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ABSTRACT

We deal with energy efficient time-division multiple access (TDMA)
over fading channels with finite-rate feedback (FRF) for use in the
power-limited regime. Through FRF from the access point, users ac-
quire quantized channel state information. The goal is to map chan-
nel quantization states to adaptive modulation and coding modes
and allocate optimally time slots to users so that the total average
transmit-power is minimized. To this end, we develop a joint quanti-
zation and resource allocation approach, which decouples the com-
plicated problem at hand into three minimization sub-problems and
relies on a coordinate descent approach to iteratively effect energy
efficiency. Numerical results are presented to evaluate the energy
savings.

1. INTRODUCTION

Recently energy-efficient resource allocation has attracted growing
attention [1, 2]. Resource allocation for fading channels has been
studied in [3, 4] and energy-efficiency policies for TDMA have been
investigated from an information theoretic perspective in [5]. As-
suming that both transmitters and receivers have available perfect (P-
) channel state information (CSI), the approaches in [5] provide fun-
damental power limits when each user can support capacity-achieving
codebooks, and also yield guidelines for practical designs where
users can only support a finite number of adaptive modulation and
coding (AMC) modes with prescribed bit error probabilities (BER).

While the assumption of P-CSI renders analysis and design trac-
table, it may not be always realistic. It then motivates a finite-rate
feedback (FRF) model, where only quantized (Q-) CSI is available at
the transmitter through a finite number of bits of feedback from the
receiver. Based on the finite-rate feedback, [6] minimized transmit-
power of orthogonal frequency-division multiplexing (OFDM) sys-
tems. In this paper, we consider energy efficiency issues for TDMA
over fading channels with FRF. Availability of Q-CSI at the trans-
mitters entails a finite number of quantization states. These states
are indexed by the bits that the receiver feeds back to transmitters
and for each of them the resource allocation is fixed. In this sce-
nario, the goal is to map channel quantization states to AMC modes
and allocate optimally time slots to users so that transmit-power is
minimized. To tackle it, we need to optimize three subsets of vari-
ables: transmit-power, quantization regions and time allocation poli-
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cies. Instead of optimizing them jointly, we decouple the complica-
ted problem at hand into three sub-problems. In each sub-problem,
we optimize over one subset of variables with the other remaining
fixed.

2. MODELING PRELIMINARIES

Consider K users linked wirelessly to an access point (AP). The
input-output relationship is y(n) =

PK
k=1

p
hk(n)xk(n) + z(n)

where xk(n) and hk(n) are the transmitted signal and fading process
of the kth user, respectively, and z(n) denotes AWGN with variance
σ2 = 1. We confine ourselves to TDMA; i.e., when xk(n) 6= 0, we
have xi(n) = 0 for ∀i 6= k. We also assume that {hk(n)}K

k=1 are
jointly stationary and ergodic with continuous stationary distribu-
tion. Each channel is slowly time-varying relative to the codeword’s
length and adheres to a block flat fading model which remains con-
stant for a time block T , but is allowed to change in an independent
identically distributed (i.i.d.) fashion from block to block. Because
a frequency-selective channel can be decomposed into a set of par-
allel time-invariant Gaussian channels, our results apply readily to
frequency-selective channels as well. User transmissions to the AP
are naturally frame-based, where the frame length is chosen equal
to the block length. Given an AMC pool containing a finite num-
ber of modes, each user can vary its transmission rate via AMC
per block [7]. Having perfect knowledge of {hk}K

k=1, the AP as-
signs time fractions to users and indicates the AMC mode indices
(a.k.a. Q-CSI) through a message (uplink map) before an uplink
frame. Users then transmit with the indicated AMC modes at the
assigned time fractions. FRF from the AP to users consists of a few
bits indexing predetermined AMC modes and time slots.
Notation: T denotes transposition, dxe the minimum integer ≥ x,
and [x]+ := max(x, 0). Using boldface lower-case letters to denote
column vectors, we let h := [h1, . . . , hK ]T denote the joint fading
state over a block, Eh[·] the expectation operator over h and F (h)

their joint cumulative distribution function (cdf).

3. QUANTIZATION AND RESOURCE ALLOCATION
WITH FINITE RATE FEEDBACK

We wish to minimize total power under individual average rate con-
straints in a TDMA system. Given a time allocation policy τ (·), let
τk(h) denote the time fraction allocated to user k if fading h occurs.
Suppose that each user can support a finite number of AMC modes.
For user k ∈ [1, K], an AMC mode corresponds to a rate-power pair



(ρk,l, pk,l), l = 1, . . . , Mk, where Mk denotes the number of AMC
modes. A pair (ρk,l, pk,l) indicates that for transmission rate ρk,l

provided by the lth AMC mode, pk,l is the minimum receive-power
required to maintain a prescribed BER. For the P-CSI case (see [5]
for a detailed description), although the kth user only supports Mk

AMC modes, this user can still support through time-sharing con-
tinuous rates. With FRF from the AP, particularly in frequency di-
vision duplex (FDD) systems, users can only adopt a finite number
of resource allocation vectors determined by the Q-CSI of each re-
alization h. For all k ∈ [1, K] and l ∈ [1, Mk], let Qk,l denote the
quantization region such that when h ∈ Qk,l, the kth user’s lth AMC
mode is adopted if user k is selected for transmission. Correspond-
ing to Qk,l, an AMC mode can be represented by a rate-power pair
(ρk,l, πk,l), where πk,l is the transmit-power for user k to support
rate ρk,l when h ∈ Qk,l. Different from P-CSI, with Q-CSI, user k

is only allowed to use a fixed transmit power πk,l for its lth mode.
While pk,l can be determined by the allocated rate and prescribed
BER requirement, we need to optimize πk,l in our FRF setup.

In this setup, the optimization variables consist of quantization
regions Q := {{Qk,l}Mk

l=1}K
k=1, transmit powers π := {{πk,l}Mk

l=1}K
k=1

and the time allocation policy τ (·). By the definition of Qk,l, the rate
allocation is absorbed in the quantization design. Let εk,l(γ) denote
the BER for a given SNR γ for the kth user’s lth AMC mode. For
practical modulation-coding schemes with e.g., M -QAM constella-
tions and error-control codes, εk,l(γ) is decreasing and convex [1, 7].

With R̄k and ε̄k collecting the prescribed rate and BER require-
ments, power weights µk, and using the previous definitions, the
energy-efficient quantization and resource allocation problem is
8
>>>>><
>>>>>:

minQ,π,τ(·)
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k,
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k;
PMk

l=1

ρk,l

R̄k

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(1)

where the left-hand side of second and third constraint represents the
average rate and BER per user.

The problem (1) is still complicated and not convex. To solve it,
we divide it into three separate sub-problems and then solve each of
them in an optimal way; i.e., we resort to a coordinate descent [8]
approach to come up with an iterative algorithm which assembles
the different sub-solutions to solve the main problem. Notice that
this is a well appreciated strategy in the field of quantization theory,
and a good example is the Lloyd Algorithm [9].

3.1. Initialization

We first use the resource allocation policies of [5] to initialize our
coordinate descent method. Given AMC modes and P-CSI, [5, The-
orem 6] yields the energy-efficient rate-power and time allocation
policies (τ ∗(·)) via greedy water-filling. With the associated La-
grange multiplier vector λP∗, we can derive the quantization regions
Q∗ corresponding to the rate allocation1:

Proposition 1 With optimum rate allocation, the optimal region Q∗k,l

for user k ∈ [1, K] is given by Q∗k,l =
˘
h : hk ∈ [q∗k,l, q

∗
k,l+1)

¯
,

1Profs for all Propositions can be found in [10].

where q∗k,l = (pk,l−pk,l−1)/(ρk,l−ρk,l−1)µk/λP∗
k for l ∈ [1, Mk]

and q∗k,Mk+1 = ∞ ¤.

3.2. Optimal Transmit-Powers

It is clear from (1) that the rate constraints affect to τ (·) and Q.
However, the solution from Proposition 1 satisfy the rate constraints,
moreover, in each iteration of our coordinate descent algorithm, we
will descend the global objective within the feasible set. This guar-
antees that in this step we always start with a pair of Q and τ (·)
already satisfying rate constraints to find the optimal π. Therefore,
given these Q and τ (·), finding the optimal π reduces to solve
8
<
:

minπ

PK
k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀k,
PMk

l=1

ρk,l

R̄k

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(2)
Let us define Ak,l :=

R
Qk,l

τk(h)dF (h). Since the functions εk,l(x)

are convex, (2) is a convex optimization problem. Its solution can be
analytically obtained as follows.

Proposition 2 Given positives νπ∗
k ,∀k, and with ε′k,l(γ) denoting the

first derivative of εk,l(γ), the optimal π∗k,l is the unique value such

that
R

Qk,l
τk(h)hkε′k,l(hkπ∗k,l)dF (h) = −µkR̄kAk,l

ρk,lν
π∗
k

, or π∗k,l = 0.
And ∀k ∈ [1, K], each Lagrange multiplier νπ∗

k is determined by
satisfying the constraint

PMk
l=1 ρk,l

R
Qk,l

τk(h)εk,l(hkπ∗k,l)dF (h)/

R̄k = ε̄k. ¤

Notice that given τk(h), users are decoupled. Solving (2) is equiv-
alent to solving K small problems. Given νπ∗

k and monotonically
decreasing εk,l(γ), the solution to first equation of Proposition 2 is
unique for π∗k,l > 0 and we can use a one-dimensional. Then we
can use another one-dimensional search to solve for νπ∗

k in the BER
constraint. And the optimal transmit-powers π∗ are in turn obtained.

3.3. Optimal Quantization Regions

Given π and τ (·), users are decoupled as in Proposition 2. To find
the optimal Q (fading regions), we need to solve ∀k,
8
>><
>>:

min{Qk,l}
Mk
k=1

µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t.
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k;
PMk

l=1

ρk,l

R̄k

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(3)

Similary to a constrained vector quantization [9] we derive:

Proposition 3 Given non-negative λq∗
k and νq∗

k , we define ψk,l(hk) :=

µkπk,l − λq∗
k ρk,l + νq∗

k ρk,lεk,l(πk,lq)/R̄k for l ∈ [1, Mk] and
ψk,0(hk) = 0. Then we can obtain the optimal Q∗k,l as: ∀l ∈
[1, Mk], Q∗k,l = {h : ψk,l(hk) ≤ ψk,j(hk); ∀j 6= l, j ∈ [0, Mk]}.
Moreover, λq∗

k and νq∗
k are determined by satisfying slackness con-

ditions λq∗
k × (

PMk
l=1 ρk,l

R
Q∗

k,l
τk(h)dF (h)− R̄k) = 0 and νq∗

k ×
(
PMk

l=1

ρk,l

R̄k

R
Q∗

k,l
τk(h)εk,l(hkπk,l)dF (h)− ε̄k) = 0. ¤

Note that we can also define a region Q∗k,0 as the set complement
of
S

l∈[1,Mk] Q
∗
k,l. When h ∈ Q∗k,0, user k will surely defer. To

obtain the optimal Q∗k,l, we need to find λq∗
k and νq∗

k . Since (3)



is not a convex problem, we resort to a two-dimensional search. We
can start the search in an exhaustive manner. However, once we have
a pair of λq∗

k and νq∗
k satisfying the constraints, we stop the search

and return these values. After obtaining λq∗
k and νq∗

k , ∀k (using K

two-dimensional searches), we in turn determine Q∗.

3.4. Optimal Time Allocation

With Q and π given, finding the optimal time allocation policy is to
solve
8
>>>>><
>>>>>:

minτ(·)
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k,
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k;
PMk

l=1

ρk,l

R̄k

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(4)

Proposition 4 Given λτ∗ := [λτ∗
1 , . . . , λτ∗

K ]T ≥ 0 and ντ∗ :=

[ντ∗
1 , . . . , ντ∗

K ]T ≥ 0, for each fading state h, let lk(h) denote the
mode index for user k such that h ∈ Qk,lk(h), and define ϕ̃k(h) :=

µkπk,lk(h) − λτ∗
k ρk,lk(h) + ντ∗

k ρk,lk(h)εk,lk(h)

`
hkπk,lk(h)

´
/R̄k.

Then the optimal solution τ ∗(·) to (4) can be obtained as follows:
1. ∀k ∈ [1, K], ϕ̃k(h) ≥ 0, then ∀k, τ∗k (h) = 0.
2. If {ϕ̃k(h)}K

k=1 have a single minimum ϕ̃i(h) < 0, then τ∗i (h) =

1 and ∀k 6= i, k ∈ [1, K], τ∗k (h) = 0.
3. If {ϕ̃k(h)}K

k=1 have multiple minima {ϕ̃ij (h)}J
j=1 < 0, then

τ∗ij
(h) = τ∗j with any

PJ
j=1 τ∗j = 1, and ∀k 6= ij , k ∈ [1, K],

τ∗k (h) = 0.
Moreover, λτ∗

k and ντ∗
k should satisfy the complementary slackness

conditions ∀k ∈ [1, K] similar to λq∗
k and νq∗

k in Proposition 3. ¤

As with P-CSI, Proposition 4 asserts that our optimal time allo-
cation strategies are “greedy”. Function ϕ̃k(h) can be viewed as a
channel cost for user k. Then for each time block, we should only al-
low the user with the “best” channel to transmit. When there are mul-
tiple users with “best” channels, arbitrary time division among them
suffices. Since ϕ̃k(h) contains λτ∗

k and ντ∗
k , this implies that the

user having smallest ϕ̃k(h) actually has the rate and BER constraints
controlled “best” channel. For cases where ϕ̃k(h) ≥ 0 ∀k ∈ [1, K],
we should let all users to defer. To obtain the optimal τ ∗(·), we
need to find λτ∗ and ντ∗. Instead of a 2K-dimensional exhaustive
search, we accomplish this by a sub-gradient ascend algorithm. As
our problem is convex the convergence of our sub-gradient projec-
tion algorithm is guaranteed [11]. Once λτ∗ and ντ∗ are calculated,
the time allocation policy in Proposition 4 is in turn determined.

3.5. Joint Quantization and Resource Allocation Algorithm

For the global objective J :=
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h),

we propose based on Propositions 1-4 the following joint quantiza-
tion and resource allocation (JQRA) algorithm 2:

2Since the optimal {τk(h)}K
k=1 is not available analytically, in general

multi-dimensional integrals are involved in solving (2), (3) and (4). However,
the special case where the channels {hk}K

k=1 are independent simplifies the
calculation, due to both ϕ̃k(h) and dF (h) become ϕ̃k(hk) and dF (h), and
consequently just one dimensional integration is needed.

Algorithm 1: [J0] Initialization: Produce initial τ (0)(·) and
Q(0) from Proposition 1. Select tolerance ε > 0, initialize objective
at J(0) = ∞ and set the iteration index t = 1.
[J1] τ (t−1)(·),Q(t−1) → π(t): Given τ (t−1)(·) and Q(t−1), ob-
tain π(t) from Proposition 2.
[J2] π(t), τ (t−1)(·) → Q(t): Given π(t) and τ (t−1)(·), obtain Q(t)

from Proposition 3.
[J3] Q(t), π(t) → τ (t)(·): Given Q(t) and π(t), obtain τ (t)(·) from
Proposition 4.
[J4] Stopping criterion: Calculate J(t) using Q(t), π(t) and τ (t)(·).
If (J(t−1) − J(t))/J(t) < ε, return Q(t), π(t) and τ (t)(·) and stop.
Otherwise, t = t + 1 and go to J1).

Since the global objective J is decreasing in each step, it is easy
to see that as t →∞, the JQRA algorithm converges.

3.6. Optimal Feedback Bits

JQRA provides a quantizer design which is computed off-line. After
that, the AP quantizes each fading state and feeds back the user-
AMC-mode selections per time block. Then users defer or transmit
with the indicated AMC modes.

Proposition 5 Given Q∗, π∗, λτ∗ and ντ∗ from JQRA, ∀h, the AP
sends to the users the codeword c∗(h) = [k∗(h); l∗(h)] which en-
codes the optimal resource allocation for the current fading state, so
that: (1st) k∗(h) = argk min{ϕ̃k(h,Q∗, π∗, λτ∗, ντ∗)}K

k=1 (pick
any k∗ if multiple minima occur), where ϕ̃k(h,Q∗, π∗, λτ∗, ντ∗) :=

µkπ∗k,lk(h) − λτ∗
k ρk,lk(h) + ντ∗

k ρk,lk(h)εk,lk(h)

`
hkπ∗k,lk(h)

´
/R̄k;

(2nd) l∗(h) = { l; s.t. h ∈ Qk∗(h),l, l = 1, . . . , Mk}. When
the users receive the broadcasted c∗(h) = [k∗(h); l∗(h)], the op-
timal multiple access consists of the k∗th user transmitting its l∗th
mode using power π∗k∗(h),l∗(h) while the rest of the users remaining
inactive. ¤

This implies the optimal resource allocation policy can be ob-
tained by letting only one user to transmit per fading state. In other
words, over all possible strategies, the optimal solution only allows
to activate one AMC mode of one user per block. Therefore, we
only need dlog2(

PK
k=1 Mk+1)e feedback bits to index the different

user-AMC-mode combinations and the case of all users deferring.

4. NUMERICAL RESULTS

In this section, we present numerical results of JQRA for a 2-user
Rayleigh flat-fading TDMA channel. The system bandwidth is B =

100 KHz, and the AWGN has two-sided power spectral density N0

Watts/Hz. Fading coefficients hk, have mean h̄k and are assumed in-
dependent. The average signal-to-noise ratio (SNR) is γ̄k = h̄k

(N0B)
.

The transmission rates per symbol of AMC modes are: ρk,l = 1, 3, 5

bits. The corresponding BER can be approximated, [7], as εk,l(γ)

= 0.2 exp(−γ/(2ρk,l − 1); and we set ε̄1 = ε̄2 = 10−3.
Supposing P-CSI at transmitters (P-CSIT) or Q-CSIT, we test

the P-CSIT based resource allocation [5] and our Q-CSIT based
JQRA. For comparison, we also test a widely employed heuristic Q-
CSIT based approach, where each user is assigned equal time frac-
tion and transmits with equal power for all its AMC modes per block.
The AP selects for each user an AMC mode so that the instantaneous



Table 1. Power weighted cost (measured in dBW ) for different test
cases. Reference case: µ1 = 1/2, µ2 = 1/2, R̄1 = R̄2 = 100

kpbs, γ̄1 = γ̄2 = 0 dB.

.

Variation P QHEUR P QJQRA P PCSIT

ReferenceCase 15.23 8.79 8.21
µ1 = 2/3, µ2 = 1/3 15.22 8.76 8.03
µ1 = 6/7, µ2 = 1/7 15.08 8.51 7.98

γ̄1 = 3, γ̄2 = 0 14.83 7.71 7.15
R̄1 = 100, R̄2 = 50 13.01 6.59 6.22

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

U
se

r
2

C
h
a
n
n
el

P
o
w
er

G
a
in

[h
2
/
(N

0
B

)]

User 1 Channel Power Gain [h1/(N0B)]

• user 1 ×user 2

Fig. 1. Optimal time allocation policy and quantization regions ob-
tained by the JQRA algorithm, where regions are indicated using dif-
ferent shades and quantization thresholds are represented with bold
lines (µ1 = 2/3, µ2 = 1/3, R̄1 = R̄2 = 100 kpbs, γ̄1 = γ̄2 = 0

dB).

BER is less than or equal to the required level. With such a quan-
tization, each user’s transmit-power is then selected to ensure that
its rate constraint is satisfied. Numerical results describing the be-
havior of our algorithm in different cases are summarized in Table I.
We observe that: i) JQRA clearly outperforms the heuristic Q-CSIT
approach (yielding around 6 dB savings); ii) the gap between JQRA
and P-CSIT solution is very small. Since the P-CSIT solution lower
bounds all Q-CSIT based approaches, this indicates that our coor-
dinate descend algorithms are near-optimal. Moreover, for all the
cases the constraints are tightly satisfied which certifies the accuracy
of our solution.

To gain more insight, let us take a closer look at our joint quan-
tization and resource allocation solution when µ1/µ2 = 2. For
this case the optimum powers (measured in dBW ) are: π∗1,1 = 8.6,
π∗1,2 = 13.2, π∗1,3 = 15.6, π∗2,1 = 9.0, π∗2,2 = 13.8, and π2,3 =

16.3. This indicates that for the simulated scenarios, the water-filling
principles still hold in the Q-CSIT based optimal power loading, as
in the P-CSIT case; i.e., when the channel is better, we use a higher
rate with more transmit-power. The quantization regions and time
allocation are depicted in Fig. 1 that reveals optimal quantization
regions {{Q∗k,l}3l=1}2k=1 are non-overlapping consecutive intervals
which can be determined by a set of thresholds {q∗k,l}, which are
represented with bold lines. This implies that a simple quantization-
region based time allocation approach may provide a good approxi-

mation to the optimal policy. Numerical results also reveal that 5-10
outer iterations of JQRA suffice to converge to the optimal solution.

5. CONCLUSIONS

With FRF from the AP, users can only acquire Q-CSI and thus adopt
a finite number of resource allocation configurations. Based on Q-
CSI, we derived an energy-efficient joint quantization and resource
allocation strategy for TDMA fading channels which decouples the
complex optimization task into three or two tractable minimization
sub-problems. Finally we proposed an iterative algorithm which re-
lying on coordinate descent principles to derive iterative algorithms
assembles the different sub-solutions of the decoupled sub-problems
to solve the main problem. Numerical results showed that with
Q-CSIT only available, our JQRA algorithm achieve energy effi-
ciency surprisingly close to that obtained with P-CSIT, and yield
large energy-savings compared to a heuristic and widely used Q-
CSIT approach.
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