degrees.

Solution: The PI controller is

\[K(s) = kp + \frac{ki}{s} = \frac{ki}{s} \left[\frac{kp}{ki} s + 1 \right] \]

\[= \frac{ki}{s} \left[\frac{kp}{ki} + 1 \right] \]

which has a break frequency at \(\frac{ki}{kp} \).

\(G(s) \) has a phase of \(-135^\circ\) at \(\omega_g = 100 \text{ rad/sec} \).

Thus, \(PM_{\text{have}} = 180 - 135 = 45^\circ \)

\(PM_{\text{desired}} = 40 + 5 \) also, thus, controller \(K(s) \) cannot decrease the phase any further.

Thus, we choose \(\frac{ki}{kp} \leq \frac{\omega_g cd}{10} = \frac{100}{10} = 10 \)

Let us fix \(\frac{ki}{kp} = 10 \).
We also need to shift the gain crossover to 180 rad/sec. = \omega_{\text{g}}\text{ rad/s}

\therefore \quad |L(\omega_{\text{g}})| = 1

\Rightarrow \quad \left| \left(\frac{k_p + k_i}{s} \right) G(s) \right| = 1 \quad \text{at} \quad s = \omega_{\text{g}} \text{ rad/s}

\Rightarrow \quad \left| k_p \left(1 + \frac{k_i}{k_p} \cdot \frac{1}{\omega_{\text{g}}^2} \right) \right| |G(\omega_{\text{g}})| = 1

\Rightarrow \quad \left| k_p \left(1 - \left(\frac{k_i}{k_p} \cdot \frac{1}{100} \right) \right) \right| |G(\omega_{\text{g}})| = 1

\Rightarrow \quad k_p \left(1 - \frac{1}{10} \right) |G(\omega_{\text{g}})| = 1

\Rightarrow \quad k_p \sqrt{1 + \frac{1}{100}} |G(\omega_{\text{g}})| = 1

\Rightarrow \quad k_p = \frac{1}{\sqrt{1.01}} = \frac{1}{1.0049} = 13.5

\Rightarrow \quad k_i = k_i \cdot k_p = \frac{10 \cdot 13.5}{k_p} = 135

\therefore \quad K(s) = 13.5 + \frac{135}{s}
Consider the unity gain loop depicted above, with open loop transfer function given by $KG(s) = K \frac{s+1}{s(s-1)}$. Let $K = k$ be a constant gain. Find the range of k that give phase margins of at least 30°.

Solution: The closed-loop poles are given by the roots of the polynomial $f(s) = s^2 + (k-1)s + k$. It follows that the system is stable if and only if $k > 1$.

To find the phase margin, note that gain cross-over frequency is given by $\omega_{gc} = k$, since

$$|kG(j\omega_{gc})| = k \frac{|j\omega_{gc} + 1|}{|j\omega_{gc} - 1|} = k \frac{\omega_{gc}}{\omega_{gc}} = 1.$$

Furthermore, the phase of $G(j\omega)$ is given by

$$\angle G(j\omega) = \angle(j\omega + 1) - 90^\circ - \angle(j\omega - 1)$$
$$= \angle(j\omega + 1) - 90^\circ - (180^\circ - \angle(j\omega + 1))$$
$$= 2\tan^{-1}(\omega) - 270^\circ.$$

It follows that the phase margin is given by

$$\varphi_{PM} = 2\tan^{-1}(k) - 90^\circ.$$

Thus $\varphi_{PM} \geq 30^\circ$ if and only if $\tan^{-1}(k) \geq (90^\circ + 30^\circ)/2 = 60^\circ$, which holds if and only if $k \geq \sqrt{3}$.