The transistor in the amplifier shown below has \(\beta = 100, \ V_A = 200 \ V, \ r_X (r_b) = 0, \ C_n = 300 \ pF, \) and \(C_\mu = 4 \ pF. \) Assume \(V_{BE} = 0.7 \ V \) in the active region and \(V_{CE} = 0.3 \ V \) in saturation.

![Amplifier Circuit Diagram]

Problem 4 - Analog and Digital Electronics

Page 1 of 1

November 5, 2011

a) For this amplifier, determine values for \(R_B \) and \(R_E \) so the dc bias point is at \(I_{CQ} = 10 \ mA \) and \(V_{EQ} = 10 \ V. \) (0.5 points)

b) Determine the input resistance \(R_{in}, \) the output resistance \(R_{out}, \) the midband amplifier voltage gain \(A_V = v_o / v_i, \) and the midband signal source voltage gain \(G_V = v_o / v_s. \) (2 points)

c) As is typical, the frequency response of this amplifier has a bandpass characteristic.

i) Determine a good approximate value for the lower -3 dB frequency, \(f_L. \) (0.5 points)

ii) Determine a good approximate value for the upper -3 dB frequency, \(f_H. \) (1 point)