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ABSTRACT
The present paper deals with dynamic resource management based
on quantized channel state information (CSI) for multi-carrier cog-
nitive radio networks comprising primary and secondary wireless
users. For each subcarrier, users rely on adaptive modulation, coding
and power modes that they select in accordance with the limited-rate
feedback they receive from the access point. The access point uses
CSI to maximize the sum of generic concave utilities of the indi-
vidual average rates in the network while respecting rate and power
constraints on the primary and secondary users. Using a stochas-
tic dual approach, optimum dual prices are found to optimally allo-
cate resources across users per channel realization without requiring
knowledge of the channel distribution.

Index Terms— Resource management, Multiuser channels, Op-
timization methods, Stochastic approximation, Quantization

1. INTRODUCTION

The proliferation of wireless services along with spectrum under-
utilization have motivated recent research on dynamic spectrumman-
agement and wireless cognitive radios (CR) which are capable of
sensing and accessing the spectrum dynamically. A number of chal-
lenges arise with such dynamic and hierarchical means of access-
ing the spectrum. The present paper investigates resource alloca-
tion (RA) based on quantized (Q-) CSI for CR operating over fad-
ing channels with unknown channel statistics. The focus is on a CR
where co-existing primary (licensed) and secondary users [5] rely on
orthogonal frequency-division multiple access (OFDMA)1. For such
a scenario, the access point (AP) or central unit (CU) relies on the
current CSI, and user specifications to optimally allocate resources
and notify users about the optimal schedule through a limited-rate
feedback channel. This allows users to adapt their transmissions
(power, rate, and subchannel) while maximizing a given utility, re-
specting possible hierarchies, and adhering to power constraints and
diverse quality of service (QoS) requirements.

Specifically, channel-adaptive resource (power, rate, subcarrier)
allocation is obtained as the solution of a convex constrained opti-
mization problem, which naturally takes into account different user
priorities, specific utility functions, individual QoS requirements,
and physical layer parameters. The resultant optimum resource allo-
cation depends on only the current channel realization and dual vari-
ables that can be readily interpreted as user-specific prices. While
the resource allocation is found in closed-form, the user-specific

∗The work in this paper was supported by the USDoD ARO grant No.
W911NF-05-1-0283 and by the C. A. Madrid grant No. P-TIC-000223-0505.

1In principle any other orthogonal basis can be used as a set of transmit
waveforms

prices (which capture the differences among users in terms of pri-
ority, QoS as well as average channel conditions) have to be numer-
ically found. Our focus in this paper is when channel statistics are
unknown. Specifically, we develop an adaptive stochastic algorithm
capable of learning the intended channels on-the-fly and converging
in probability to the optimal solution.

2. MODELING PRELIMINARIES

Consider an OFDMA air interface between an APwith central sched-
uler and J wireless users, where users j = 1, . . . , Jp are primary
spectrum holders and users j = Jp + 1, . . . , J are secondary users.
The overall bandwidth B is divided intoK orthogonal narrow-band
subcarriers, each with bandwidth B/K small enough to ensure that
the fading channel on it is flat. The wireless link between the AP
and user j at subcarrier k = 1, . . . , K is characterized by its random
square magnitude hj,k which is assumed normalized by the receiver
noise variance. The resultant JK × 1 vector h := {hj,k, j =
1, . . . , J, k = 1, . . . , K} is stationary and ergodic.

Per subcarrier k, we introduce a non-negative time-sharing vec-
tor τ k(h) := {τj,k(h), j = 1, . . . , J}, where entries τj,k(h) de-
pend on the channel realization h and obey the constraint

∑J
j=1

τj,k(h) ∈ [0, 1]. Specifically, τj,k(h) represents the percentage (of
time) that user j gains access to subcarrier k (on the average across
realizations of h). If scheduled, i.e., if τj,k(h) > 0, user j transmits
on subcarrier k with rate rj,k(h) and power pj,k(h).

The AP acquires with a sufficient number of training symbols
the CSI vector h based on which it optimizes resource allocation
(τj,k(h), rj,k(h), pj,k(h) ∀ j, k) and feeds back the optimal sched-
ule to the users using a finite number of bits. This limited-rate
feedback enables channel-adaptive operation based on a finite num-
ber of possible transmit-configurations. Let S denote a set con-
taining a finite number of adaptive modulation, coding, and power
(AMCP) modes [2], [4]. Specifically, let the mth AMCP mode for
the jth user on subcarrier k consist of a discrete rate (modulation
and coding) rj,m,k; and a discrete power level pj,m,k. Therefore,
the set of AMCP modes is defined as S := {(rj,m,k, pj,m,k) |j =
1, . . . , J, m = 1, . . . , Mj,k, k = 1, . . . , K}, where m = 1, . . . ,
Mj,k. For convenience, we extend the definition of S to include a
fictitious user j = 0 with AMCP modes (r0,m,k = 0, p0,m,k = 0)
and M0,k = 1 ∀k representing the case where no user transmits on
subcarrier k. (Note that synchronization is assumed.)

To guarantee quality-of-service (QoS), reliability of the wireless
links will be maintained under a maximum allowable BER ε̌j per
user. This can be satisfied provided that per channel realization h
only the AMCP modes respecting the required BER are considered.
For this purpose, with εj,m,k(pj,m, rj,m|hj,k) denoting the instanta-
neous BER expressed as a convex function of the channel gain, the
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power and rate per channel realization h, we can define the set of
user j active modes as

Mj(hj,k) := {m : εj,m,k(pj,m, rj,m|hj,k) ≤ ε̌j}. (1)

The finite cardinality of S does not necessarily force users to uti-
lize transmit-rates and powers constrained to a specific AMCP mode
(i.e., rj,m,k and pj,m,k) since they can naturally support transmit-
rates expressed as linear combinations of these AMCP modes by
time-sharing their usage per subcarrier k. Specifically, using the
mode m over ζj,m,k percentage of the τj,k time fraction, and let-
ting τj,m,k := ζj,m,kτj,k, user j can support rate rj,k(h) =

∑M
m=1

τj,m,k(h)rj,m,k where clearly
∑J

j=0

∑M
m=1 τj,m,k ∈ [0, 1] and

now the time-allocation vector is defined as τ (h) := {τj,m,k(h),
j = 1, . . . , J, m = 1, . . . , Mj,k, k = 1, . . . , K}. Through
time-sharing, any linear combination of {rj,m,k} gives rise to the
same linear combination of corresponding powers {pj,m,k}; hence
pj,k(h) =

∑M
m=1 τj,m,k(h)pj,m,k.

3. CHANNEL-ADAPTIVE RESOURCE ALLOCATION

The optimal resource allocation will be obtained in this section as
the solution of a constrained optimization problem. The objective of
this will be based on concave and increasing so called utility func-
tions Uj(·), that are commonly used in resource allocation problems
(not only restricted to communication systems). On the other hand,
to respect primary/secondary CR hierarchies, a minimum average
rate řj will be maintained for primary user transmissions indexed
by j ≤ Jp; while, to prevent secondary users from “abusing” the
spectrum, maximum average rates řj will be imposed for these users
too indexed by j > Jp. Finally, maximum individual average power
constraints p̌j will be present for both primary and secondary users.

Then the optimal allocation will maximize the total utility sub-
ject to (s.to) average rate, average power and time feasibility con-
straints. Considering the case where the input of the utility function
for the jth user (denoted by xj) corresponds to the average rate trans-
mitted by that user and with Eh[·] denoting the expectation over h,
the optimal allocation can be found as the solution of:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
τ (h),x

∑J
j=0 Uj (xj)

s.to
c1. Eh

[∑K
k=1

∑
m∈Mj(hj,k) τj,m,k(h)rj,m,k

]
≥ řj , j ≤ Jp

c2. Eh

[∑K
k=1

∑
m∈Mj(hj,k) τj,m,k(h)rj,m,k

]
≤ řj , j > Jp

c3. Eh

[∑K
k=1

∑
m∈Mj(hj,k) τj,m,k(h)pj,m,k

]
≤ p̌j , ∀j

c4.1. τj,m,k(h) ≥ 0; ∀h, ∀j, m, k

c4.2.
∑J

j=1

∑
m∈Mj(hj,k) τj,m,k(h) ≤ 1; ∀h, ∀k

c5. xj = Eh

[∑K
k=1

∑
m∈Mj(hj,k) τj,m,k(h)rj,m,k

]
, ∀j.

(2)
where constraints c1 and c2 enforce the primary-secondary CR hi-
erarchies; constraints c3 ensure adherence to the power budget of
individual users; constraints c4 impose that the user allocation has
to be feasible; and constraints c5 represent the utility input2. The
problem formulated as in (2) is convex and can be efficiently solved
using a Lagrange multiplier based primal-dual approach [1]. Note
that if Uj(xj) := θjxj the problem in (2) reduces to the classical
“weighted” (by θj) rate maximization problem.

2If the problem in (2) is feasible, the equality (=) in c5 can be relaxed
with inequality (≤) without loss of optimality

3.1. Characterizing the optimum channel-adaptive RA

Let λrj and λpj denote the Lagrange multipliers associated with
rate and power constraints of the primary (j ≤ Jp) and secondary
(j > Jp) users, and wj the multiplier corresponding to c5. Ignor-
ing temporarily the instantaneous constraints c4 and with r̄j(τ ) :=

Eh[
∑K

k=1

∑
m∈Mj(hj,k) τj,m,k(h)rj,m,k], the Lagrangian as a func-

tion of λ := [λr1 , λp1 , . . . , λrJ , λpJ ]T , w := [w1, . . . , wJ ]T , τ ,
and x := [x1, . . . , xJ ]T is given by

L(λ, w, τ , x) :=
∑J

j=1 Uj(xj) +
∑J

j=1(−1)
I{j>Jp}λrj (r̄j(τ )

−∑J
j=1 λpj (p̄j(τ ) − p̌j) −∑J

j=1 wj(xj − r̄j(τ )) (3)

where I{·} stands for the indicator function. The Lagrange dual
function is

D(λ, w) := max
x,τ∈{c4.1,c4.2}

L(λ, w, τ ) (4)

where the set of constraints c4.1 and c4.2 has to be explicitly im-
posed since it was not originally considered in the Lagrangian. Fi-
nally, with λ ≥ 0 denoting that all entries of λ are non-negative, the
dual problem of (2) is

min
λ≥0,w≥0

D(λ, w). (5)

Since (2) has zero-duality gap, solving the problem in (5) amounts
to solving the original constrained problem in (2). But to solve (5),
we will need first to solve the maximization in (4). As we will see,
given λ and w (that soon will be interpreted as dual prices) the op-
timum time allocation τ∗

j,m,k(λ,h) solving (4) (which depends on
both the current channel realization and the value of the multipliers)
can be analytically found. However, there is no closed-form for the
solution of (5). Our approach in this paper will consist of first find-
ing the expression of τ∗

j,m,k(λ,h) and then finding the optimum λ
and w based on stochastic iterations.

To solve (4), we first define the link quality indicators

ϕj,m,k(λ, w,h) := ϕj,m,k(λj , wj , hj,k) := (6)

(wj + (−1)
I{j>Jp}λrj )rj,m,k − λpj pj,m,k, ∀m ∈ Mj(hj,k), ∀j

where by construction ϕ0,m,k = 0. Per subcarrier k, we determine
for each user j the “most-efficient” mode in the sense that

m∗
j,k(λ, w,h) = arg max

m∈Mj(hj,k)
ϕj,m,k(λ, w,h); (7)

and select the “most-efficient” user as the one with index

j∗k(λ, w,h) = arg max
j

ϕj,m∗
j,k

,k(λ, w,h) (8)

which in general is unique (remember that h is a random variable).
For the case where the winner is unique, it can be shown that per
sub-carrier k, the optimal schedule of time-sharing fractions is

τ∗
j,m,k(λ, w,h) =

{
1, if j = j∗k and m = m∗

j∗
k

,k

0, otherwise.
(9)

i.e., the “most-efficient” user is the only user gaining access to the
subcarrier k; for this reason j∗k will be termed “winner user” of sub-
carrier k. If eventually more than one user attains the maximum, the
policy of allowing only one of them accessing the subcarrier is still
optimum, although in this case the specific user selected for trans-
mission is randomly chosen among the multiple winners so that the
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QoS constraints are met with equality (if the AMCP modes are lin-
early independent, the probability of a tie vanishes as J , K orMj,k

increases). The proof of (9) is omitted due to space limitations but
follows the lines of [3] and [4].3

Based on the optimal time allocation (9), we can express the
optimum transmit-rate and power per user and subcarrier as

r∗j,k(λ, w,h) :=
∑

m∈Mj(hj,k) τ∗
j,k,m(λ, w,h)rj,m,k (10)

p∗
j,k(λ, w,h) :=

∑
m∈Mj(hj,k) τ∗

j,k,m(λ, w,h)pj,m,k.

Finally, with U ′−1
j denoting the inverse function of U ′

j , the input
xj maximizing (4) can be easily found as x∗

j (w) = U ′−1
j (wj).

3.2. Finding the optimal dual prices: learning the environment

Since the problem in (2) is convex, the optimum λ∗ and w∗ can be
found by searching over the dual function which is always convex
and its global optimum can be found using (sub)gradient iterations
[1, Chap. 6]. However, since the constraints in (2) involve expecta-
tions over the channel gains, averaging over the PDF of the channel
is needed and thus the channel statistics are in principle required. To
bypass this problem, we will rely on adaptively updated instanta-
neous estimates of λ and w based on stochastic implementations of
the subgradient iterations [6].

To this end, suppose that the fading channel vector h remains
invariant over a block of OFDMA symbols but can vary from block-
to-block (block fading channel model). Let n denote the current
block (time) index, h[n] the fading state during block n, and [x]+ :=
min(x, 0). Then, we can execute an on-line recursion across blocks
to obtain the instantaneous estimates ŵ[n] := [ŵ

[n]
1 , . . . , ŵ

[n]
J ]T and

λ̂
[n]

:= [λ̂
[n]
r1 , λ̂

[n]
p1 , . . . , λ̂

[n]
rJ , λ̂

[n]
pJ ]T as

λ̂
[n+1]
rj =

[
λ̂

[n]
rj − β[n]

[∑K
k=1 r∗j,k(λ̂

[n]
, ŵ[n],h[n]) − řj

]]+
(11)

λ̂
[n+1]
rj =

[
λ̂

[n]
rj − β[n]

[
řj −∑K

k=1 r∗j,k(λ̂
[n]

, ŵ[n],h[n])
]]+

λ̂
[n+1]
pj =

[
λ̂

[n]
pj − β[n]

[
p̌j −∑K

k=1 p∗
j,k(λ̂

[n]
, ŵ[n],h[n])

]]+
ŵ

[n+1]
j =

[
ŵ

[n]
j − β[n]

[
x∗

j (ŵ
[n]) −∑K

k=1 r∗j,k(λ̂
[n]

, ŵ[n],h[n])
]]+

where r
∗[n]
j,k := r∗j,k(λ̂

[n]
, ŵ[n],h[n]) and p

∗[n]
j,k := p∗

j,k(λ̂
[n]

, ŵ[n],

h[n]) are computed based on (10) and represent the current rate
and power of the user j at subcarrier k over block n; and stepsize
β[n] ∈ [0, 1] implements a forgetting factor in the averaging. To
find r

∗[n]
j,k and p

∗[n]
j,k per block n, the optimum AMCP mode and user

for each subcarrier k have to be found by substituting the current
λ̂

[n]
, ŵ[n],h[n] estimates into (6)-(9). Once the RA parameters of

the nth block are obtained, we can use (11) to update both reward
weights ŵ[n+1] and dual prices λ̂

[n+1]
with negligible (linear) com-

putational complexity.

3Regarding λrj and λpj as rate and power “prices” and wj = U ′
j(xj)

as a rate-weight representing the marginal utility per transmitted bit, the link
quality indicators in (6) determine the net rate reward (rate reward minus
power cost) corresponding to the (j, m)th mode on subcarrier k. In our sec-
ondary market CR set-up, to satisfy the individual QoS per user we promote
the marginal utility of the primary users j ≤ Jp through addition of the
multiplier λrj > 0; whereas these positive multipliers are subtracted from
the marginal utility to prevent abusive spectrum access by secondary users
j > Jp (likewise, λpj > 0 can be always viewed as a penalty or cost and
wj > 0 as a reward).

Per block n, this algorithm performs a weighted sum-rate maxi-
mization with adaptive weights provided by ŵ

[n]
j + λ̂

[n]
j for primary

users and ŵ
[n]
j − λ̂

[n]
j for secondary users to obtain on-line optimal

allocation, whereas the variables λ̂
[n+1]

and ŵ[n+1] are updated us-
ing instantaneous transmit-powers and rates.

This simple stochastic dual (SD) on-line algorithm can learn the
channel statistics on-the-fly, and is convergent and asymptotically
optimal as the following theorem states.

Theorem 1 If problem (2) is strictly feasible, then the estimates ob-
tained recursively in (11) using any initial λ̂[0] ≥ 0 and ŵ[0] ≥ 0,
converge in probability to the optimal λ∗ and w∗(λ∗) of (2), as
n → ∞ and β[n] ↓ 0.

The proof is omitted due to space limitations but it can follow the
lines of the convergence proof of the queue size updates of the greedy
primal-dual algorithm in [7] and requires

∑∞
n=1 β[n] → ∞. Equally

interesting, with a small but constant stepsize β[n] = β, the SD al-
gorithm brings λ̂

[n]
to a small neighborhood of λ∗. Because this

adaptive algorithm converges from arbitrary initializations it exhibits
robustness to channel non-stationarities.

4. REDUCING THE FEEDBACK: QUANTIZED CSI

The optimal resource allocation presented so far can be easily imple-
mented when the CU (scheduler) knows the price vectors λ̂

[n]
and

ŵ[n], the set of AMCP modes S, and the vector channel realization
h[n]. Based on those the optimal transmit configuration per subcar-
rier (r∗[n]

j,k , p
∗[n]
j,k , ∀j, k) can be computed using (10) and fed back

to the CR user terminals usingB = 	∑K
k=1 log2(

∑J
j=0 Mj,k)
 bits

per channel realization (so that per subcarrier we can index any user-
mode pair in S). However, the feedback required from the CU can be
reduced with small loss of performance using channel quantization.

To perform this design we will assume that instead of the analog-
valued hj,k (perfect (P-)CSI), the optimization algorithm relies on
the quantized value hQ

j,k (Q-CSI). This value is found using a chan-
nel quantizer and belongs to a set Lj,k with finite cardinality Lj,k

so that we can write Lj,k := {hj,k,l}Lj,k

l=1 . Since the set of feasible
modesMj,k(hj,k) satisfying the BER constraint in (1) was selected
in accordance with hj,k, it is necessary to adapt this definition to the
quantized set-up. To do so, it is first useful to introduce the func-
tion εQ

j,m,k(pj,m,k, rj,m,k|hQ
j,k) which expresses the BER as a con-

vex function of the power, the rate, and the quantized version of the
channel. Based on this function, we define the set of AMCP modes
satisfying the instantaneous BER requirement ε̌ as

MQ
j,k(hQ

j,k) := {m : εQ
j,m,k(pj,m,k, rj,m,k|hQ

j,k = hj,k,l) ≤ ε̌}.
(12)

Furthermore, we will assume that the CU knows λ̂
[n]
, ŵ[n], S

and each terminal j knows its own dual prices λ
[n]
rj , λ

[n]
pj , w

[n]
j and

AMCP modes Sj := {(rj,m,k, pj,m,k), ∀m, k}. Then the feedback
overhead can be reduced under the following operating conditions:
(oc.1) Both CU and users: (i) use the same λ̂[0] and ŵ[0]; (ii) iden-
tical β[n] ∀n; and (iii) replaceMj,k(hj,k) byMQ

j,k(hQ
j,k) in every

step of the calculations.
(oc.2) For each block index n, the CU (receiver):
(i) substitutes λ̂

[n]
and ŵ[n] into (6)-(9) to find the optimal RA ∀j, k;

(ii) runs the dual updates in (11)-(12) to obtain λ̂
[n+1]

and ŵ[n+1]

∀j, k; and (iii) feeds back to the users the message c[n] := [j
∗[n]
1 ,
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Fig. 1. Evolution of the total sum utility with time.

l
∗[n]
1 , . . . , j

∗[n]
K , l

∗[n]
K , ], where l

∗[n]
k := {l : hQ

j
∗[n]
k

,k
= h

j
∗[n]
k

,k,l
},

i.e., l∗[n]
k represents the index of the quantization region the channel

gain of the winner user belongs to.
(oc.3) For each block index n, the terminals (transmitters):
(i) the winner terminal j∗[n]

k (indexed by the CU) uses hQ
j,k = h

j,k,l
∗[n]
k

(indexed by the CU) plus λ
[n]
pj , λ

[n]
pj , and w

[n]
j (locally stored) to find

its optimum transmission modem
∗[n]
k , while all other users set their

transmission power and rate on this subcarrier to zero; and (ii) once
every terminal knows its transmit-rate and power ∀k, it updates its
own λ

[n+1]
pj , λ[n+1]

pj , and w
[n+1]
j using (11).

Using this modification the rate required for the feedback link
between the CU and the users reduces to B = 	∑K

k=1 log2 (
∑J

j=0

Lj,k)
 bits per h. Note that if uplink and downlink channels are
reciprocal, each user can estimate its own channel and then the CU
only has to feedback the winner-user per subcarrier. Finally, if needed,
on top of our quantization design further reduction of the feedback
overhead can be effected by exploiting the possible correlation among
channel gains across subcarriers and/or time.

5. NUMERICAL TESTS

Due to space limitations, we only show a single test case simulating
an adaptive OFDMA system with 1 primary and 3 secondary users
(i.e., J = 4), K = 256 subcarriers, 10 uncorrelated Rayleigh taps
per user, and average signal-to-noise ratio per subcarrier equal to
6dB. The default utility is linear (i.e., Uj(r̄j) = r̄j andw = 1); the
AMCP modes are designed so that they correspond to non-zero uni-
form random samples of the continuous water-filling solution [3],
i.e., rj,m,k = [log2(h/μ)]>0 and pj,m,k = [1/μ − 1/h]>0 with
the water-filling level μ ∈ [0.01, 100] and the channel gain h ∈
[0.5, 5h̄j,k]; and Mj,k = 64 ∀(j, k). The channel quantizer corre-
sponds to the equally-probable quantizer presented in [4] withLj,k =
8 ∀(j, k). The QoS constraints are set to: řT := [ř1, . . . , ř4] =
[100, 50, 50, 100] bits per channel use (b.p.c.u), p̌T := [p̌1, . . . , p̌4] =
[1000, 200, 1000, 200], and ε̌j = 0.001 for all j.

Figure 1 depicts the summation of the sample mean of the in-
dividual rates (i.e.,

∑J
j=1(ˆ̄rj(n)) with ˆ̄rj(n) = 1

n

∑n
k=1 r

∗[k]
j ) as

a function of n for 4 different cases. Namely: (A) the case where
the dual prices are computed stochastically as in (11) and the mode
set corresponding to the channel quantization in (12) is considered;
(B) the case where the dual prices are computed stochastically as
in (11) and the original mode set in (1) is considered; (C) the case

where the dual prices are computed using the original average ver-
sion of the subgradient iterations (thus, the channel PFD is known)
and the mode set in (1) is considered; and (D) the benchmark case
where dual prices are computed using the original average version
of the subgradient iterations and the mode set in (1) is assumed of
infinite size (thus the RA can even follow the water-filling solution).
The main results that Figure 1 provides are: (i) the stochastic algo-
rithms converge; (ii) the convergence is attained in a small number
of iterations (as expected the convergence is slightly slower for the
stochastic algorithms, since they only use past information while C
and D know the PFD of the channel and therefore can anticipate fu-
ture events), (iii) the utility achieved by the schemes based on finite
number of transmit-configurations is close to the one of the bench-
mark (the power consumption is slightly higher for the stochastic
schemes). Although not plotted, our numerical experiments also in-
clude a heuristic algorithm that keeps fixed the subcarrier and power
allocation but optimally allocates the rate in each subcarrier. The to-
tal transmitter rate achieved by this algorithm was 25 bits (more than
an order of magnitude less). Finally, it is worth mentioning that all
the depicted algorithms satisfied the power and rate constraints (the
power constraint was active for user 1 while the secondary rate con-
straints were the active ones for users 2, 3 and 4), while the heuristic
design was not able to do it.

6. CONCLUSIONS

We developed an optimal channel-adaptive algorithm for allocat-
ing power, rate, and subcarriers in OFDMA cognitive radios with
a primary-secondary user hierarchy and limited-rate feedback. The
resultant optimum resource allocation depends on the current chan-
nel realization and optimally calculates dual prices. A provably con-
vergent stochastic dual algorithm was developed to learn the opti-
mum value of the dual prices on-the-fly. Once the values of the dual
prices are obtained, the overall optimal solution is fairly simple and
amounts to opportunistic access whereby only one user gains access
to a given frequency band per channel realization. The required com-
plexity to implement the novel algorithm and the amount of feedback
are affordable for most practical systems.
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