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ABSTRACT

Efficient design of wireless networks requires implementation
of cross-layer algorithms that exploit channel state informa-
tion. Capitalizing on convex optimization and stochastic ap-
proximation tools, this paper develops a stochastic algorithm
that allocates resources at network, link, and physical layers
so that a sum-utility of the average end-to-end rates is max-
imized. Focus is placed on networks where interference is
strong and nodes transmit orthogonally over a set of parallel
channels. Convergence of the developed stochastic schemes
is characterized, and the average queue delays are obtained in
closed form.

Index Terms— Resource management, cross-layer de-
sign, stochastic approximation, delay effects.

1. INTRODUCTION

Non-linear optimization has been successfully used to ana-
lyze and design cross-layer algorithms for wireless networks;
see e.g., [2] and references therein. The optimal design of the
network is obtained by formulating a constrained optimiza-
tion problem that involves variables from different layers and
exploits information about the fading channel. The solution
of this optimization problem dictates how resources of dif-
ferent layers have to be allocated, while the structure of the
solution typically indicates how the signalling protocols have
to be designed.

In this context, the present paper aims to optimally de-
sign a wireless network whose operating conditions are the
following. At the network layer, nodes receive packets from
different applications, which entail different utility levels [6].
At the link layer, nodes access orthogonally a set of parallel
flat fading channels. Orthogonal here means that if a terminal
is transmitting, no other link interfering with that transmis-
sion can be active [4], [6]. At the physical layer, nodes can
adapt their power and rate loadings in every channel.

The optimization problem is formulated as a sum-utility
maximization that involves variables averaged over all pos-
sible states of the fading channel. The optimal cross-layer

The work in this paper was supported by the USDoD ARO grant No.
W911NF-05-1-0283 and by the C. A. Madrid grant No. P-TIC-000223-0505;
and also through collaborative participation in the CNC sponsored by the
U.S. ARL under the CTA Program, Cooperative Agreement DAAD19-01-2-
0011. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon.

resource allocation turns out to be a function of the instanta-
neous channel state information (CSI) and the optimum La-
grange multipliers associated with the optimization problem.
Using stochastic approximation tools [3], online schemes to
estimate the value of the multipliers are proposed. Conver-
gence and optimality of the stochastic schemes is character-
ized. As in [4], by carefully designing the stochastic schemes,
relationships between the Lagrange multipliers and the queues
are established. Such relationships allow one to character-
ize the stability and the average queue delay of the developed
schemes.

Section 2 introduces notation, describes the operation of
the different layers, and formulates the optimization problem
that will give rise to the optimal resource allocation. The opti-
mum solution is presented in Section 3. Stochastic algorithms
together with their convergence analysis are presented in Sec-
tion 4. Finally, the stability and the average queue delay of
the novel stochastic schemes are analyzed in Section 5. Due
to space limitation, numerical examples illustrating the theo-
retical claims of this paper are not included but can be tem-
porally found in [9] and later on in the journal version of this
conference paper.1

2. PROBLEM STATEMENT

Consider a multi-hop wireless network with I nodes, such
that each node i is physically linked with all other nodes j 6= i
in the network. Although this represents a worst-case sce-
nario from an interference perspective, it simplifies schedul-
ing. Nodes can transmit orthogonally over a set of K flat-
fading parallel channels. The kth channel’s instantaneous
power gain from node i to node j is denoted by hk

ij ; and rep-
resents the noise-normalized squared magnitude of the fading
coefficient. The overall CSI is described by the random vec-
tor h that collects all hk

ij gains. Channels are assumed to be
ergodic and are allowed to be correlated.

For this network, we wish to develop adaptive algorithms
that use the instantaneous CSI to allocate resources at the net-
work, link, and physical layers so that pre-specified QoS met-
rics are optimized. Next, we describe the operation of each
layer.

1Notation: |X | denotes the cardinality of the set X ; x∗ the optimal
value of variable x; 1{·} the indicator function (1{x} = 1 if x is true and
zero otherwise); and [x]ba the projection of x onto the [a, b] interval, i.e.,
[x]ba = min{max{a, x}, b}. Finally, for a function f(·), (f)−1(·) denotes
its inverse and ḟ(·) its derivative.



Network layer operation: Packets generated exogenously at
each node correspond to possibly different applications (such
as video, voice, or file transfer), and are destined for differ-
ent sink nodes. Packet streams will be refereed as flows and
will be indexed by f . Each node serves flows that have other
nodes as destination. The destination node associated with a
flow f is denoted by d(f), while the average arrival rate of
exogenous packets of flow f to node i is denoted by āf

i . The
instantaneous rate of flow f that during the channel realiza-
tion h is routed from node i to node j is denoted by rf

ij(h). As
customary in communication systems, we assume that nodes
are equipped with queues (buffers) capable of storing the in-
coming packets. For such queues to be stable, the follow-
ing necessary average flow conservation condition needs to
be satisfied

āf
i +

∑
∀j 6=i

E
[
rf
ji(h)

]
≤

∑
∀j 6=i

E
[
rf
ij(h)

]
(1)

for all (i, f) such that i 6= d(f).

Link layer operation: As in [8] and [6], links at the outset
can be scheduled to access simultaneously but orthogonally
(in time or frequency) any of the channels. Let wk

ij(h) ∈
[0, 1] denote the nonnegative fraction of time that link (i, j)
is scheduled to transmit over channel k during the channel
realization h. Since every node interferes with all other nodes
in the network, it must hold that

∑
(i,j)

wk
ij(h) ≤ 1, ∀k. (2)

This way, if wk
ij(h) = 0.9 and wk

i′j′(h) = 0.1, link (i, j)
transmits in k during the 90% of the duration of realization h,
link (i′, j′) during the 10%, and all other links remain silent.

Physical layer operation: The resources adapted at the phys-
ical layer will be power and rate per link and channel. Specif-
ically, pk

ij(h) will denote the instantaneous power transmitted
over channel k from node i to node j during the channel real-
ization h if wk

ij(h) = 1. To obey spectrum mask constraints,
it will be imposed that the instantaneous pk

ij(h) can never ex-
ceed a maximum prespecified level p̌k

ij . On the other hand,
the maximum average power node i can transmit will be also
bounded by p̌i; hence,

E
[∑

k

∑
j 6=i

wk
ij(h)pk

ij(h)
]
≤ p̌i, ∀i. (3)

Under bit error rate or capacity constraints, instantaneous rate
and power variables are coupled. This rate-power coupling
will be represented by the function Ck

ij(h, pk
ij(h)). Through-

out this paper it is assumed that the rate-power function
Ck

ij(h, pk
ij(h)) is increasing and strictly concave. For instance,

if strong coding schemes are used, Ck
ij(h, pk

ij(h)) is given by
Shannon’s capacity formula log(1+hk

ijp
k
ij(h)), which is cer-

tainly increasing and strictly concave.

Problem formulation: The resource allocation algorithm will
be designed so that higher exogenous average arrival rates
are promoted. To this end, we will consider utility functions

Uf
i (·) that are strictly concave and increasing. Different flows

f may (and in general will) entail different utility functions.
Note also that the optimization over āf

i amounts to a flow-
control mechanism, which is typically carried out at transport
layer. Under all previous considerations, the optimal channel
adaptive cross-layer resource allocation will be obtained as
the solution of the following optimization problem:

min
āf

i ,rf
ij(h),

wk
ij(h),pk

ij(h)

−
∑

(i,f)
Uf

i

(
āf

i

)
(4a)

s. to : (1), (2), (3), and∑
f

rf
ij(h) ≤

∑
k
wk

ij(h)Ck
ij(h, pk

ij(h)). (4b)

The cross-layer nature of the resource allocation problem
is apparent because variables of different layers are jointly
optimized. Note also that (4b) relates variables from different
layers. The channel-adaptive nature is also apparent because
among the optimization variables we have rf

ij(h), wk
ij(h),

and pk
ij(h), which are all functions of h.

3. OPTIMUM RESOURCE ALLOCATION

Although strictly speaking (4) is not convex, it can be trivially
transformed into a convex problem (see e.g., [8] and [5], for
details), which can be solved using a dual approach. Specif-
ically, let ρf

i and πi denote, respectively, the Lagrange mul-
tipliers associated with the average constraints in (1) and (3),
and let λ be a vector collecting all these multipliers. Fur-
thermore, define ρ∗ij := maxf [ρf∗

i − ρf∗
j ] and let (U̇f

i )−1(·)
and (Ċk

ij)
−1(h, ·) denote, respectively, the inverse function of

the derivative of Uf
i (·) and Ck

ij(h, ·). Based on this notation,
the optimum average arrival rate and instantaneous power are
given by2

āf∗
i (λ) =

[
(U̇f

i )−1(ρf∗
i )

]∞
0

(5)

pk∗
ij (h, λ) =

[
(Ċk

ij)
−1

(
h, π∗i /ρ∗ij

)]p̌k
ij

0
. (6)

Because the instantaneous scheduling wk
ij(h) and routing rf

ij(h)
variables are present only in linear constraints, finding a closed-
form expression for wk∗

ij (h) and rf∗
ij (h) is more complicated.

In fact, to find wk∗
ij (h) consider first the link functional cost

ϕk
ij(h, λ) := −ρ∗ijC

k
ij(h, pk∗

ij (h,λ)) + π∗i pk∗
ij (h,λ). (7)

With εW representing a small positive number, the cost in (7)
can be used to define the minimum link cost and the set of
(sub) optimum links, respectively, as

ϕk∗(h,λ) := min
(i,j)

ϕk
ij(h, λ) (8)

2The Karush-Kuhn-Tucker (KKT) conditions [1] associated with (4) can
be used to prove the optimality of the resource allocation schemes that are
presented in this section. As in the remaining of the paper, proofs are omitted
due to space limitation.



SW (h, λ, k) := {(i, j) :

ϕk
ij(h, λ) < min{0, ϕk∗(h, λ) + εW }}. (9)

Finally, based on the definitions (7)-(9),

wk∗
ij (h, λ) = 1{(i,j)∈SW (h,λ,k)}

×

(
1− ϕk

ij(h,λ)−ϕk∗(h,λ)

εW

)2

∑
(i′,j′)∈SW (h,λ,k)

(
1− ϕk

i′j′ (h,λ)−ϕk∗(h,λ)

εW

)2 . (10)

The optimum scheduling in (10) allows links whose associ-
ated cost is not minimum but εW -close to the minimum also
to be scheduled for transmission, but in a proportional way:
links with lower cost will transmit during more time. It is
important to remark that for most channel realizations, the set
SW (h, λ, k) contains a single element, which amounts to say-
ing that a single link will “win” the channel. Strictly speaking,
for the cases where |SW (h, λ, k)| > 1, the scheduling in (10)
is not optimum and may incur a small penalty (always smaller
than εW ). However, (10) exhibits two major advantages: it is
available in closed form and it is continuous with respect to
λ. These will be exploited in the subsequent sections; see
also [5] for a detailed derivation and justification of (10) for
the case of cellular networks.

We will proceed in a similar manner to find rf∗
ij (h). With

εF being a small positive number, we first define the flow cost
functional, the minimum flow cost, and the (sub) optimum set
of flows, respectively, as

φf
ij(λ) := ρf∗

i − ρ∗fj , φ∗ij(λ) := min
f

φf
ij(λ), (11)

SF (λ, i, j) := {f : φf
ij(λ) < min{0, φ∗ij(λ) + εF }}. (12)

Based on definitions (11)-(12), the optimum routing for a spe-
cific flow f on link (i, j) is

rf∗
ij (h, λ) = C∗ij(h, λ)1{f∈SF (λ,i,j)}

×

(
1− φf

ij(λ)−φ∗ij(λ)

εF

)2

∑
f ′∈SF (λ,i,j)

(
1− φf′

ij (λ)−φ∗ij(λ)

εF

)2 , (13)

where C∗ij(h,λ) represents the optimum aggregate routing
(among flows) for link (i, j), which is defined as

C∗ij(h,λ) :=
∑

k
wk∗

ij (h, λ)Ck∗
ij (h, pk∗

ij (h, λ)). (14)

As before, (13) allows flows whose cost is not minimum but
εF -close to the minimum also to be routed but in a way that
flows with lower cost will route more packages.

4. STOCHASTIC LAGRANGE MULTIPLIERS

In the previous section, the optimal resource allocation schemes
were characterized as a function of two variables: the current

channel state information h, and the optimum Lagrange mul-
tipliers λ∗. If n denotes the current block index (whose du-
ration will correspond to the coherence interval of the fading
channel), then for every n the corresponding h[n] can be ob-
tained through training. However, finding the value of λ∗ is
more complicated. In this paper, we will use stochastic ap-
proximation algorithms to estimate the value of the Lagrange
multipliers. As a result, to implement the optimum policies,
ρf∗

i and π∗i in (5)-(14) will be replaced by the stochastic esti-
mates ρ̂f

i [n] and π̂i[n] presented next.
Let µ denote a constant stepsize and af∗

i [n] the instanta-
neous arrival of flow f at node i during block n (whose ex-
pected value is āf∗

i (λ̂[n])). The two following updates for the
Lagrange multipliers are proposed:

ρ̂f
i [n + 1] =

[
ρ̂f

i [n] + µ(af
i [n]+

∑
j 6=i

rf∗
ji (h[n], λ̂[n])−

∑
j 6=i

rf∗
ij (h[n], λ̂[n]))

]∞
0

(15)

π̂i[n + 1] =
[
π̂i[n]− µ(p̌i

−
∑

k

∑
j 6=i

wk∗
ij (h[n], λ̂[n])pk∗

ij (h[n], λ̂[n]))
]∞
0

. (16)

Basically, (15) and (16) are stochastic versions of an epsilon-
subgradient of the dual function of (4); see [1, Ch. 6] and [5]
for details.

Assuming that the updates in (15) and (16) are bounded,
the following result can be shown:

Proposition 1 Given A > 0, there exists a random variable
W (µ) and time instant t so that

max
n≥t

Pr{‖λ∗ − λ[n]‖ > A} ≤ Pr{W (µ) > A} (17)

where W (µ) → 0 w.p. 1 as µ → 0.

This locking result can be proved based on the averaging ap-
proach in [7, Ch. 9]. Basically, Proposition 1 asserts that
although the dual iterates do not strictly converge to the op-
timum value, with arbitrarily high probability they will hover
within a small neighborhood of it. Together with convergence
results for the dual variables, we are also interested in char-
acterizing the convergence of the primal averages. For these
primal averages, the following holds:

Proposition 2 The sample average of the stochastic primal
variables converges to the ensemble average of the primal so-
lution of (4) with probability one (w.p.1).

Proposition 2 can be proved capitalizing on the results in [3,
Ch. 11], and basically guarantees the optimality of the stochas-
tic schemes from the point of view of (4). To be more specific,
consider the transmit power as an example, and let ˆ̄pi[n] :=
n−1

∑n
r=1

∑
k,j 6=i wk∗

ij (h[r], λ̂[r])pk∗
ij (h[r], λ̂[r])] denote the

sample average of the stochastic instantaneous power alloca-
tion in (3). Remember that if the optimum values of the La-
grange multipliers were known, the ensemble average of the
optimum instantaneous power at node i could be found as
p̄∗i := E[

∑
k,j 6=i wk∗

ij (h, λ∗)pk∗
ij (h, λ∗)]. Then, Proposition

2 establishes that ˆ̄pi[n] → p̄∗i as n →∞ w.p.1.



5. QUEUE STABILITY AND AVERAGE DELAY

So far the existence of queues that store packets before trans-
mission has only been taken into account in the constraints
(1). Even though the dynamics of the queues have not been
explicitly considered into the formulation, it is of interest to
characterize their stability as well as the delay performance of
the developed resource allocation algorithms.

Let us begin by analyzing the queue dynamics. Let qf
i [n]

denote the queue size for flow f at node i, time slot n. Then,
the queue obeys the recursion

qf
i [n + 1] =

[
qf
i [n] + af

i [n]+
∑

j 6=i
rf∗
ji (h[n], λ̂[n])−

∑
j 6=i

rf∗
ij (h[n], λ̂[n])

]∞
0

(18)

for all (f, i) : i 6= d(f). In practice, arrivals and depar-
tures are magnitudes that vary with time scale smaller than n.
This implies that definitions slightly different than the one in
(18) are also possible. Such differences are not relevant for
the subsequent analysis, and (18) has been chosen for math-
ematical simplicity. Comparing (15) to (18), it is clear that
ρ̂f

i [n] and qf
i [n] are related in a way that the stochastic La-

grange multipliers can be interpreted as a scaled version of
the queue sizes. Specifically, if ρ̂f

i [0] = µqf
i [0], then it fol-

lows that qf
i [n] = ρ̂f

i [n]/µ.
The previous finding is meaningful from different points

of view: i) to analyze the stability of our resource allocation
algorithms; ii) to estimate the queueing delay that packets will
suffer from; or iii) to establish connections with other well-
known cross-layer resource allocation algorithms (e.g., with
the celebrated dynamic backpressure algorithm [2]). Next,
we elaborate on i) and ii).

i) Queue stability: First of all, it is useful to analyze the sta-
bility of the stochastic resource allocation in (5)-(16). Using
the fact that qf

i [n] = ρ̂f
i [n]/µ, the following result about the

convergence of the (sample) average of the queues can be es-
tablished:

Proposition 3 If ˆ̄qf
i [n] := n−1

∑n
r=1 qf

i [r] denotes the sam-
ple average of the queue size qi[n], then

ˆ̄qf
i [n] → ρf∗

i /µ as n →∞ w.p. 1.

Therefore, it holds that q̄f
i < ∞ as far as ρf∗

i < ∞; i.e., as
far as the original problem is feasible.

ii) Average delay: The relationship between queues and La-
grange multipliers can also be used to estimate the average
queueing delay of the proposed stochastic resource alloca-
tion. To do so, we will use Little’s result which asserts that
with stable queues the average delay is given by the average
aggregate queue length divided by the average aggregate ar-
rival rate. This implies that the delay of a specific flow is
d̄f := (

∑
i q̄f

i )/(
∑

i āf
i ). Using the results in Proposition 3,

it readily follows that the average delays for the stochastic
resource algorithms developed in this paper are

d̄f =
∑

i

ρf∗
i /(µ

∑

i

āf∗
i ), ∀f. (19)

In other words, the average delay of our stochastic algorithm
can be estimated based on the optimal solution of (4), and
the stepsize of the proposed iterations. Moreover, the KKT
conditions can be used to show that for any node i that ac-
cepts exogenous packets from flow f , it holds that ρf∗

i sat-
isfies ρf∗

i = U̇f
i (āf∗

i ). Substituting the latter into (19), it
follows that d̄f =

∑
i U̇f

i (āf∗
i )/(µ

∑
i āf∗

i ). This means that
based on the exogenous arrival rates of a given flow, the aver-
age delay for that flow can be estimated. It is worth mention-
ing that even in cases where the value of ρf∗

i is not available
in closed form, convex optimization theory (and more specif-
ically sensitivity analysis) can be used to decipher properties
of ρf∗

i and, hence, of d̄f .3
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