Solution:

1. For P, clock period = 2.5 units. For U, clock period = 6 units.

 (a) The best-case speedup occurs when the pipeline is constantly fed with data. In this case, P produces one output every 2.5 units, while U produces a new output every 6 units. The speedup is therefore \(\frac{6}{2.5} = 2.4 \).

 (b) For the “fast” operations, the pipeline requires five cycles, and for the “slow” operations, four cycles are necessary. In both cases, the cycle time is dominated by stage 2 and is set to 1.5 units. Each “slow” operation inserts a single bubble into the pipeline. Therefore, the average number of bubbles inserted into the pipeline per cycle is 0.2.

 If a sufficiently large volume of data fed to the pipeline (\(\gg \) the number of pipeline stages), a new output is produced every 1.2 cycles = 1.8 time units. The speedup over U is \(\frac{6}{1.8} = 3.33 \).

 (c) Following the reasoning in (a), the speedup is now \(\frac{6}{1.5} = 4 \), which is theoretically the best possible since all stages are perfectly balanced.

2. The best speedup we can get is slightly below 4, which is the case where 75% of the \(n \) operations are parallelized on \(m \) processors, and there is no overhead to doing so, so that their execution time is

\[
\text{Lim}_{m \to \infty} \frac{0.75 \times n}{m} = 0,
\]

and the 25% of the serial operations take time 0.25 \(\times n \).

Therefore, a speedup of 6 is not possible, as a consequence of Amdahl’s law.

3. 1 word = 32 bits = 4 bytes
 Main memory address: \(\log(1G/4) = 28 \) bits
 Cache address: \(\log(512K/4) = 17 \) bits
 Number of blocks in the cache = \(512K/(4*64) = 2048 \)

 i) Fully associative mapping
 The block of 64 words is mapped to one of the 2048 available blocks in the cache. The MM address is mapped as follows

 | Tag = 22 bits | Word # in block = 6 bits |

 The tag is matched with that of each cache block to check for a hit.
ii) Direct mapping
The block # in the cache is taken from main memory address as follows

| Tag = 11 bits | Cache blk # = 11 bits | Word # in block = 6 bits |

The cache block number is determined from the corresponding bits, and the tag is matched with that of the corresponding cache block to check for a hit.

iii) 4-way set-associative mapping
Number of cache sets = # cache blocks/4 = 512

| Tag = 13 bits | Cache set # = 9 bits | Word # in block = 6 bits |

The cache set number is determined from the corresponding bits, and the tag is matched with each block in the corresponding cache set to check for a hit.