1. An arithmetic unit is implemented in two ways:
 - As a four-stage arithmetic pipeline P where the four stages, S_1, S_2, S_3, and S_4 have combinational delays of 1 unit, 1.5 units, 2.5 unit, and 1 units, respectively. All operands are fed into S_1 and the output is provided by S_4.
 - As an unpipelined implementation U, identical to P except that all registers are removed. For simplicity, assume that all register delays and set-up times are zero.

 (a) What is the best-case speedup of pipeline P over the implementation U? Under what conditions will this speedup be achieved?

 (b) The delay of a pipeline stage corresponds to the path with the largest delay. For stage S_3, only 20% all operations are "fast" and excite this worst-case delay path, while the remaining 80% are "fast" and have a maximum delay of 1.3 units.

 Suppose we alter the pipeline to a configuration P', which still has four stages as in P, but where the "fast" operations in S_3 are completed in one cycle, and the "slow" operations in S_3 require two cycles. Note that while a "slow" operation is being executed, stage S_3 is busy and the pipeline is appropriately stalled until S_3 becomes available. Over a large number of operations where the mix of "fast" and "slow" operations follows the 80%/20% distribution, what is the best-case speedup of the pipeline P' over U?

 (c) Now, consider the case where the delays of the stages in the original pipeline P are balanced so that each stage now has a delay of 1.5 units, and unlike (b), each stage requires exactly one cycle. Call this pipeline P''. What is the best-case speedup of pipeline P'' over the implementation U? Under what conditions will this speedup be achieved? [1.5 points]

2. A computation requires two types of operations: (i) multiply operations and (ii) memory fetch operations which are inherently serial. On a serial machine, at any snapshot in time, 75% of all operations are multiplications while the rest are memory fetches.

 (a) If we were to parallelize the multiply operations, how many multipliers must operate in parallel in order to yield a speedup of 6 over the serial case?

 (b) What is the best achievable speedup? [1 point]

3. Consider the design of a memory system that has a single level of cache of size 512 Kilobytes with a block size of 64 words, a main memory of size 1 Gigabyte, and a secondary memory. The memory is word-addressable, where each word is 32 bits long. Explain precisely how a main memory address is mapped on to the cache when the cache is:

 i) fully associative
 ii) direct-mapped
 iii) 4-way set associative [1.5 points]