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Abstract

Dynamic spectrum access (DSA) is an integral part of cognitive radio technology aiming at efficient

management of the available power and bandwidth resources.The present paper deals with cooperative

DSA networks, where collaborating terminals adhere to diverse (maximum and minimum) quality-of-service

(QoS) constraints in order to not only effect hierarchies between primary and secondary users but also

prevent abusive utilization of the available spectrum. Peer-to-peer networks with co-channel interference

are considered in both single- and multi-channel settings.Utilities that are functions of the signal-to-

interference-plus-noise-ratio (SINR) are employed as QoSmetrics. By adjusting their transmit power, users

can mitigate the generated interference and also meet the QoS requirements. A novel formulation accounting

for heterogeneous QoS requirements is obtained after introducing a suitable relaxation and recasting a

constrained sum-utility maximization as a convex optimization problem. The optimality of the relaxation is

established under general conditions. Based on this relaxation, an algorithm for optimal power control that

is amenable to distributed implementation is developed, and its convergence is established. Numerical tests

verify the analytical claims and demonstrate performance gains relative to existing schemes.

I. INTRODUCTION

The Federal Communications Commission (FCC) has recognized that the perceived spectrum

scarcity is caused by the currently inflexible bandwidth assignments [1]. In response to this problem,
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a spectrum policy reform has been proposed under the term dynamic spectrum access (DSA) [2].

The premise is allocation of the spectrum in a more flexible and market-driven manner, potentially

by allowing services beyond those licensed, or, by accommodating more users, who may or may

not be licensed. DSA is in fact an integral part of the emerging cognitive radio (CR) technology,

which aims at enhancing spectrum utilization through ‘smart’ transceivers able to sense the operating

environment and adapt to it; see e.g., [2] and references therein.

DSA schemes can be classified depending on whether users cooperate to share the available

spectrum or not [2], [3]. In the non-cooperative setup, secondary (unlicensed) users either transmit

over frequency slots not occupied by primary (licensed) users (spectrum overlay) or retain their

transmission power below the primaries’ noise floor (spectrum underlay). On the other hand, more

efficient sharing of the spectrum is expected incooperativealternatives, for which two different

models are typically considered. One is theopen sharingmodel (also known as commons model),

where all users are treated as ‘peers’ or primaries [2], [4],[1]. Such a network is envisioned to

e.g., be deployed over an unlicensed band along with a set of rules to ensure efficient resource

management. The second one is aflexible primarymodel, where primary users negotiate access

with secondary users [3], if e.g., the latter pay a fee for using a pre-specified level of the resources.

The present work deals with resource allocation in cooperative DSA networks for both open

sharing and flexible primary models. Design challenges addressed include the accommodation of

diverse application-specific constraints, mechanisms forencouraging efficient spectrum utilization,

and decentralizing the management schemes, as advocated bythe FCC. This paper’s main contri-

bution is the incorporation ofdiverse(heterogeneous) individual QoS requirements. In a flexible

primary model, access is regulated by bounding the maximum level of a commodity a secondary user

receives, which may be communication rate, bit error rate, or any other QoS figure; while ensuring

a minimum level for primary users. In an open sharing model, users voluntarily adapt usage of

network resources to their application requirements. Thisway, minimum and maximum bounds on

the received QoS become constraints that the resource allocation task must account for [5], [6].

Focus here is placed on peer-to-peer networks where users transmit over the same bandwidth both

in single- and multi-channel settings. The co-channel interference present in such networks intimately

couples individual power control decisions. Each user’s satisfaction with the received QoS level

is captured by utility functions that depend on the receivedsignal-to-interference-plus-noise ratio

(SINR). Adjusting the individual transmit power offers thepotential to satisfy the individual QoS
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requirements and is a critical network task. The required power control scheme is obtained by solving

a sum-utility maximization problem subject to maximum and minimum utility (or SINR) constraints.

Two features of this novel approach are: (i) incorporation of heterogeneous QoS requirements and (ii)

a provably convergent algorithm for optimal power control amenable to distributed implementations.

In recent years, the design of resource allocation schemes for CR and DSA networks has received

considerable attention. Maximization of network utility with diverse QoS constraints in cooperative

CR has been pursued in [5], but orthogonal access and a central controller were assumed. Different

decentralized power control algorithms maximizing the total utility in networks with non-orthogonal

access (e.g., CDMA) but without accounting for individual users’ QoS constraints were presented in

[7], [8]. Minimum SINR constraints were also accommodated in [9, Chapter 4], [10, Sec. 3.3], but

maximum ones were not included. More recently, two suboptimal algorithms for distributed power

control in multi-channel DSA networks with diverse QoS constraints have been reported in [6].

The rest of the paper is organized as follows. In Section II, the optimal power control in single-

channel networks is formulated and a convex relaxation to enable its efficient solution is introduced.

An algorithm for optimal power control amenable to distributed implementation is developed in

Section III. Results for multi-channel networks are presented in Section IV, while simulations in

Section V and conclusions in Section VI wrap up this paper.

II. OPTIMAL POWER CONTROL

Consider the power control problem for a single-channel (i.e., single-carrier) DSA network in

which users share the same frequency band, e.g., as in CDMA. Assuming a peer-to-peer operating

setup, there is a set ofM := {1, . . . , M} links, where each linki ∈ M entails a user with a dedicated

transmitter (Txi) wishing to communicate with a corresponding receiver (Rxi), as in [7]. The terms

pair, user and link will be used interchangeably. Lethij denote the (power) path gain from Txi to

Rxj , assumed static. The path gainhij models the relationship between the transmitted and received

power and captures any signal processing technique taking place at the transmitter or the receiver,

such as (de-)spreading in CDMA. Also, letni denote the noise power at Rxi; pi the transmission

power1of Txi; andpmax
i the maximum power budget Txi can afford, i.e.,0 ≤ pi ≤ pmax

i . The received

1Although the power values here are considered continuous, adaptive modulation schemes may welcome a discrete set of power

levels. The optimal design then also requires the continuous solution pursued in this paper as a first step, is highly non-trivial, and

goes beyond the scope and space limits of this paper; see, e.g., [11] and references thereof.
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SINRγi at Rxi is a function of the powersp := [p1, . . . , pM ]T given byγi := hiipi/
(

ni+
∑

k 6=i hkipk

)

.

Let us define vectorspmax := [pmax
1 , . . . , pmax

M ]T , γ := [γ1, . . . , γM ]T , η := [n1/h11, . . . , nM/hMM ]T ;

and the matrixA = [aij ] with aij := hji/hii if i 6= j andaij := 0 if i = j. Also let D(x) denote

an M × M diagonal matrix with diagonal elements[x1, . . . , xM ]T := x.

The utility associated with each linki ∈ M will be described by a generic functionui(γi).

The goal is to maximize the sum of all link utilities subject to QoS constraints. The QoS per

link i will also be generically described by a functionvi(γi), which can e.g., represent rate when

vi(γi) = ln(1 + γi). If vi(γi) is chosen monotonic, then constraints onvi map one-to-one to SINR

bounds; i.e.,vi(γi) ∈ [vi(γ
min
i ), vi(γ

max
i )] ⇔ γi ∈ [γmin

i , γmax
i ]. The lower bounds ensure a minimum

QoS level while the upper bounds prevent abuse of the available resources. Recall that these are

design objectives in both flexible-primary as well as in open-sharing DSA models. For both models,

the associated power control problem for DSA/CR networks amounts to solving the following:

max
0≤p≤pmax

M
∑

i=1

ui(γi) (1a)

subj. to γmin
i ≤ γi ≤ γmax

i , ∀ i ∈ M. (1b)

In most DSA setups, not all constraints in (1b) will be present. Indeed,γmax
i may not be enforced if

i is a primary user; while ifi is a secondary user bothγmax
i andγmin

i may (or may not) be present.

The maximum QoS requirements is the key difference between problem (1) and related ones in

power control for non-orthogonal access networks. These requirements capture the design objectives

for certain DSA networks, which would be difficult with existing formulations. For example, while

properly selected spectral masks regulating transmit power can limit the interference received by

other users, they cannot guarantee that the received SINR will not exceed a prescribed level.

Similarly, judicious choices of utilities, e.g., proportionally fair, cannot ensure that the received

SINR (and hence QoS) is within an allowable range if (1b) is absent.

Problem (1) is generally non-convex and hence challenging to solve, especially in a distributed

fashion suitable for the peer-to-peer setup at hand. Upon selecting {ui(·)} properly, a convex

reformulation of (1) is possible using the methods in [12]. Such reformulation could only be solved

in a centralized manner, while the methods in [12] do not readily lead to algorithms. Moreover,

the special case of (1) with minimum SINR constraintsonly is addressed in [9], [10] for certain

utilities, but the solutions developed in these works cannot handle two-sided SINR constraints.

A novel approach to solving (1) is described in the ensuing subsection. It entails a suitable
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relaxation, which allows the use of convex optimization andwill also form the basis for the design

of the distributed power allocation algorithm presented inSection III.

A. Efficient optimization via convex relaxation

To solve (1) efficiently, we adopt the following assumptions:

AS1. The individual utilities are chosen so that: (a)ui(γi) are strictly increasing and twice

continuously differentiable; and (b)−γiu
′′
i (γi)/u

′
i(γi) ≥ 1 for γi > 0 (′ denotes differentiation).

AS2. The noise power is non-zero for alli, i.e., ni > 0; and the gain matrixA is irreducible.

AS3. If every user has a maximum SINR constraint, there is no powervectorp̃ with 0 < p̃ ≤ pmax

such that the resulting SINRs̃γi satisfyγ̃i = γmax
i for all i ∈ M.

AS1 is standard in the power control literature [13, Chapter5]. Specifically, it implies thatui(γi) is

strictly concave inγi and effects the fairness conditionlimγi→0+ ui(γi) = −∞ [9, p. 15], which

guarantees that non-zero power is allocated to all users. Examples of utilities satisfying AS1 are

ui(γi) = ln γi, andui(γi) = γα
i /α with α < 0 [13, Sec. 5.2.5]. Although AS1 refers only to the

utilities ui in (1a), thevi functions used to obtain the SINR constraints (1b) are not restricted by

any condition other than being monotonic. Furthermore, theirreducibility of A in AS2 is also a

standard assumption in power control problems [12].

AS3 pertains to the case where all users have maximum SINR constraints. In this case, the

equationsγi = γmax
i , i = 1, . . . , M , can be easily written as a system of linear equations in

p (cf. (13a)). AS3 then means that this linear system has no solution satisfying0 < p ≤ pmax.

Satisfaction of AS3 can be checked as explained in Section III. But even when it is not satisfied,̃p

in AS3 is the optimal solution of (1) and no further optimization is needed, because theui(γi) are

strictly increasing and all users can achieve theirγmax
i . Last but not least, AS3 is automatically

satisfied when primary users do not upper-bound their QoS, i.e., whenγmax
i = ∞ for somei.

Having clarified the operating conditions, we will relax (1)to facilitate its solution through

convex optimization. To this end, letqi denote an auxiliary variable associated with linki, upper-

bounding the interference-plus-noise (IpN) termni +
∑

k 6=i hkipk. Collecting all variablesqi in

q := [q1, . . . , qM ]T , consider the following relaxed version of (1) (R++ denotes the positive reals):

max
0≤p≤pmax;q∈RM

++

M
∑

i=1

ui(hiipiq
−1
i ) (2a)

subj. to γmin
i ≤ hiipiq

−1
i ≤ γmax

i , ∀ i ∈ M (2b)
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qi ≥ ni +
∑

k 6=i
hkipk, ∀ i ∈ M. (2c)

Clearly, if (2c) were equality constraints, then (1) and (2)would be equivalent. In order for the

relaxation to be useful, two issues need to be addressed: (i)optimality of the relaxation needs to

be established, i.e., that the solution of (2) is also a solution of (1); and (ii) problem (2) must be

efficiently solvable. Using the change of variablespi = eyi andqi = ezi , we have shown in [14] that

AS1 ensures convexity of problem (2) iny := [y1, . . . , yM ]T andz := [z1, . . . , zM ]T ; hence, (ii) is

settled. To address (i), we prove in Appendix A the following.

Proposition 1. Assume that(1) is feasible, and let AS1a, AS2 and AS3 hold. Ifp∗, q∗ solve(2),

then (2c) holds as equality atp∗, q∗; i.e.,

q∗i = ni +
∑

k 6=i
hkip

∗
k ∀i ∈ M. (3)

Proposition 1 asserts that the optimal powers for problems (1) and (2) are identical and the optimal

q∗ of problem (2) is given by (3). It also follows from Proposition 1 that the values of the optimal

sum-utility in (1) and (2) are identical. Hence, the relaxation incurs no loss of optimality.

Interestingly, Proposition 1 holds foranystrictly increasing utility, e.g.,ln(1+γi); that is, convexity

is not required. Nonetheless, it is the convexity guaranteed by AS1 together with Proposition 1 that

facilitate efficient optimization of the power allocation in (2), as explained in Section III.

It is remarked that introduction of local IpN variables and arelated relaxation appear in [15], and

also as a method to accommodate general interference functions in [9, Chapter 4]. Nevertheless, the

optimality of the relaxation in (2) cannot follow from any ofthese works.

The convex relaxation of (1) has been carried out in two steps: first by introducingqi, and then

by transforming(pi, qi) into (yi, zi). The next remark elaborates on why the form of the relaxed

problem is potentially solvable in a distributed fashion.

Remark 1. The relaxed problem(2) has two features which facilitate a distributed solution:

(a) The objective in(2a) is a sum ofM utility functions, one for each user. Moreover, each utility

ui(.), i = 1, . . . , M , depends only on the variablespi and qi, pertaining to useri; and

(b) For each useri, the constraints(2b) and (2c) depend only onpi, qi, as well the IpNni +
∑

k 6=i hkipk. This quantity seemingly ‘couples’ all optimization variables. The key element though is

that ni +
∑

k 6=i hkipk in (2c) can be measured at receiveri.

These features (a) and (b) are also present in problem(1). Unlike (2), problem(1) is non-convex

and cannot be rendered convex while retaining (a) and (b).
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III. POWER ALLOCATION ALGORITHM FOR SINGLE-CHANNEL NETWORKS

In this section, an algorithm based on Lagrangian techniques is developed to solve (1) via (2).2

This algorithm will have provable convergence, exhibit tracking capability, entail low complexity

and be suitable for distributed implementation, features certainly desirable in DSA/CR networks.

Before solving (2), the validity of AS3 must be ensured by checking whether there are powers

solving γi = γmax
i for all i ∈ M with feasiblep ≤ pmax. This can be checked using the standard

power control algorithm of [16, eq. (21)], which has guaranteed convergence and can be implemented

in a distributed fashion without information exchange among users. Ifall maximum SINR constraints

are exactly met, then the powers returned by this algorithm are the optimal solution of (1), due to

AS1a. If not, these powers may be used as initialization for the solver of (2), developed next.

With the objective of solving (2), setymax
i := ln pmax

i , Y :=
∏M

i=1(−∞, ymax
i ] and observe that in

addition to (2b) and (2c), problem (2) has an additional convex set constraint(y, z) ∈ Y×R
M . Let νi,

λi, µi denote Lagrange multipliers corresponding to minimum and maximum SINR constraints (2b)

and (2c), respectively. The Lagrangian function of the convex equivalent of (2) is then

L(y, z, ν, λ, µ) := −
∑

i

ui

(

hiie
yi

ezi

)

+
∑

i

µi

[

e−zi

(

ni +
∑

k 6=i

hkie
yk

)

− 1
]

+
∑

i

νi

(

γmin
i

ezi

hiieyi
− 1

)

+
∑

i

λi

(

1

γmax
i

hiie
yi

ezi
− 1

)

. (4)

For brevity, let ω:={y, z, ν, λ, µ} denote all optimization variables and Lagrange multipliers.

Problem (2) is solved via the following first-order algorithm that utilizes the gradient ofL(ω)

to simultaneously update primal and dual variables with constant stepsizeβ and[x]+ := max{0, x}:

yi(t + 1) = min







yi(t) − β
∂L(ω)

∂yi

∣

∣

∣

∣

∣

ω(t)

, ymax
i







(5a)

zi(t + 1) = zi(t) − β
∂L(ω)

∂zi

∣

∣

∣

∣

∣

ω(t)

(5b)

νi(t + 1) =
[

νi(t) + β
(

γmin
i ezi(t)−yi(t)/hii − 1

)

]+

(5c)

λi(t + 1) =
[

λi(t) + β
(

hiie
yi(t)−zi(t)/γmax

i − 1
)

]+

(5d)

µi(t + 1) =
[

µi(t) + β
(

e−zi(t)
(

ni +
∑

k 6=i

hkie
yk(t)

)

− 1
)]+

. (5e)

2Throughout this section references to (2) will in fact referto its convex equivalent after the transformationpi = eyi andqi = ezi .
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The gradient∇ωL(ω) is used in (5) to minimizeL(ω) with respect toy, z, and maximize it with

respect toν, λ, µ; i.e., a saddle point is sought. Convergence is analyzed in the next subsection.

From an implementation perspective, it is worth stressing that in compliance with FCC, the

power constraints are respectedthroughout the iterationsdue to the projection operation in (5a). In

addition, updates in (5) use a constantβ, which enables tracking and is thus attractive for mobile

CR networks. Means of distributing the iterations (5) are explored in Subsection III-B.

A. Convergence and sensitivity analysis

In order to analyze the convergence of (5), an additional assumption is due:

AS4. Problem(2) is strictly feasible, i.e., there exist̄p, q̄ with 0 < p̄ ≤ pmax such that(2b) and

(2c) hold as strict inequalities.

This last assumption corresponds to Slater’s constraint qualification, which guarantees the exis-

tence of optimal Lagrange multipliers [17, Sec. 3.3.5]. Capitalizing on AS4, the following lemma

characterizes the optimal Lagrange multipliers of (2); itsproof is in Appendix A.

Lemma 1. If (1) is feasible and AS1-AS4 hold, then: (i) the optimal Lagrangemultipliers for

constraints(2c) are positive, i.e.,µ∗ > 0; and (ii) the Lagrangian function at the optimal Lagrange

multipliers,L(y, z, ν∗, λ∗, µ∗), is strictly convex iny and z overR2M .

The first part of Lemma 1 is a strict complementary slackness result, which in general does not

follow from the Karush-Kuhn-Tucker (KKT) necessary conditions for optimality; for details on these

notions, see e.g., [17, Sec. 3.3]. Moreover, notice that part (ii) of Lemma 1 holds even for utilities

that are not strictly convex iny andz, e.g.,ui(hiie
yi/ezi) = ln(hiie

yi/ezi).

Now let dist(x,X ) := minξ∈X ||x − ξ||2 denote the distance of a pointx from a setX ; and

Ω∗ the set of optimalω vectors. Using Lemma 1, the following proposition establishes the global

convergence of iterations (5) to a neighborhood ofΩ∗.

Proposition 2. Suppose(1) is feasible, and AS1-AS4 hold. For anyǫ and δ with 0 < ǫ < δ, there

exist positiveβ0(ǫ, δ) and t0(ǫ, δ) such that for any stepsize0 < β ≤ β0(ǫ, δ) and any initial point

ω(0) ∈ Y ×R
M ×R

3M
+ with dist(ω(0), Ω∗) ≤ δ, the iteratesω(t) in (5) satisfydist(ω(t), Ω∗) ≤ ǫ

for all t ≥ t0(ǫ, δ)/β.

Proposition 2 asserts that the iteratesω(t) reach (and remain within) an arbitrarily small neigh-

borhood ofΩ∗ from any initial point. The stepsize and the number of iterations depend on the

initialization and the desired neighborhood size. The proof provided in Appendix A relies on
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Lemma 1. The numerical examples presented in Section V will demonstrate that the iterations

not only remain arbitrarily close to the optimal solution, but actually converge.

It is well-known that the activation of a constraint in an optimization problem entails a penalty

in the achieved optimal value. Sensitivity analysis can be used to study the effect of changes in the

constraints on the optimal utility value. Such analysis is pertinent when the constraints are fixed

beforehand (e.g., if they are QoS levels dictated by a specific application), but also when they have

to be settled by the system designer. A brief sensitivity analysis for problem (1) (via (2)) is presented

next. Since incorporating maximum SINR constraints is the main feature of (1), the focus here is

on the effect of varyingγmax
i . The analysis for the minimum SINR constraint is similar.

To specify the problem, letλ∗
i , i = 1, . . . , M , be the optimal Lagrange multipliers returned by (5)

andu∗
tot the optimal value of problem (2); and hence of (1) in view of Proposition 1. Suppose that

γmax
i is changed toγmax

i + δiγ
max
i , δi ∈ R. The objective is to quantify the effect ofδiγ

max
i on u∗

tot.

Both smaller as well as larger changes ofδ := [δ1, . . . , δM ]T are of interest.

Let utot(δ) be the optimal value of (1) and (2) under the aforementioned perturbation, and suppose

that AS3 holds also withγmax
i + δiγ

max
i instead ofγmax

i . With this notation,u∗
tot = utot(0). The

effects of small values ofδ are studied first. To this end, the value of the derivative ofutot(δ) can

be used, and it is computed next based on known quantities.

Let {ei}
M
i=1 denote the vectors inRM with 1 on thei-th component and 0 elsewhere. Also let

Θ∗ ⊂ R
3M denote the set of optimal Lagrange multiplier vectors[νT , λT , µT ]T of (2). Under AS1–

AS4, [18, Theorem 2.3.2] asserts thatutot(δ) has directional derivative in any direction inRM ;

its values in the directionsei and −ei along with bounds for the derivative values are listed in

Table I. These bounds depend onγmax
i and the optimalλ∗

i returned by (5); hence, they are easily

computable. The first bound is immediate; the second is derived by setting∂L/∂zi = 0 (cf. (18)),

using (3) and assuming that theγmax
i constraint is active, so thatγ∗

i = γmax
i andν∗

i = 0.

The derivatives are used to evaluate the increase or decrease of the sum-utility value when the

SINR constraintsγmax
i change. In particular, ifγmax

i is changed toγmax
i + δiγ

max
i with δi > 0 small,

thenu∗
tot is increased byDei

utot(0) · δi approximately. On the other hand, ifγmax
i is decreased to

γmax
i − δiγ

max
i with δi > 0 again small, thenu∗

tot is approximately decreased byD−ei
utot(0) · δi.

The optimal multipliersλ∗
i can also be used to assess the effect of larger changes in the perturbation

δ. The following inequality holds for allδ ∈ R
M (cf. [19, eq. (6.23)])

utot(δ) ≤ u∗
tot +

M
∑

i=1

λ∗
i δi. (6)
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Inequality (6) offers an upper bound on the optimal sum-utility with the following qualitative

implications. If λ∗
i is large andδi < 0, then the sum-utility decreases considerably. Ifλ∗

i is small

andδi > 0, then the sum-utility increases, but not much. Note though that from inequality (6) one

cannot draw conclusions for other combinations of signs ofδi and values ofλ∗
i .

B. Distributed implementation

To develop a distributed counterpart of (5), consider the derivatives in (5a) and (5b)

∂L

∂yi
= −u′

i

(

hiie
yi

ezi

)

hiie
yi

ezi
+ eyi

∑

j 6=i
hijµje

−zj +
λi

γmax
i

hiie
yi

ezi
− νiγ

min
i

ezi

hiieyi
(7a)

∂L

∂zi
= u′

i

(

hiie
yi

ezi

)

hiie
yi

ezi
− µie

−zi

(

ni +
∑

k 6=i
hkie

yk

)

−
λi

γmax
i

hiie
yi

ezi
+ νiγ

min
i

ezi

hiieyi
. (7b)

The updates (5) take place at Txi. It is assumed that Rxi is able to estimate the gainhii and the

SINR hiie
yi(t)/(ni +

∑

k 6=i hkie
yk(t)), and feed the latter back to its peer Txi per time slott. Txi needs

also to obtainhii via feedback but this may happen only during the start-up phase provided that

hii changes at a scale much slower than the algorithm’s convergence time. Then, all terms needed

for the updates (5) are known locally at Txi, with the exception of the sum
∑

j 6=i hijµj(t)e
−zj(t),

which is associated with the IpN constraints in (2c).

In order to make the aforementioned sum available at Txi, two schemes that have been proposed

for power control problems different from (2) can be adaptedto the problem at hand: message

passing [10, Sec. 3.4], [7], [6], and “the reversed network”[13, Sec. 6.5], [8], [9, Chapter 4]. The

latter has the attractive feature of not requiring exchangeof information among links.

1) Message passing:Users in this scheme exchange information over a control channel to

facilitate power management decisions, as in e.g., [4, Sec.3.2.3]. To be specific, each Txj broadcasts

its variableµj(t)e
−zj(t), which can be readily interpreted as the current estimate ofthe cost paid

due to local interference. Moreover, each Txi needs to know the path gainshij of the links causing

interference to the non-peer receivers Rxj. This is possible if reciprocity holds and the Rxj transmits

a training signal; alternatively, Txi can transmit a training signal so that Rxj estimateshij and feeds

it back. The quantities involved in the message passing are illustrated in Fig. 1.

2) Reversed network:All links here are assumed reciprocal. Every receiver becomes a transmitter

and vice-versa. In order to use the reversed network, the term eyi
∑

j 6=i hijµje
−zj of ∂L/∂yi in (7a)

is re-written aseyi
∑M

j=1 hijµje
−zj − eyihiiµie

−zi. The main idea is that the sum
∑M

j=1 hijµje
−zj ≥ 0

represents received power at each Txi when all transmitters of the reversed network (i.e., all Rxj)
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transmit simultaneously symbols with powerµje
−zj . These symbols do not need to be known at

the Txi; only the total received powerneeds to be estimated.

Notice that eachµie
−zi term is unknown at Rxi, but known at Txi. The feature that the power

for the reversed network transmission is unknown at the corresponding transmitters is not present

in previous works. In order to address this, variableszi(t), µi(t), λi(t), νi(t) are also updated at

Rxi. The key is that each receiver already measures all quantities needed for these updates, namely

the received powerhiie
yi(t) and the IpN termni +

∑

k 6=i hkie
yk(t) in order to have an estimate of the

current SINR. Clearly, for the peers Txi and Rxi to have identical copies ofzi(t), µi(t), λi(t) and

νi(t), the initializations must be identical, requiring only coordination between peers.

IV. M ULTI -CHANNEL NETWORKS

The approach pursued so far will be generalized in this section to devise globally convergent

algorithms for optimal power control in multi-channel networks. Due to space limitation, emphasis

will be placed on stressing the differences with respect to the single-channel case.

A. Optimal power control

Users here may transmit over an orthogonal set of frequency bandsF := {1, . . . , F}, also referred

to as channels, subcarriers or tones. The power of Txi on channelf is pi,f , the noise power at Rxi on

channelf is ni,f , and the (power) path gain from Txi to Rxj on channelf is hij,f . Moreover, each

user adheres to aspectral maskpi,f ≤ pmax
i,f , and maximum power budget

∑

f pi,f ≤ pmax
i . Hence,

each user’s power must lie inPi := {pi,f |0 ≤ pi,f ≤ pmax
i,f ∀ f ∈ F ;

∑

f pi,f ≤ pmax
i }. The received

SINR at Rxi on channelf is γi,f := hii,fpi,f/(ni,f +
∑

k 6=i hki,fpk,f); vectorpi := [p1,f , . . . , pM,f ]
T

contains the power loadings for useri; and similar to the single-channel case,Af is the gain matrix

for channelf .

The aim is to formulate the power control problem for a multi-channel network incorporating

diverse QoS constraints. Two ways of generalizing the QoS bounds in (1) are possible: (i) individual

bounds per user; and (ii) individual bounds per user and channel.3 The optimal solution of (ii) can

be readily obtained by implementing the single-channel algorithm of Section III per channel, and

projectingpi ontoPi per iteration. For this reason, emphasis here is placed on generalization (i).

3As a way of illustration, suppose QoS is measured in terms of rate. Clearly (i) corresponds to bounding the aggregate rateof

each user (sum-rate across channels), while (ii) corresponds to bounding each user’s rate on every channel.
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The QoS that each user receives is an aggregate measure of theperformance attained when all

channels are utilized. Utility functionsui,f , Ui,f andVi,f model the contribution of the performance

over individual channelsf ∈ F to the total QoS. These functions may represent different perfor-

mance measures; one example is communication rate. The performance over an individual channel

is a function of the SINRγf
i ; this is made explicit by writingui,f(γ

f
i ), Ui,f(γ

f
i ) and Vi,f(γ

f
i ).

Furthermore, the contribution of the per-channel utility to the total QoS is linear. Therefore the

sums
∑

f∈F ui,f(γ
f
i ),

∑

f∈F Ui,f(γ
f
i ) and

∑

f∈F Vi,f(γ
f
i ) are measures of the total QoS per user. The

first amounts to the objective to be maximized, the second is used to ensure minimum QoSUmin
i ,

and the third to set an upper bound on the received QoSV max
i . Thus, the optimization problem

generalizing (1) to multi-channel networks is

max
{pi∈Pi ∀ i∈M}

∑M

i=1

∑F

f=1
ui,f(γi,f) (8a)

subj. to
∑F

f=1
Ui,f(γi,f) ≥ Umin

i and
∑F

f=1
Vi,f(γi,f) ≤ V max

i ∀ i ∈ M. (8b)

Recall that in the single-channel case QoS constraints are mapped one-to-one to SINR constraints

when link-specific utilities are selected to be monotonic (cf. (1b)). For this reason, there was no

need to introduceUi,f(γi,f) and Vi,f(γi,f) in the optimization problem (1). But this is impossible

for the multi-channel generalization in (8) because the sum-utilities are involved in (8b).

Similar to the single-channel case, a solution to (8) will bepursued through a suitable relaxation.

With qi := [q1,f , . . . , qM,f ]
T representing the local IpN vector, we will solve:

max
{pi∈Pi, qi∈RM

++ ∀ i∈M}

∑M

i=1

∑F

f=1
ui,f(hii,fpi,f/qi,f) (9a)

subj. to
∑F

f=1
Ui,f(hii,fpi,f/qi,f) ≥ Umin

i , ∀ i ∈ M (9b)

∑F

f=1
Vi,f(hii,fpi,f/qi,f) ≤ V max

i , ∀ i ∈ M (9c)

qi,f ≥ ni,f +
∑

j 6=i
hji,fpj,f , ∀ i ∈ M, ∀ f ∈ F . (9d)

The assumptions that will ensure optimality and convexity of the relaxed problem are:

AS5. Utilities ui,f(γi,f) are chosen so that: (a)ui,f(γi,f) are strictly increasing, twice continuously

differentiable, withlimγi,f→0+ ui,f(γi,f) = −∞; and (b)−γiu
′′
i (γi)/u

′
i(γi) ≥ 1 for γi > 0.

AS6. Utilities Ui,f (γi,f) satisfy AS1.

AS7. Utilities Vi,f(γi,f) are chosen so that: (a) are strictly increasing, concave, and twice con-

tinuously differentiable; and (b) satisfy−γi,fV
′′
i,f(γi,f)/V

′
i,f(γi,f) ≤ 1 for γi,f > 0.
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AS8. It holds thatni,f > 0 for all i and f , and gain matrixAf is irreducible for all f .

AS9. If every user has a maximum utility constraint (cf.(9c)), there are nop̃i, q̃i with p̃i ∈ Pi,

q̃i ∈ R
M
++ such that(9c) holds with equality for alli.

As in the single-channel case, AS5-AS7 guarantee the convexity of (9) under the transformation

pi,f = eyi,f , qi,f = ezi,f . Examples of utilities satisfying AS7 areVi,f(γi,f) = ln γi,f , Vi,f(γi,f) = γi,f ,

andVi,f(γi,f) = ln(1 + γi,f). Utilities satisfying AS5 and AS6 are those satisfying AS1.Similar to

[7], the fairness condition in AS5a precludes assignment ofzero power to any channel, which may

be restrictive for some multi-channel systems. Note also that if just one terminal does not upper-

bound its QoS (e.g., when primary users are present), AS9 is satisfied. However, different from the

single-channel case, there is no standard algorithm available to validate AS9 for the hypothetical

case of all users meeting their maximum QoS constraints withequality.

The optimality of the relaxation is established in the following result, proved in Appendix B.

Proposition 3. Assume that problem(8) is feasible, and AS5a, AS6a, AS7a, AS8, and AS9 hold.

Then at the optimal solutionp∗i,f , q∗i,f of (9), constraint(9d) holds as equality, i.e.,

q∗i,f = ni,f +
∑

j 6=i
hji,fp

∗
j,f ∀ i ∈ M, ∀ f ∈ F . (10)

Proposition 3 states that the optimal power allocations as well as the optimal objective values

of (8) and (9) coincide. As with Proposition 1, no assumptionon convexity is needed. Furthermore,

Proposition 3 implies that an efficient solution of (8) can befound via (9); this is pursued next.

B. Power allocation algorithm

Let νi, λi be Lagrange multipliers for the minimum and maximum QoS constraints, (9b) and (9c),

and µi,f for (9d). Also lety, z, ν, λ, µ denote vectors collecting variablesyi,f , zi,f , νi, λi, µi,f ,

respectively, for alli andf . The notationω is used fory, z, ν, λ, µ collectively. Further, define

Yi := {yi,f |yi,f ≤ ln pmax
i,f ∀ f ∈ F ;

∑

f eyi,f ≤ pmax
i } andY :=

∏M
i=1 Yi. The Lagrangian of (9) is

L(ω) := −
∑

i,f
ui,f(hii,fe

yi,f /ezi,f ) +
∑

i,f
µi,f

[

e−zi,f

(

ni,f +
∑

k 6=i
hki,fe

yk,f

)

− 1
]

−
∑

i
νi

(

∑

f
Ui,f(hii,fe

yi,f /ezi,f ) − Umin
i

)

+
∑

i
λi

(

∑

f
Vi,f(hii,fe

yi,f /ezi,f ) − V max
i

)

. (11)

As in Section III, a first-order (gradient) algorithm is employed to solve (9) iteratively using

yi(t + 1) = [yi(t) − β∇yi
L(ω(t))]Yi

(12a)

zi(t + 1) = zi(t) − β∇zi
L(ω(t)) (12b)
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νi(t + 1) =
[

νi(t) + β
(

−
∑

f
Ui,f(hii,fe

yi,f (t)/ezi,f (t)) + Umin
i

)]+
(12c)

λi(t + 1) =
[

λi(t) + β
(

∑

f
Vi,f(hii,fe

yi,f (t)/ezi,f (t)) − V max
i

)]+
(12d)

µi,f(t + 1) =
[

µi,f(t) + β
(

e−zi,f (t)
(

ni,f +
∑

k 6=i
hki,fe

yk,f (t)
)

− 1
)]+

(12e)

whereβ is a constant stepsize, and[x]Yi
is the projection ofx onto the setYi. SinceYi is a closed

convex set, the projection in (12a) can be implemented efficiently. Note that spectral mask and

sum-power constraints are respected throughout the algorithm, thanks to the projection in (12a).

The convergence analysis parallels the single-channel case; AS10, Lemma 2 and Proposition 4

are the counterparts of AS4, Lemma 1 and Proposition 2, respectively. Proofs are in Appendix B.

AS10. Problem(9) is strictly feasible, i.e., there exist̄p, q̄ with p̄i ∈ Pi, q̄i ∈ R
M
++ for all i such

that (9b), (9c), and (9d) hold with strict inequality.

Lemma 2. If (1) is feasible and AS5-AS10 hold, then: (i) the optimal Lagrange multipliers for

constraints(9d) are positive, i.e.,µ∗ > 0; and (ii) the Lagrangian function at the optimal Lagrange

multipliers,L(y, z, ν∗, λ∗, µ∗), is strictly convex iny and z overR2MF .

Proposition 4. Assume that(1) is feasible and AS5-AS10 hold. For anyǫ and δ with 0 < ǫ < δ,

there exist positiveβ0(ǫ, δ) and t0(ǫ, δ) such that for any stepsize0 < β ≤ β0(ǫ, δ) and any initial

point ω(0) ∈ Y × R
MF × R

M(F+2)
+ with dist(ω(0), Ω∗) ≤ δ, the iteratesω(t) in (12) satisfy

dist(ω(t), Ω∗) ≤ ǫ for all t ≥ t0(ǫ, δ)/β, whereΩ∗ is the set of optimalω vectors.

Distributed implementation:It can be easily verified that if path gainshii,f and SINR for all chan-

nels are fed back from Rxi, then all terms in (12) are known at Txi, except the sum
∑

j 6=i hij,fµj,f(t)

e−zj,f (t) for all f . For the latter to become available, message passing or the reversed network

approach can be utilized. The operations are the same as in the single-channel case, with the

additional feature that they are performed for every channel f .

V. NUMERICAL RESULTS

Numerical tests are presented in this section to corroborate the analytical claims and also to

compare the performance of the developed algorithm with that of various existing algorithms.

Test case 1: Single-channel networks.Consider a peer-to-peer network using CDMA. Withdij

denoting the distance between Txi and Rxj and B the spreading gain, it is assumed that gains

hij follow a (deterministic) path loss model withhii = d−4
ii and hij = B−1d−4

ij for i 6= j. In this

case, matrixA is irreducible (cf. AS2). The parameters describing the setup tested are listed in

Table II, while the Txi-Rxi positions are shown in Table III. The selected utility satisfies AS1. First,
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algorithm (5) is applied to power control without constraints, and it is seen to obtain the same

power allocation as other algorithms in the literature usedfor this problem. Then, focus is turned

to a problem with minimum and maximum QoS constraints. In this case, the QoS requirements

adopted are similar to those in [6, Sec. 7], mapped to SINR values, and listed in Table II as well.

The developed algorithm is applied first to power control without constraints, namely for the

solution of (1a). This is done by setting very small minimum SINR constraints and very large

maximum SINR constraints, so that they are all inactive. In this case, AS3 is automatically satisfied.

The values selected areγmin
i = 10−5 and γmax

i = 105 for all i. There are several algorithms in

the literature which solve (1a) optimally under AS1, namelyADP [7], gradient projection for

minimization [8], and variable splitting [9, Sec. 4.3]; results from all these will be the same.

The optimal sum-utility and SINR per user obtained with the developed algorithm (labeled as

“Lagrangian”) and the ones in [7], [8] are listed in Table IV.The results are identical, as expected.

Consider next a problem having diverse QoS constraints withvalues listed in Table II. Algorithms

QoS-ps-DSA and QoSe-DSA in [6] rely on game theory to solve (1). Each of these is developed in

general for multichannel networks and each has two versions: in one version power is allocated over

all channels (MC-QoS-ps-DSA, MC-QoSe-DSA), while in the other only one channel is selected for

transmission (SC-QoS-ps-DSA, SC-QoSe-DSA). In order to solve (1), the algorithms are restricted

to the case where there is a single available channel; then the two versions (MC- and SC-) reduce to

the same algorithm. The sum-utility and SINR per user achieved by the Lagrangian algorithm and

the two alternatives are provided in Table V, where the SINRsviolating the constraints are shown

in boldface. For completeness, the SINRs obtained from the standard power control algorithm are

listed in the last column of Table V. Observe thatγi < γmax
i for i ∈ {1, 5, 6, 8}, confirming that AS3

indeed holds. These values were used to initialize (5). It isobserved that QoS-ps-DSA and QoSe-

DSA cannot always meet all users’ SINR requirements (although these requirements are feasible,

see, e.g., user 1). Note also that the sum-utility is not maximized (compare 32.4 with 23.6). On

the other hand, it is expected that the optimal sum-utility of the unconstrained problem (1a) will be

higher than that of (1) because the constraints (1b) are imposed on the SINRs. This is quantified in

this test by comparing the corresponding entries of Tables IV and V.

Time trajectories of powers and Lagrange multipliers are depicted in Fig. 2. The plots corroborate

that the proposed iterations converge (cf. Proposition 2),and the fact that all the IpN constraints are

active (µ∗
i > 0), as asserted by Lemma 1. However, although the convergenceis relatively fast (100-
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300 iterations), this number is one order of magnitude higher than its suboptimal game-theoretic

counterparts QoS-ps-DSA and QoSe-DSA. This happens because convergence of the Lagrange

multipliers slows down to satisfy the diverse (two-sided) QoS requirements.

Test Case 2: Multi-Channel Networks.Each Txi-Rxi pair is placed on the same position as in

the previous test case, but now a frequency selective model is tested. Specifically, there areF = 16

channels available and each path gainhij,f is obtained from a realization of a 4-tap channel. The

taps follow Rayleigh fading, are equally spaced, and have power delay profile (1,1/2,1/8,1/10). The

realizations across links are independent. The path loss over each channel follows the model with

hij,f = d−4
ij . The remaining parameters are listed in Table VI.

First, algorithm (12) is used for the solution of the unconstrained problem (8a), usingUmin
i = −150

and V max
i = 150. The objective value (

∑

i,f ui,f(γi,f)) and the sum-utility per user (
∑

f ui,f(γi,f)

for i = 1, . . . , M) are listed in Table VII. The corresponding ones obtained from DADP [7], which

solves (8a) optimally, are also shown in Table VII. The results coincide, as expected.

When the QoS constraints of Table VI are imposed, results obtained by different algorithms are

listed in Table VIII. Algorithms MC-QoS-ps-DSA and MC-QoSe-DSA attempt to solve (8) [6]. As

in the single-channel case, the results of Table VIII illustrate that existing schemes might not always

satisfy all QoS constraints, and may achieve lower objective value than the Lagrangian algorithm.

VI. CONCLUSIONS

Power control algorithms were developed for DSA networks with primary and secondary users

or peer users willing to cooperate. A distinct feature of thenovel design is the incorporation of

diverse (maximum and/or minimum) QoS constrains per user. Peer-to-peer networks with co-channel

interference were considered for both single- and multi-channel settings. The QoS level of each user

was captured through utility functions that depend on the received SINR.

The novel power control algorithm has been obtained as the solution of a sum-utility maximization

subject to maximum and minimum utility (or SINR) constraints. The presence of interference

intimately couples the users’ power control decisions and represents a challenge to develop efficient

optimal solutions. However, a two-step relaxation rendering the problem convex and amenable to

distributed implementation was presented for a broad classof utilities.

Using this relaxation, a first-order Lagrangian method thatsimultaneously updates primal and dual

variables was developed and its convergence to the optimum solution established. Two distributed
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implementations were also introduced. Finally, numericaltests confirming the analytical claims and

comparing the performance gains relative to existing schemes were presented.4

APPENDIX

A. Single-channel networks

To prove Proposition 1, the following lemma, which applies to the case where all users have

maximum SINR constraints, is required.

Lemma 3. If AS2 holds and there is nop in the feasible set of(1) such thatγi = γmax
i for all

i ∈ M (cf. AS3), then there are nop, q in the feasible set of(2) such thathiipi/qi = γmax
i for all

i ∈ M.

Proof of Lemma 3: The feasibility problem of the SINRsγmax
i in (1) can be written as

p = D(γmax)Ap + D(γmax)η (13a)

0 < p ≤ pmax. (13b)

If the spectral radius ofD(γmax)A (see [20, p. 35] for a definition) satisfiesρ(D(γmax)A) < 1, then

the linear system in (13a) accepts a unique positive solution p(γmax) := (I −D(γmax)A)−1
D(γmax)η;

see, e.g., [13, Theorem A.35]. Since (13) does not have a solution by assumption, then either

ρ(D(γmax)A) ≥ 1, or, ρ(D(γmax)A) < 1 but with p(γmax) � pmax.

Achievability of γmax in (2) can now be posed as the following feasibility problem in p, q:

γmax
i = hiipi/qi, qi ≥ ni +

∑

k 6=i
hkipk, ∀i ∈ M; 0 < p ≤ pmax. (14)

Clearly q can be eliminated, so (14) becomes

p ≥ D(γmax)Ap + D(γmax)η (15a)

0 < p ≤ pmax. (15b)

If ρ(D(γmax)A)≥ 1, then (15a) cannot have a nonnegative solution (p ≥ 0). Otherwise, the

Subinvariance Theorem [13, Lemma A.37] andη > 0 leads to a contradiction.

If ρ(D(γmax)A) < 1, the solutions of (15a) form a cone with apexp(γmax), andp ≥ p(γmax)

for all p in the cone [21]. Ifp(γmax) � pmax, then (15) represents an empty set [21, Lemma 3].

4The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Army Research Laboratory or the U. S. Government.
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Proof of Proposition 1: First note that the feasibility of (1) implies the feasibility of (2), and

a solution to (2) exists due to Weierstrass Theorem [17, Prop. A.8].

Having shown the existence of solution to (2), the proof of (3) is by contradiction. Assume that

there exists a useri with dominantqi, meaning that at the optimum (2c) is inactive for useri, i.e.,

q∗i > ni +
∑

k 6=i
hkip

∗
k. (16)

If all users have maximum SINR constraints, then from Lemma 3it follows that at the optimum

of (2) (in fact at any feasiblep,q of (2)) at least one userm will have inactiveγmax
m ; i.e., γ∗

m =

hmmp∗m/q∗m < γmax
m . Any such user at the optimal point must havenon-dominantq∗m, i.e.,

q∗m = nm +
∑

k 6=i
hkmp∗k; (17)

otherwise,q∗m could be reduced, yielding higher objective value. In the case of at least one not

having maximum SINR constraint, (17) obviously holds (for that user). Comparing (16) with (17),

it follows thati 6= m. Moreover, since it has been assumed thatq∗i is dominant, thenhiip
∗
i /q

∗
i = γmax

i .

Thus, the user setM can be divided into three disjoint groupsG1, G2, G3 (cf. Fig. 3). In G1 are

the users with inactive (or absent)γmax
m (these must have non-dominantq∗m). GroupsG2, G3 contain

users with active max SINR constraint and in particularG2 contains the ones with dominantqi.

Now consider the useri ∈ G2 with dominantq∗i (cf. (16)) and activeγmax
i ; and the userm ∈ G1

with non-dominantq∗m (cf. (17)). Due to the irreducibility ofA there exists a sequence of distinct

indices i = k0, k1, . . . , kl−1, kl = m with the property{k1, . . . , kl−1} ∈ G2 ∪ G3 for somem ∈ G1

such that the corresponding channels arepositive, i.e., hk0k1 > 0, . . . , hkl−1,kl
> 0 [20, Sec. 6.2].

The main argument is that one can successively decreasep∗kι
and q∗kι

for ι = 0, 1, . . . , l − 1, but

keep the same ‘local SINR’hkιkι
p∗kι

/q∗kι
= γmax

kι
, until reaching userm with inactiveγmax

m . Note that

p∗kι
> 0 for ι = 0, 1, . . . , l − 1, sinceγmax

kι
> 0. Specifically, attempt to decrease bothp∗i , q∗i by the

same proportion, i.e., seťpi = αk0p
∗
i , q̌i = αk0q

∗
i with αk0 < 1. The resulting ‘local SINR’ fori is

still maximum, butq∗k1
has become dominant sincehk0k1 > 0, i.e.,q∗k1

> nk1+
∑

k 6=i,k1
hk,k1p

∗
k+hik1 p̌i.

Thenp∗k1
andq∗k1

can be reduced, renderingq∗k2
dominant. Proceeding likewise acrossι = 0, . . . , l−1,

p∗kι
andq∗kι

can be reduced, yielding

q∗kι+1
> nkι+1 +

∑

k∈{k0,...,kι}

hk,kι+1p̌k +
∑

k/∈{k0,...,kι}

hk,kι+1p
∗
k.

When userm ∈ G1 is reached (i.e.,ι +1 = l), q∗m is decreased but without changingp∗m (recall that

γ∗
m < γmax

m ). This yields a higherγm, and hence higher objective value, which is a contradiction.
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Now proofs of Lemma 1 and Proposition 2 are provided; footnote 2 also applies here.

Proof of Lemma 1: (i) Since problem (2) has an additional convex set constraint, (y, z) ∈

Y ×R
M , we use the necessary conditions of [17, Prop. 3.3.11]. These conditions are more general

than the KKT, in that they also include a multiplier for the gradient of the objective function (not

only the constraints). But when Slater’s constraint qualification holds (cf. AS4), such a multiplier is

not needed (see e.g., [17, pp. 334–335]). Due to the special structure of the constraint set (yi ≤ ymax
i ,

zi ∈ R), the first of the aforementioned conditions can be written as

∂L

∂yi

∣

∣

∣

∣

∣

(y∗,z∗,ν∗,λ∗,µ∗)

≤ 0,
∂L

∂zi

∣

∣

∣

∣

∣

(y∗,z∗,ν∗,λ∗,µ∗)

= 0, ∀i ∈ M. (18)

It will be shown thatµ∗ > 0. This cannot be concluded from∂L/∂zi = 0 alone (using (7b)

into (18)), due to the term arising from the maximum SINR constraint. Substituting (7b) into (18)

and (7a) into∂L/∂yi = −θi for someθi ≥ 0, summing the previous two equations, arranging them

into matrix form and using (3), gives the equation for the optimal µ∗

[I − D(ey∗

i )AT
D(hiie

−z∗
i )]µ∗ = θ, (19)

where slightly abusing notation, hereD(xi) denotes anM × M diagonal matrix with elements

x1, . . . , xM on the diagonal. The matrixD(ey∗

i )AT
D(hiie

−z∗
i ) is irreducible, and has column sums

smaller than 1 due to (3) andni > 0; henceρ[D(ey∗

i )AT
D(hiie

−z∗
i )] < 1 [20, Theorem 8.1.22].

Furthermore, we haveθ ≥ 0 and θ 6= 0 (the reason whyθ 6= 0 will be explained soon). Now

using [13, Theorem A.36] it follows readily that the solution of system (19) ispositive, i.e.,µ∗ > 0.

Assume thatθ = 0. Since ρ[D(ey∗

i )AT
D(hiie

−z∗
i )] < 1, matrix I − D(ey∗

i )AT
D(hiie

−z∗
i ) is

invertible and the solution of (19) isµ∗ = 0. Now from AS3, there is a useri for whomγ∗
i < γmax

i .

From the (weak) complementary slackness condition in [17, Prop. 3.3.11], it follows thatλ∗
i = 0.

Setting (7b) to zero (cf. (18)) and substitutingλ∗
i = 0, AS1a yieldsµ∗

i > 0, contradictingµ∗ = 0.

(ii) The main idea is to show that the Hessian (with respect tothe primal variablesy, z) of the

Lagrangian function (4) evaluated at the optimal Lagrange multipliers is positive definitefor all

(y, z) ∈ R
2M . In particular, the Hessian is positive semidefinite, sinceproblem (2) is convex. Here

it is shown that for the optimal Lagrange multipliers, the Hessian is invertible for all(y, z) ∈ R
2M .

The Hessian with respect to the primal variablesy, z takes the partitioned form

∇2L(y, z, ν∗, λ∗, µ∗)=







∇2
yyL ∇y∇zL

∇z∇yL ∇2
zzL





:=







H11 H12

H21 H22





. (20)
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Diagonal blocksH11, H22 (not shown for brevity) are diagonal matrices, withpositivediagonal

elements due to AS1, AS2, andµ∗ > 0. The off-diagonal blocks satisfyH21 = H
T
12 with

H12 = D[u′′
i (hiie

yi/ezi)(hiie
yi/ezi)2 + u′

i(hiie
yi/ezi)(hiie

yi/ezi)]

−D(eyi)AT
D(µ∗

i hii/e
zi) − D[(λ∗

i hiie
yi)/(eziγmax

i ) + (ν∗
i γ

min
i ezi)/(hiie

yi)].

The off-diagonal blocksH12 and H21 are nonpositive matrices. To show that the Hessian is

nonsingular, we apply [22, Chapter 6, Theorem 2.3, Condition (J30)]. The vector that satisfies the

aforementioned condition for the Hessian matrix here is thevector of length2M with 1 in each

entry. Then, with(H)ij denoting thei, j entry of the Hessian, the condition becomes
i
∑

j=1

(H)ij > 0,
M+i
∑

j=1

(H)M+i,j > 0, i = 1, . . . , M. (21)

It holds that
∑i

j=1(H)ij = (H)ii and
∑M+i

j=1 (H)M+i,j = µ∗
i ni/e

zi , i = 1, . . . , M . Then the first

condition in (21) is true because the diagonal entries ofH11 are positive; while the second holds

becauseµ∗ > 0 andni > 0 (cf. AS2).

Proof of Proposition 2: The iterations (5) solve for a saddle point of the Lagrangian(4) over

Y × R
M × R

3M
+ . So the first step is to assert that the optimalω’s in (2) are exactly these saddle

points. Then the convergence claim is proved directly afterinvoking [23, Theorem 1], and therefore

it suffices to show that the conditions required by the theorem are satisfied.

Indeed, the optimal primal solutions and geometric multipliers of (2) are exactly the saddle points

of (4) overY×R
M×R

3M
+ [17, Prop. 5.1.6]. But the geometric multipliers coincide with the Lagrange

multipliers associated with the optimal solution [19, Prop. 6.1.2] since the problem is convex and

a solution exists (cf. the proof of Proposition 1). Finally,the set of Lagrange multipliers associated

with the optimal primal solution is nonempty due to AS4 (cf. the proof of Lemma 1).

Now it is shown that the three conditions of [23, Theorem 1] hold for the problem at hand:

(i) The sets over which the saddle points are sought (Y ×R
M ×R

3M
+ ) are closed and convex.

(ii) The set of saddle points of the Lagrangian is bounded. First it has to be shown that the

set of optimal primal solutions is bounded; but this followsreadily from Weierstrass’ theorem (cf.

the proof of Proposition 1). Moreover, the set of Lagrange multipliers associated with the optimal

primal solution is bounded [19, Prop. 6.4.3], due to AS4.

(iii) For any (y, z) 6= (y∗, z∗) it holds thatL(y∗, z∗, ν∗, λ∗, µ∗) < L(y, z, ν∗, λ∗, µ∗) (referred

to in [23] as stability of the saddle points with respect to(y, z)). This follows immediately from

the strict convexity ofL(y, z, ν∗, λ∗, µ∗) in (y, z) overR2M (cf. Lemma 1).
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B. Multi-channel networks

The proofs for this case are very similar to the single-channel case. Here only the points differ-

entiating the arguments in the two cases are described.

Regarding Proposition 3, the proof is again by contradiction. The main argument must be made

for every channel, hence the need for AS8. Moreover, note that p∗i,f > 0 for all i andf due to AS5;

hence, it is indeed possible to successively reduce the powers and arrive to a contradiction.

Now the first part of Lemma 2 can be shown again by manipulatingthe necessary optimality

conditions∂L/∂yi,f ≤ 0, ∂L/∂zi,f = 0 and arriving to a linear system of the form (19) per channel.

For the second part, note that the Hessian with respect toy and z is block diagonal, where each

block corresponds to the variables organized per channel and has the form of (20). The proof then

follows the proof of Lemma 1(ii); we apply again [22, Chapter6, Theorem 2.3, Condition(J30)],

where now the vector of all ones and length2MF works.

Finally, Proposition 4 can be proved by invoking [23, Theorem 1] and using arguments similar

to those in the proof of Proposition 2.
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Fig. 1. Quantities involved in message passing.
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Fig. 2. Convergence of powers and Lagrange multipliers.
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Fig. 3. Division of user set in proof of Proposition 1.
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TABLE I
DIRECTIONAL DERIVATIVES OF SUM-UTILITY AS FUNCTION OF THE PERTURBATION.

Dei
utot(0) = min {λi| ∃ ν, ∃µ, ∃λj , j 6= i s.t.(ν, λ, µ) ∈ Θ∗}

0 ≤ Dei
utot(0) ≤ λ∗

i

D(−ei)utot(0) = −max {λi| ∃ ν, ∃µ, ∃λj , j 6= i s.t.(ν, λ, µ) ∈ Θ∗}

−ui(γ
max
i )γmax

i ≤ D(−ei)utot(0) ≤ −λ∗

i

TABLE II
SIMULATION PARAMETERS FOR TEST CASE1.

M = 8, B = 128, β = 0.1
ui = ln(γi) ∀i
pmax

i = 1 W, pmax
i /ni = 40 dB ∀i

Initialization: zi = ln ni, λi = 0, νi = 0, µi = 1 ∀ i ∈ M

γmin
i = 140, γmax

i = 20000, i ∈ {1, 6}

γmin
i = 8, γmax

i = 20, i ∈ {2, 3, 4}

γmin
i = 20, γmax

i = 140, i ∈ {5, 7, 8}

TABLE III
COORDINATES OF8 TX-RX PAIRS (SHOWN IN 2 COLUMNS). TX ARE DEPLOYED OVER A SQUARE AREA OF SIDE10M . EACH RX

IS LOCATED BETWEEN1 AND 3 METERS AWAY FROM ITS PEER TRANSMITTER. POSITIONS ARE RANDOMLY SELECTED.

Txi; Rxi (i = 1, 2, 3, 4) Txi; Rxi (i = 5, 6, 7, 8)

(4.80,5.15);(4.92,3.67) (6.17,3.18);(6.95,4.40)
(5.61,6.06);(6.11,7.51) (6.85,5.88);(8.07,6.70)
(6.16,9.67);(4.70,10.93) (5.10,1.30);(4.45,0.12)
(6.62,8.22);(5.17,9.39) (7.14,2.54);(5.83,1.05)
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TABLE IV
UNCONSTRAINED OPTIMIZATION IN SINGLE-CHANNEL NETWORKS: SUM-UTILITY (TOP) AND SINR PER USER(BOTTOM).

Lagrangian ADPa Gradient
projection alg.b

∑

i
ui 33.676 33.676 33.676

γ1 81.16 81.07 81.03
γ2 43.35 43.34 43.34
γ3 191.03 191.08 191.09
γ4 6.24 6.24 6.24
γ5 55.22 55.28 55.30
γ6 443.06 443.00 443.00
γ7 542.09 546.16 547.54
γ8 7.59 7.53 7.51

All algorithms initialized randomly within the
power constraints.

a pmax
i /pmin

i = 40 dB; all prices initialized ran-
domly in (0, 1/(niB)).

b Stepsize = 0.2.

TABLE V
OPTIMIZATION WITH DIVERSE QOS CONSTRAINTS IN SINGLE-CHANNEL NETWORKS: SUM-UTILITY (TOP) AND SINR PER USER

(BOTTOM).

Lagrangian QoS-ps-DSAa QoSe-DSAa
Standard power

control alg.
∑

i
ui 32.4 23.6 23.6

γ1 140.0 0.0137911 0.0137911 70.4
γ2 20.0 20.0 20.0 20.0
γ3 20.0 20.0 20.0 20.0
γ4 20.0 20.0 20.0 20.0
γ5 32.9 52.5.0 52.5 81.4
γ6 786.1 655.3 655.3 734.2
γ7 140.0 140.0 140.0 140.0
γ8 30.0 32.2 32.2 24.1
a pmax

i /pmin
i = 40dB; all powers initialized atpmax

i ; all prices initialized
at 10−4. Powers took (continuous) values in[pmin

i , pmax
i ].

TABLE VI
SIMULATION PARAMETERS FOR TEST CASE2.

M = 8, F = 16, β = 0.025
ui(γi,f ) = Ui,f (γi,f ) = Vi,f (γi,f ) = ln γi,f ∀ i ∈ M, f ∈ F
pmax

i /ni,f = 40 dB ∀ i ∈ M, f ∈ F
Initialization: yi,f = ln(pmax

i /M), zi,f = ln ni,f ,
λi = 0, νi = 0, µi,f = 1 ∀ i ∈ M, f ∈ F

Projection ontoYi via MATLAB’s fmincon

Umin
i = −50, i ∈ {1, 5, 6, 7, 8}

Umin
i = −40, i ∈ {2, 3}

Umin
i = −30, i = 4

V max
i = 50, i ∈ {1, 2, 3, 4, 5, 6}

V max
i = 10, i ∈ {7, 8}
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TABLE VII
UNCONSTRAINED OPTIMIZATION IN MULTI-CHANNEL NETWORKS: SUM-UTILITY (TOP) AND INDIVIDUAL UTILITIES PER USER

(BOTTOM).

Lagrangian DADPa

∑

i,f
uf

i -149.96 -149.96

1 -21.09 -21.11
2 -52.99 -52.99
3 -8.12 -8.12
4 -38.05 -38.05
5 -6.12 -6.10
6 9.10 9.10
7 18.26 18.35
8 -50.95 -51.05
a pmax

i /pmin
i = 40 dB; stepsize =

0.05; 30 inner iterations per dual.
All powers initialized randomly
in (pmin

i , pmax
i ) and all prices in

(0, 1/ni,f ).

TABLE VIII
OPTIMIZATION WITH DIVERSE QOS CONSTRAINTS IN MULTI-CHANNEL NETWORKS: SUM-UTILITY (TOP) AND INDIVIDUAL

UTILITIES PER USER(BOTTOM).

Lagrangian MC-QoS-ps-DSAa MC-QoSe-DSAa
∑

i,f
uf

i -162.38 -317.50 -688.46

1 -16.90 -68.85 -82.67
2 -40.00 -114.50 -102.75
3 -38.13 -6.69 -104.85
4 -30.00 -48.81 -89.13
5 -8.76 5.63 -63.15
6 4.23 -3.43 -79.98
7 8.20 10.14 -70.13
8 -41.03 -91.14 -95.80
a pmax

i /pmin
i = 40 dB; all powers initialized randomly in

(pmin
i , pmax

i ) and all prices in(0, 1/ni,f ). Powers took (con-
tinuous) values so thatpmin

i ≤
∑

f
pi,f ≤ pmax

i for all users.
Projection onto power constraints via MATLAB’sfmincon.


