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ABSTRACT

We deal with energy efficient time-division multiple access (TDMA)
over fading channels with finite-rate feedback in the power-limited
regime. Through finite-rate feedback from the access point, users ac-
quire quantized channel state information. The goal is to map chan-
nel quantization states to adaptive modulation and coding (AMC)
modes and allocate optimally time slots to users so that transmit-
power is minimized. To this end, we develop two joint quantization
and resource allocation approaches. In the first one, we rely on the
quantization regions associated to each AMC mode and the time al-
location policy inherited from the perfect CSI case to optimize the
fixed transmit-power across quantization states. In the second ap-
proach, we pursue separable optimization and resort to coordinate
descent algorithms to solve the following two sub-problems: (a)
given a time allocation, we optimize the quantization regions and
transmit-powers; and (b) with improved quantization regions, we
optimize the time allocation policy. Numerical results are present
to evaluate the energy savings and compare the novel approaches.

1. INTRODUCTION

Recently energy-efficient resource allocation has attracted growing
attention [1, 2, 3]. Resource allocation for fading channels has been
studied in [4, 5] and energy-efficiency policies for TDMA have been
investigated from an information theoretic perspective in [6]. As-
suming that both transmitters and receivers have available perfect
(P-) channel state information (CSI), the approaches in [6] not only
provide fundamental power limits when each user can support an in-
finite number of capacity-achieving codebooks, but also yield guide-
lines for practical designs where users can only support a finite num-
ber of adaptive modulation and coding (AMC) modes with prescribed
symbol error probabilities. While the assumption of P-CSI renders
analysis and design tractable, it may not be always realistic. It then
motivates a finite-rate feedback model, where only quantized (Q-)
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CSI is available at the transmitter through a finite number of bits of
feedback from the receiver. Based on the finite-rate feedback, [7]
minimized transmit-power of orthogonal frequency-division multi-
plexing (OFDM) systems. In this paper, we consider energy effi-
ciency issues for TDMA over fading channels with finite-rate feed-
back. Availability of Q-CSI at the transmitters entails a finite number
of quantization states. These states are indexed by the bits that the
receiver feeds back to transmitters and for each of them the resource
allocation is fixed. In this scenario, the goal is to map channel quan-
tization states to AMC modes and allocate optimally time slots to
users so that transmit-power is minimized. To this end, we develop
two joint quantization and resource allocation approaches. In the
first one, we rely on the quantization regions associated to each AMC
mode and the time allocation policy inherited from the perfect CSI
case to optimize the fixed transmit-power across quantization states.
In the second approach, we pursue separable optimization and re-
sort to coordinate descent algorithms to solve the following two sub-
problems: (a) given a time allocation, we optimize the quantization
regions and transmit-powers; and (b) with improved quantization re-
gions, we optimize the time allocation policy.

2. MODELING PRELIMINARIES

Consider K users linked wirelessly to an access point. The input-
output relationship in discrete time is

y(n) =

KX

k=1

p
hk(n)xk(n) + z(n), (1)

where xk(n) and hk(n) are the transmitted signal and fading pro-
cess of the kth user, respectively, and z(n) denotes AWGN with
variance σ2 = 1. As in [6], we confine ourselves to TDMA where
each user transmits in a dedicated time fraction, not overlapping with
other users. We assume that {hk(n)}K

k=1 are jointly stationary and
ergodic with continuous stationary distribution. The joint fading pro-
cess adheres to a block fading channel model. User transmissions to
the access point are naturally frame-based. Given an AMC pool con-
taining a finite number of modes, each user can vary its transmission
rate via AMC per block. Having perfect knowledge of {hk}K

k=1, the
access point assigns time fractions to users and indicates the AMC
mode indices (a.k.a. Q-CSI) through a message (uplink map) before
an uplink frame, as in e.g., IEEE 802.16 systems [9]. Users then
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transmit with the indicated AMC modes at the assigned time frac-
tions. Finite-rate feedback from the access point to users consists of
a few bits indexing predetermined AMC modes and time slots.

Notation: Using boldface lower-case letters to denote column
vectors, we let h := [h1, . . . , hK ]T denote the joint fading state
over a block, F (h) the cumulative distribution function (cdf) of joint
fading states and Eh[·] the expectation operator over fading states.

3. RESOURCE ALLOCATION WITH FINITE AMC MODES
AND PERFECT CSI

In this section, we review briefly the energy efficient resource al-
location scheme in [6] with finite AMC modes and P-CSI. Besides
introducing notation, this solution will be used later to initialize our
quantization and resource allocation policies with finite-rate feed-
back.

We wish to minimize total power under individual average rate
constraints in a TDMA system. Given a rate allocation policy r(·)
and a time allocation policy τ (·), let τk(h) and rk(h) denote the
time fraction allocated to user k and the corresponding transmis-
sion rate during τk(h). Taking into account that user k does not
transmit over the remaining 1 − τk(h) fraction of time, the kth
user’s overall transmission rate per block is τk(h)rk(h). Also no-
tice that with transmit-power pk(h) during τk(h) fraction of time
in any given block, the kth user’s overall transmit-power per block
is Pk(h) = τk(h)pk(h). Suppose that each user can support a fi-
nite number of AMC modes. For user k ∈ [1, K], an AMC mode
corresponds to a rate-power pair (ρk,l, pk,l), l = 1, . . . , Mk, where
Mk denotes the number of AMC modes. A pair (ρk,l, pk,l) indicates
that for transmission rate ρk,l provided by the lth AMC mode, pk,l is
the minimum receive-power required to maintain a prescribed BER.
Although the kth user only supports Mk AMC modes, this user can
still support through time-sharing continuous rates up to a maximum
value determined by the highest-rate AMC mode ρk,Mk . By setting
ρk,0 = 0 and pk,0 = 0 and defining γk,l := (pk,l− pk,l−1)/(ρk,l−
ρk,l−1), we consider the following piece-wise linear function relat-
ing transmit-power with rate as (see also [6, Fig. 2])

Υk(rk(h)) =

8
><
>:

pk,l−1/hk + γk,l(rk(h)− ρk,l−1)/hk,

ρk,l−1 ≤ rk(h) ≤ ρk,l, l ∈ [1, Mk];

∞, rk(h) > ρk,Mk .

(2)
Notice that in order to support rate ρk,l over a channel hk, the re-

quired transmit-power is scaled as pk,l/hk. For practical modulation-
coding schemes with M -QAM constellations and error-control codes,
Υk(rk(h)) is guaranteed to be convex [1].

With power cost weights µ := [µ1, . . . , µK ]T and using Υk(x),
the energy-efficient resource allocation policies with individual rate
constraints {R̄k}K

k=1 solve the optimization problem
8
>><
>>:

minr(·),τ(·) Eh

hPK
k=1 µkτk(h)Υk(rk(h))

i

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k, Eh [τk(h)rk(h)] ≥ R̄k.

(3)

Since every point of Υk(rk(h)) can be achieved by time-sharing be-
tween points (ρk,l, pk,l/hk), finding the optimal resource allocation

strategies for (3) is equivalent to solving
8
>><
>>:

minτ̃(h)

PK
k=1 Eh

hPMk
l=0 µk

τ̃k,l(h)

hk
pk,l

i

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k, Eh

hPMk
l=0 τ̃k,l(h)ρk,l

i
≥ R̄k.

(4)

It turns out that the optimal resource allocation policies are obtained
via greedy water-filling as summarized next (c.f. [6, Theorem 6]).

Proposition 1 If r̄ is feasible, ∀h, we have the optimal solution τ̃∗k,l(h)

(k ∈ [1, K], l ∈ [0, Mk]) to (4), and subsequently the optimal allo-
cation r∗k(h) and τ∗k (h) for (3) as follows. Given a positive λP∗ :=

[λP∗
1 , . . . , λP∗

K ]T , for each fading state h, let l∗k := max {l :

µkγk,l/hk ≤ λP∗
k } (l∗k = 0 if no such l), and define ϕk(h) :=

µkpk,l∗
k
/hk − λP∗

k ρk,l∗
k

.

1. If the functions {ϕk(h)}K
k=1 have a single minimum ϕi(h),

i.e., if i = arg mink ϕk(h), then τ̃i,l∗i = 1 and all other
τ̃k,l = 0. Consequently,

r∗i (h) = ρi,l∗i , τ∗i (h) = 1; (5)

and ∀k 6= i, k ∈ [1, K], r∗k(h) = 0 and τ∗k (h) = 0.

2. If {ϕk(h)}K
k=1 have multiple minima

˘
ϕij (h)

¯J

j=1
, then

τ̃ij ,l∗ij
= τ∗j with arbitrary

PJ
j=1 τ∗j = 1, and all other

τ̃k,l = 0. Consequently,

r∗ij
(h) = ρij ,l∗ij

, τ∗ij
(h) = τ∗j , (6)

and ∀k 6= ij , k ∈ [1, K], r∗k(h) = 0 and τ∗k (h) = 0.

In (5) and (6), λP∗ and {τ∗j }J
j=1 should satisfy the individual rate

constraints

Eh [τ∗k (h)r∗k(h)] = R̄k, k = 1, . . . , K. (7)

Moreover, λP ∗ is almost surely unique and can be iteratively com-
puted by [6, Algorithm 4].

What Proposition 1 asserts is that with P-CSI the optimal access
policy per h consists of the user with smallest cost ϕi(h) accessing
the channel while the others remaining silent.

4. QUANTIZATION AND RESOURCE ALLOCATION
WITH FINITE-RATE FEEDBACK

With finite-rate feedback from the access point, users can only adopt
a finite number of resource allocation vectors determined by the Q-
CSI of each realization h. For all k ∈ [1, K] and l ∈ [1, Mk], let
Qk,l denote the quantization region such that when h ∈ Qk,l, the
kth user’s lth AMC mode is adopted if user k is selected for trans-
mission. Corresponding to Qk,l, an AMC mode can be represented
by a rate-power pair (ρk,l, πk,l), where πk,l is the transmit-power
for user k to support rate ρk,l when h ∈ Qk,l. Notice that for P-
CSI, we represent an AMC mode with a (ρk,l, pk,l) pair where user
k varies its transmit power for its lth AMC mode to achieve a fixed
receive power pk,l satisfying the instantaneous BER. However, with
Q-CSI, user k is only allowed to use a fixed transmit power πk,l for
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its lth mode. While pk,l can be determined by the prescribed BER
requirement, we need to optimize πk,l in our finite-rate feedback
setup.

In this setup, the optimization variables consist of quantization
regions Q := {{Qk,l}Mk

l=1}K
k=1, transmit powers π := {{πk,l}Mk

l=1}K
k=1

and the time allocation policy τ (·). Note that by the definition of
Qk,l, the rate allocation is absorbed in the quantization design. Let
εk,l(γ) denote the BER for a given SNR γ for the kth user’s lth AMC
mode. For practical modulation-coding schemes with e.g., M -QAM
constellations and error-control codes, εk,l(γ) is decreasing and con-
vex [1, 8]. With ε̄ := [ε̄1, . . . , ε̄K ]T collecting the prescribed BER
requirements, the energy-efficient quantization and resource alloca-
tion problem is
8
>>>>>>><
>>>>>>>:

minQ,π,τ(·)
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k,
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k;

∀k,

PMk
l=1 ρk,l

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h)
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h)
≤ ε̄k.

(8)
As the term

PMk
l=1 ρk,l

R
Qk,l

τk(h)dF (h) appears in both rate and
BER constraints, we can enhance the BER constraint using the rate
constraint as a lower bound. This simplifies the problem to
8
>>>>><
>>>>>:

minQ,π,τ(·)
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k,
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k;

∀k,
PMk

l=1

ρk,l

R̄k

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(9)
If all rate requirements are met with equality in the optimal solu-
tion to (8), solving (9) yields the same optimal solution. However, if
some rate requirements are over-satisfied in the optimum of (8), the
solution of (9) will upperbound that of (8) since we impose stricter
BER constraints. The problem (9) is still complicated and not con-
vex. To solve it, we develop two simplified approaches.

4.1. Initialization

We first use the resource allocation policies of Section III to provide
an initial point. Given AMC modes and P-CSI, Proposition 1 yields
the energy-efficient rate and time allocation policies r∗(·) and τ ∗(·)
via greedy water-filling. With the associated Lagrange multiplier
vector λP∗, we can derive the quantization regions Q∗ correspond-
ing to the rate allocation r∗(·):

Lemma 1 With rate allocation r∗(·), the optimal region Q∗k,l for user
k ∈ [1, K] is given by

Q∗k,l =
˘
h : hk ∈ [q∗k,l, q

∗
k,l+1)

¯
, (10)

where q∗k,l = µkγk,l/λP∗
k for l ∈ [1, Mk] and q∗k,Mk+1 = ∞.

Proof: Since user selection is determined by the time alloca-
tion, region Q∗k,l must be specified only when the lth AMC mode is
employed by user k. From r∗(·), user k selects mode index l∗k :=

max {l : µkγk,l/hk ≤ λP∗
k }, ∀h. By the convexity of Υk(rk(h)),

this implies that when µkγk,l/λP∗
k ≤ hk < µkγk,l+1/λP∗

k , the lth
mode is picked, and thus (10) follows. ¤

4.2. Approach I: Optimizing Transmit-Powers

In our energy-efficient quantization and resource allocation, we need
to determine the optimal quantization regions Q, transmit powers π

and the time allocation policy τ (·). With P-CSI, Proposition 1 and
Lemma 1 yield the optimal allocation of time slots specified by τ ∗(·)
and optimal quantization regions by Q∗. Assuming these τ ∗(·) and
Q∗ also provide good approximations for optimal time allocation
and fading regions in Q-CSI case, then we can only optimize over
the transmit powers π to yield a energy-efficient Q-CSI solution. It
is clear from (9) that the rate constraints affect to τ (·) and Q. Since
r∗(·) and τ ∗(·) in Proposition 1 satisfy the rate constraints, so do the
equivalent Q∗ and τ ∗(·). Now with a pair of Q∗ and τ ∗(·) already
satisfying rate constraints, finding the optimal π is to solve
8
<
:

minπ

PK
k=1 µk

PMk
l=1 πk,l

R
Q∗

k,l
τ∗k (h)dF (h)

s.t. ∀k,
PMk

l=1

ρk,l

R̄k

R
Q∗

k,l
τ∗k (h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(11)
Let us define Ak,l :=

R
Q∗

k,l
τ∗k (h)dF (h). To prevent the trivial

solution, we assume that all Ak,l 6= 0. If some Ak,l are zero, we
can just remove the corresponding AMC modes from consideration
and reformulate (11) using a compact Q containing AMC modes
with non-zero measures. Since the functions εk,l(x) are convex, (11)
is a convex optimization problem. Its solution can be analytically
obtained as follows.

Proposition 2 Given a positive νπ∗ := [νπ∗
1 , . . . , νπ∗

K ]T , and with
ε′k,l(γ) denoting the first derivative of εk,l(γ), the optimal π∗k,l is the
unique value such that π∗k,l = 0 or

Z

Q∗
k,l

τ∗k (h)hkε′k,l(hkπ∗k,l)dF (h) = −µkR̄kAk,l

ρk,lνπ∗
k

. (12)

And ∀k ∈ [1, K], each Lagrange multiplier νπ∗
k is determined by

satisfying the BER constraint

MkX

l=1

ρk,l

Z

Q∗
k,l

τ∗k (h)εk,l(hkπ∗k,l)dF (h)/R̄k = ε̄k. (13)

Proof: See [13, Sec. IV-B]. ¤
Notice that given τ∗k (h), users are decoupled. Solving (11) is

equivalent to solving K small problems; i.e., min µk

PMk
l=1 πk,lAk,l,

subject to
PMk

l=1 ρk,l×
R

Q∗
k,l

τ∗k (h)εk,l(hkπk,l)dF (h)/R̄k ≤ ε̄k.

Given νπ∗
k and monotonically decreasing εk,l(γ), the solution to

(12) is unique for π∗k,l > 0 and we can use a one-dimensional,
e.g., bi-sectional, search to obtain this π∗k,l. Then we can use an-
other one-dimensional search to solve for νπ∗

k from (13). And the
optimal transmit-powers π∗ are in turn obtained. Henceforth, we
will refer this simple algorithm as optimizing transmit-power (OTP)
algorithm.

4.3. Approach II: Two-Step Coordinate Descend Algorithm

Recall that with P-CSI, each user can adapt its transmit-power to
instantaneously achieve the required BER level. However, this is
not feasible with Q-CSI since the transmit-power per quantization
region per user is fixed. Nevertheless, we can mimic this strategy
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as follows. Given the quantization regions and time allocation pol-
icy, we uniquely determine the transmit-power for each quantization
region so that each user’s average BER per region attains the BER
target. With this simplification, the optimization problem to solve
becomes8
>><
>>:

minQ,τ(·)
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k,
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k.

(14)

where πk,l is uniquely determined by fε(πk,l, τk(h), Qk,l) = 0, and

fε(πk,l, τk(h), Qk,l)

:=

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h)
R

Qk,l
τk(h)dF (h)

− ε̄k. (15)

It is easy to check that with so-determined transmit-powers, the aver-
age BER constraints are satisfied. Now we can divide the optimiza-
tion process into two separate sub-problems and then solve each of
them in an optimal way; i.e., we resort to a coordinate descent [10]
approach to come up with an iterative algorithm which assembles
the different sub-solutions to solve the main problem. Our algorithm
will run as follows: i) given the time allocation, we calculate the
optimal quantization regions; and ii) with the new quantization re-
gions, we update the optimal time allocation policy. Notice that this
is a well appreciated strategy in the field of quantization theory, and
a good example is the Lloyd algorithm

First, given a time allocation policy, users are decoupled. To
optimize the quantization regions, we need to solve ∀k,

8
<
:

min{Qk,l}
Mk
k=1

µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t.
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k.
(16)

Using the distortion measure argument and the nearest-neighbor rule
as the constrained vector quantization in [12], we can establish:

Proposition 3 Given a positive λs∗
k , we define ψ̃k,l(hk) := µkπk,l−

λs∗
k ρk,l for l ∈ [1, Mk] and ψ̃k,0(hk) = 0. Then ∀l ∈ [1, Mk], we

can obtain the optimal Q∗k,l as:

Q∗k,l =
n
h : ψ̃k,l(hk) ≤ ψ̃k,j(hk); ∀j 6= l, j ∈ [0, Mk]

o
. (17)

Moreover, λs∗
k is determined by satisfying the rate condition

MkX

l=1

ρk,l

Z

Q∗
k,l

τk(h)dF (h) = R̄k. (18)

Proof: See [13, Sec. IV-D]. ¤
With τ(·) and π, to obtain Q∗, we only need λs∗ := {λs∗

k }K
k=1,

which can be simply calculated by K one-dimensional searches.
Once we have updated quantization regions, the next step is to up-
date the time allocation policy τ(h). With Q and π given, finding
the optimal time allocation policy is to solve
8
>>>>><
>>>>>:

minτ(·)
PK

k=1 µk

PMk
l=1 πk,l

R
Qk,l

τk(h)dF (h)

s.t. ∀h,
PK

k=1 τk(h) ≤ 1;

∀k,
PMk

l=1 ρk,l

R
Qk,l

τk(h)dF (h) ≥ R̄k;

∀k,
PMk

l=1

ρk,l

R̄k

R
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(19)

Similar to Proposition 1, we can also obtain the optimal τ ∗(·) via a
greedy approach.

Proposition 4 Given λτ∗ := [λτ∗
1 , . . . , λτ∗

K ]T ≥ 0 and ντ∗ :=

[ντ∗
1 , . . . , ντ∗

K ]T ≥ 0, for each fading state h, let lk(h) denote the
mode index for user k such that h ∈ Qk,lk(h), and define ϕ̃k(h) :=

µkπk,lk(h) − λτ∗
k ρk,lk(h) + ντ∗

k ρk,lk(h)εk,lk(h)

`
hkπk,lk(h)

´
/R̄k.

Then the optimal solution τ ∗(·) to (19) can be obtained as follows:

1. If ∀k ∈ [1, K], ϕ̃k(h) ≥ 0, then ∀k, τ∗k (h) = 0.

2. If {ϕ̃k(h)}K
k=1 have a single minimum ϕ̃i(h) < 0, then

τ∗i (h) = 1 and ∀k 6= i, k ∈ [1, K], τ∗k (h) = 0.

3. If {ϕ̃k(h)}K
k=1 have multiple minima

˘
ϕ̃ij (h)

¯J

j=1
< 0,

then τ∗ij
(h) = τ∗j with arbitrary

PJ
j=1 τ∗j = 1, and ∀k 6= ij ,

k ∈ [1, K], τ∗k (h) = 0.

Moreover, λτ∗ and ντ∗ should satisfy the complementary slackness
conditions ∀k ∈ [1, K],

λτ∗
k = 0 or

MkX

l=1

ρk,l

Z

Qk,l

τ∗k (h)dF (h) = R̄k;

ντ∗
k = 0 or

MkX

l=1

ρk,l

R̄k

Z

Qk,l

τ∗k (h)εk,l(hkπk,l)dF (h) = ε̄k.

Proof: See [13, Appendix]. ¤
As with P-CSI, Proposition 4 asserts that our optimal time al-

location strategies are “greedy”. Function ϕ̃k(h) can be viewed as
a channel quality indicator (the smaller the better) for user k. Then
for each time block, we should only allow the user with the “best”
channel to transmit. When there are multiple users with “best” chan-
nels, arbitrary time division among them suffices. For cases where
ϕ̃k(h) ≥ 0 ∀k ∈ [1, K], imagine that there is a fictitious user which
has no rate and BER requirements and always keeps silent. Then
∀h, its channel quality indicator is zero. If ϕ̃k(h) ≥ 0 ∀k ∈ [1, K],
picking this fictitious user is clearly most efficient. This implies that
in these cases no user should transmit. Notice that in Proposition
1, the case ϕk(h) > 0 never occurs, since it is easy to show that
ϕk(h) = 0 when hk = 0 and ϕk(h) is a decreasing function of hk.

To obtain the optimal τ ∗(·), we need to find λτ∗ and ντ∗. In-
stead of a 2K-dimensional exhaustive search, we accomplish this
by a sub-gradient ascend algorithm. First, it follows readily that the
Lagrange dual function g(λτ , ντ ) for (19) is given by

g(λτ , ντ ) =

KX

k=1

µk

MkX

l=1

πk,l

Z

Qk,l

τk(λτ , ντ ,h)dF (h)

−
KX

k=1

λτ
k

 
MkX

l=1

ρk,l

Z

Qk,l

τk(λτ , ντ ,h)dF (h)− R̄k

!

+

KX

k=1

ντ
k

 
MkX

l=1

ρk,l

R̄k

Z

Qk,l

τk(λτ , ντ ,h)εk,l(hkπk,l)dF (h)− ε̄k

!

where for a given (λτ , ντ ), the time allocation τk(λτ , ντ ,h) is pro-
vided by Proposition 4 (without considering the rate and BER con-
straints). The dual of (19) is

max
λτ ,ντ

g(λτ , ντ ), s.t. λτ ≥ 0, ντ ≥ 0. (20)
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Since (19) is a convex problem, the duality gap is zero; and thus
(λτ∗, ντ∗) = arg maxλτ≥0,ντ≥0 g(λτ , ντ ). Therefore, we can
obtain (λτ∗, ντ∗) via the following sub-gradient projection algo-
rithm. Note that the dual function g(λτ , ντ ) is concave since it is
the point-wise infimum of a family of affine functions of (λτ , ντ ),
and thus the convergence of our sub-gradient projection algorithm is
guaranteed [11].

Algorithm 1 [T0] Initialization: Generate an arbitrary non-negative
vector (λτ (0), ντ (0)). Select tolerance ε > 0, calculate g(λτ (0),

ντ (0)) and let the iteration index t = 1.

[T1] ∀k ∈ [1, K], numerically evaluate the partial derivatives
∆λτ

k := ∂g(λτ ,ντ )
∂λτ

k
and ∆ντ

k := ∂g(λτ ,ντ )
∂ντ

k
at (λτ (t −

1), ντ (t − 1)). Choose a step size δ by line search and
then update λτ

k(t) = [λτ
k(t− 1) + δ∆λτ

k]+ and ντ
k (t) =

[ντ
k (t− 1) + δ∆ντ

k ]+.

[T2] Stopping criterion: Calculate the objective g(λτ (t), ντ (t))

using (λτ (t), ντ (t)). If

g(λτ (t), ντ (t))− g(λτ (t− 1), ντ (t− 1))

g(λτ (t), ντ (t))
< ε,

return (λτ (t), ντ (t)) and stop. Otherwise, increase t by 1
and go to T1).

Once λτ∗ and ντ∗ are calculated, the time allocation policy in
Proposition 4 is in turn determined. For the global objective

J :=

KX

k=1

µk

MkX

l=1

πk,l

Z

Qk,l

τk(h)dF (h),

we propose based on Propositions 1, 3 and 4 the following 2-step
joint quantization and resource allocation (2S-JQRA) algorithm. Since
the global objective J is decreasing in each step of the iterations, as
t →∞, the 2S-JQRA algorithm converges.

Algorithm 2 [S0] Initialization: Produce initial time allocation τ (0)(·)
and quantization regions Q(0) from Proposition 1 and Lemma 1,
and then π(0) using (15). Select tolerance ε > 0, initial objective
J(0) = ∞ and let the iteration index t = 1.

[S1] τ (t−1)(·), π(t−1) → Q(t), π(t): Given τ (t−1)(·) and π(t−1),
obtain Q(t) from Proposition 3, and π(t) as a function of
τ (t−1) and Q(t) using (15).

[S2] Q(t), π(t) → τ (t)(·): Given Q(t) and π(t), obtain τ (t)(·)
from Proposition 4.

[S3] Stopping criterion: Calculate the objective J(t) using Q(t),
π(t) and τ (t)(·). If |J(t−1) − J(t)|/J(t) < ε; return the
current quantization and resource allocation and stop. Oth-
erwise, increase t by 1 and go to [S1].

5. NUMERICAL RESULTS

In this section, we present numerical results of our joint quantization
and resource allocation for a two-user Rayleigh flat-fading TDMA
channel. The available system bandwidth is B = 100 KHz, and
the AWGN has two-sided power spectral density N0 Watts/Hz. Fad-
ing coefficients hk, k = 1, 2, have mean h̄k and are assumed in-
dependent. The average signal-to-noise ratio (SNR) for user k is
γ̄k = h̄k/(N0B). Unless otherwise specified, we assume that each
user supports three M -ary quadrature amplitude modulation (QAM)
modes: 2-QAM, 8-QAM and 32-QAM; i.e., the transmission rates of
AMC modes are: ρk,l = 1, 3, 5 bits/symbol. The corresponding
BER can be approximated as [8]

εk,l(γ) = 0.2e
− γ

2
ρk,l−1 . (21)

In all simulations, we assume the BER constraints are given by ε̄1 =

ε̄2 = 10−3.
Supposing P-CSI at transmitters (P-CSIT) or Q-CSIT and γ̄k =

0 dB, k = 1, 2, we test the P-CSIT based resource allocation [6]
and our Q-CSIT based OTP and 2S-JQRA algorithms. For compar-
ison, we also test a heuristic Q-CSIT based approach, where each
user is assigned equal time fraction and transmits with equal power
for all its AMC modes per block. With a fixed transmit-power, the
access point selects for each user an AMC mode so that the instan-
taneous BER is less than or equal to the required level. With such
a quantization, each user’s transmit-power is then selected to en-
sure that its rate constraint is satisfied. Notice that due to its sim-
plicity, the quantization in this heuristic scheme is actually widely
employed in practical systems with adaptive transmissions; e.g., the
CDMA2000 1xEVDO and WCDMA HSDPA. We consider individ-
ual rate constraints: R̄1 = 100 kbps and R̄2 = 100 kbps. With
different power weights, Fig. 1 shows the weighted total power con-
sumptions for these four approaches; while Fig. 2 depicts the per-
formance loss of the three different Q-CSIT based approaches with
respect to the P-CSIT solution to gauge the price paid for finite-rate
feedback. We observe that: i) both OTP and 2S-JQRA clearly out-
perform the heuristic Q-CSIT approach (yielding around 5 dB sav-
ings); and ii) while the gap between 2S-JQRA and P-CSIT solution
is small, even the simple OTP algorithm provides a good solution
not far away from the P-CSI solution. Since the P-CSIT solution
lower bounds all Q-CSIT based approaches, this indicates that our
coordinate descend algorithm is near-optimal. The convergence of
2S-JQRA is illustrated in Fig. 3, where the average total weighted
power evolves with the inner iteration steps. We can see that 2S-
JQRA converges after a small number of iterations (around 6 inner
steps or 3 outer iterations). The variations through the curve are due
to the finite resolution in the numerical integrations involved. As
numerical results have demonstrated that the global performance of
both 2S-JQRA and OPT algorithms is comparable, the final selec-
tion might take into account the trade-off between complexity and
power savings.

6. CONCLUSIONS

Based on Q-CSI, we derived two energy-efficient joint quantization
and resource allocation strategies for TDMA fading channels. Nu-
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merical results showed that with Q-CSIT only available, both algo-
rithms achieve energy efficiency surprisingly close to that obtained
with P-CSIT, and yield large energy-savings compared to a heuristic
and widely used Q-CSIT approach. 1
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