A linearly-graded Si pn junction with a linear doping gradient is at equilibrium, as shown below, where the gradient “m” is $7 \times 10^{14} \text{ cm}^{-4}$.

a) The built in voltage of this junction is measured to be 0.65V. If the electron density at the edges of the depletion zone are: $p_p = qm(W/2)$ and $p_n = n_i^2/[q(m(W/2))]$, calculate the depletion width. (1.25pt)

b) Calculate the electric field across the junction as a function of distance. ($\varepsilon_0 = 8.85 \times 10^{-14} \text{F/cm}$) (1.25pt)

c) Quantitatively plot equilibrium values for the following vs distance: (0.5 each)
 i) electric field
 ii) voltage
 iii) energy bands

Make sure to label the axes with numbers showing calculated values of W, and max values of each quantity above) and titles (including units) in each case.