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Abstract

Dynamic spectrum access (DSA) is an integral part of cognitadio technology aiming at efficient
management of the available power and bandwidth resouiides.present paper deals with cooperative
DSA networks, where collaborating terminals adhere tordewémaximum and minimum) quality-of-service
(QoS) constraints in order to not only effect hierarchiesMeen primary and secondary users but also
prevent abusive utilization of the available spectrum.rRegeer networks with co-channel interference
are considered in both single- and multi-channel settingfdlities that are functions of the signal-to-
interference-plus-noise-ratio (SINR) are employed as @e®ics. By adjusting their transmit power, users
can mitigate the generated interference and also meet tBe€mirements. A novel formulation accounting
for heterogeneous QoS requirements is obtained afterdinting a suitable relaxation and recasting a
constrained sum-utility maximization as a convex optitia@aproblem. The optimality of the relaxation is
established under general conditions. Based on this tidean algorithm for optimal power control that
is amenable to distributed implementation is developed,itsnconvergence is established. Numerical tests

verify the analytical claims and demonstrate performaraiagrelative to existing schemes.

. INTRODUCTION

The Federal Communications Commission (FCC) has recogrtizat the perceived spectrum

scarcity is caused by the currently inflexible bandwidthgresents [1]. In response to this problem,
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a spectrum policy reform has been proposed under the termntgrnspectrum access (DSA) [2].
The premise is allocation of the spectrum in a more flexible euarket-driven manner, potentially
by allowing services beyond those licensed, or, by acconatiogl more users, who may or may
not be licensed. DSA is in fact an integral part of the emaygingnitive radio (CR) technology,
which aims at enhancing spectrum utilization through ‘ghteansceivers able to sense the operating

environment and adapt to it; see e.g., [2] and referencesithe

DSA schemes can be classified depending on whether usergrab®fdo share the available
spectrum or not [2], [3]. In the non-cooperative setup, adaoy (unlicensed) users either transmit
over frequency slots not occupied by primary (licensedysugspectrum overlay) or retain their
transmission power below the primaries’ noise floor (speotunderlay). On the other hand, more
efficient sharing of the spectrum is expectedcwoperativealternatives, for which two different
models are typically considered. One is thygen sharingnodel (also known as commons model),
where all users are treated as ‘peers’ or primaries [2], [}, Such a network is envisioned to
e.g., be deployed over an unlicensed band along with a setle$ to ensure efficient resource
management. The second one idlexible primarymodel, where primary users negotiate access

with secondary users [3], if e.g., the latter pay a fee fongi& pre-specified level of the resources.

The present work deals with resource allocation in cooperddSA networks for both open
sharing and flexible primary models. Design challenges exstdrd include the accommodation of
diverse application-specific constraints, mechanismsefaouraging efficient spectrum utilization,
and decentralizing the management schemes, as advocatbé IBYCC. This paper’s main contri-
bution is the incorporation ofliverse (heterogeneous) individual QoS requirements. In a flexible
primary model, access is regulated by bounding the maxinewed bf a commodity a secondary user
receives, which may be communication rate, bit error rat@ny other QoS figure; while ensuring
a minimum level for primary users. In an open sharing modsérsi voluntarily adapt usage of
network resources to their application requirements. Wag, minimum and maximum bounds on

the received QoS become constraints that the resourceatindask must account for [5], [6].

Focus here is placed on peer-to-peer networks where usessiit over the same bandwidth both
in single- and multi-channel settings. The co-channeliatence present in such networks intimately
couples individual power control decisions. Each usertsfection with the received QoS level
is captured by utility functions that depend on the receisgphal-to-interference-plus-noise ratio

(SINR). Adjusting the individual transmit power offers tpetential to satisfy the individual QoS
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requirements and is a critical network task. The requiraglgg@ontrol scheme is obtained by solving
a sum-utility maximization problem subject to maximum andimum utility (or SINR) constraints.
Two features of this novel approach are: (i) incorporatibheierogeneous QoS requirements and (ii)
a provably convergent algorithm for optimal power contnoleaable to distributed implementations.
In recent years, the design of resource allocation scheong3R and DSA networks has received
considerable attention. Maximization of network utilitytivdiverse QoS constraints in cooperative
CR has been pursued in [5], but orthogonal access and a lceoitrtaoller were assumed. Different
decentralized power control algorithms maximizing thalotility in networks with non-orthogonal
access (e.g., CDMA) but without accounting for individuakets’ QoS constraints were presented in
[7], [8]. Minimum SINR constraints were also accommodated9, Chapter 4], [10, Sec. 3.3], but
maximum ones were not included. More recently, two subaogitiahgorithms for distributed power
control in multi-channel DSA networks with diverse QoS doaisits have been reported in [6].
The rest of the paper is organized as follows. In Sectiorhi, dptimal power control in single-
channel networks is formulated and a convex relaxation &bkenits efficient solution is introduced.
An algorithm for optimal power control amenable to disttial implementation is developed in
Section Ill. Results for multi-channel networks are présdnin Section IV, while simulations in

Section V and conclusions in Section VI wrap up this paper.

[I. OPTIMAL POWER CONTROL

Consider the power control problem for a single-channel.,(isingle-carrier) DSA network in
which users share the same frequency band, e.g., as in CDM#uming a peer-to-peer operating
setup, thereisaset d#t := {1,..., M} links, where each link € M entails a user with a dedicated
transmitter (Tx) wishing to communicate with a corresponding receiver;JRxs in [7]. The terms
pair, user and link will be used interchangeably. ket denote the (power) path gain from ;Tto
Rx;, assumed static. The path gaip models the relationship between the transmitted and redeiv
power and captures any signal processing technique takaug @t the transmitter or the receiver,
such as (de-)spreading in CDMA. Also, let denote the noise power at Ry; the transmission

powerof Tx;; andp® the maximum power budget Tgan afford, i.e.) < p; < p"®*. The received

Although the power values here are considered continualaptive modulation schemes may welcome a discrete set oérpow
levels. The optimal design then also requires the contiswsmiution pursued in this paper as a first step, is highly tngial, and

goes beyond the scope and space limits of this paper; see[ldpand references thereof.
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SINR~; at Rx is a function of the powerg := [py, ..., pu]T given by, := hiipi/(nfrzk# hkipk>.
Let us define vectorp™® := [pmax . pmax|T v = [y o T, moi= [ng /Ry, oo R
and the matrixA = [a;;] with a;; := hj;/h;; if @ # j anda;; := 0 if i = 5. Also letD(zx) denote
an M x M diagonal matrix with diagonal elementts,, ..., zy/]7 := x.

The utility associated with each link € M will be described by a generic functiom ;).
The goal is to maximize the sum of all link utilities subject QoS constraints. The QoS per
link 7 will also be generically described by a functiof(+;), which can e.g., represent rate when
vi(7:) = In(1 + ;). If v;(v;) is chosen monotonic, then constraints@rmap one-to-one to SINR
bounds; i.e.p;(7:) € [vi(7™™), v;(V"™)] & v; € [y®, 4], The lower bounds ensure a minimum
QoS level while the upper bounds prevent abuse of the alail@sources. Recall that these are
design objectives in both flexible-primary as well as in oglaring DSA models. For both models,

the associated power control problem for DSA/CR networksuats to solving the following:

M

o JBAX, ; wi(7:) (1a)
subj. to AR <y < AP Ve M. (1b)

In most DSA setups, not all constraints in (1b) will be presémeed,y** may not be enforced if
i is a primary user; while if is a secondary user botf*** and~™* may (or may not) be present.

The maximum QoS requirements is the key difference betweeblgm (1) and related ones in
power control for non-orthogonal access networks. Thegeirements capture the design objectives
for certain DSA networks, which would be difficult with exisgy formulations. For example, while
properly selected spectral masks regulating transmit pa@ag limit the interference received by
other users, they cannot guarantee that the received SINIRn@ti exceed a prescribed level.
Similarly, judicious choices of utilities, e.g., propamially fair, cannot ensure that the received
SINR (and hence QoS) is within an allowable range if (1b) iseab.

Problem (1) is generally non-convex and hence challengingptve, especially in a distributed
fashion suitable for the peer-to-peer setup at hand. Updectseg {u;(-)} properly, a convex
reformulation of (1) is possible using the methods in [12]cl$ reformulation could only be solved
in a centralized manner, while the methods in [12] do not ilgddad to algorithms. Moreover,
the special case of (1) with minimum SINR constraiotdy is addressed in [9], [10] for certain
utilities, but the solutions developed in these works caframdle two-sided SINR constraints.

A novel approach to solving (1) is described in the ensuinigseation. It entails a suitable
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relaxation, which allows the use of convex optimization avilll also form the basis for the design

of the distributed power allocation algorithm presentedection Ill.

A. Efficient optimization via convex relaxation

To solve (1) efficiently, we adopt the following assumptions

ASL. The individual utilities are chosen so that: (a)(y;) are strictly increasing and twice
continuously differentiable; and (b}~;u! (v;)/u.(v;) > 1 for v; > 0 (' denotes differentiation).

AS2. The noise power is non-zero for dlli.e.,n; > 0; and the gain matrixA is irreducible.

AS3. If every user has a maximum SINR constraint, there is no pgaaprp with0 < p < p™a*
such that the resulting SINRg satisfy~y; = ~** for all i € M.

AS1 is standard in the power control literature [13, ChapteBpecifically, it implies that;(~;) is
strictly concave iny; and effects the fairness conditidim,, o+ u;(7;) = —oo [9, p. 15], which
guarantees that non-zero power is allocated to all usermmmpbes of utilities satisfying AS1 are
u;i(:) = Invy;, andu,(y;) = 7% /a with o < 0 [13, Sec. 5.2.5]. Although AS1 refers only to the
utilities u; in (1a), thew; functions used to obtain the SINR constraints (1b) are nsirioted by
any condition other than being monotonic. Furthermore,itfeducibility of A in AS2 is also a
standard assumption in power control problems [12].

AS3 pertains to the case where all users have maximum SINRtreamts. In this case, the
equationsy; = v, ¢ = 1,..., M, can be easily written as a system of linear equations in
p (cf. (13a)). AS3 then means that this linear system has natisol satisfyingd < p < p™*.
Satisfaction of AS3 can be checked as explained in SectloBuit even when it is not satisfieg,
in AS3 is the optimal solution of (1) and no further optimipatis needed, because thg~;) are
strictly increasing and all users can achieve thgii*. Last but not least, AS3 is automatically
satisfied when primary users do not upper-bound their QeS,wheny"** = oco for some:.

Having clarified the operating conditions, we will relax () facilitate its solution through
convex optimization. To this end, let denote an auxiliary variable associated with linkupper-
bounding the interference-plus-noise (IpN) term+ >, hyipir. Collecting all variablesy; in
q:=|q,-..,qu]", consider the following relaxed version of (I} (, denotes the positive reals):

M
nggpfga%?(qeR% ;ui(hiipi%_ D) (2a)

subj. to AR < gt < AR Vi € M (2b)
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g = n; + Zk# hiipe, Vie M. (2c)

Clearly, if (2c) were equality constraints, then (1) and \@uld be equivalent. In order for the
relaxation to be useful, two issues need to be addressedptfinality of the relaxation needs to
be established, i.e., that the solution of (2) is also a &wiubf (1); and (ii) problem (2) must be
efficiently solvable. Using the change of variablgs= ¢¥ andgq; = ¢*, we have shown in [14] that
ASL1 ensures convexity of problem (2) in:= [yy,...,yu]? andz := [z, ..., 2]7; hence, (ii) is
settled. To address (i), we prove in Appendix A the following

Proposition 1. Assume thatl) is feasible, and let AS1la, AS2 and AS3 holg*lfg* solve(2),
then(2c) holds as equality ap*, q*; i.e.,

¢ =mni+3., , wipp Vi€ M. (3)

Proposition 1 asserts that the optimal powers for probldiharid (2) are identical and the optimal
q* of problem (2) is given by (3). It also follows from Propoeiti 1 that the values of the optimal
sum-utility in (1) and (2) are identical. Hence, the rel@oatincurs no loss of optimality.

Interestingly, Proposition 1 holds fanystrictly increasing utility, e.gln(1++;); that is, convexity
is not required. Nonetheless, it is the convexity guarahteeAS1 together with Proposition 1 that
facilitate efficient optimization of the power allocatiom {2), as explained in Section Ill.

It is remarked that introduction of local IpN variables ancelated relaxation appear in [15], and
also as a method to accommodate general interferencedusdti [9, Chapter 4]. Nevertheless, the
optimality of the relaxation in (2) cannot follow from any tifese works.

The convex relaxation of (1) has been carried out in two stiqss by introducingg;, and then
by transforming(p;, ¢;) into (v;, z;). The next remark elaborates on why the form of the relaxed
problem is potentially solvable in a distributed fashion.

Remark 1. The relaxed probleni2) has two features which facilitate a distributed solution:

() The objective i2a)is a sum ofM utility functions, one for each user. Moreover, each utilit
w;(.), i =1,..., M, depends only on the variables and ¢;, pertaining to user; and

(b) For each useri, the constraintg2b) and (2c) depend only orp;, ¢;, as well the IpNn; +

> ki hripe. This quantity seemingly ‘couples’ all optimization vdiies. The key element though is
that n; + 325 hiripr In (2€) can be measured at receiver

These features (a) and (b) are also present in prob{&m Unlike (2), problem(1) is non-convex

and cannot be rendered convex while retaining (a) and (b).
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[1l. POWER ALLOCATION ALGORITHM FOR SINGLE-CHANNEL NETWORKS

In this section, an algorithm based on Lagrangian techsidgsi@eveloped to solve (1) via ().
This algorithm will have provable convergence, exhibitckiag capability, entail low complexity
and be suitable for distributed implementation, featursainly desirable in DSA/CR networks.

Before solving (2), the validity of AS3 must be ensured byaktieg whether there are powers
solving v; = " for all : € M with feasiblep < p™**. This can be checked using the standard
power control algorithm of [16, eq. (21)], which has guaesat convergence and can be implemented
in a distributed fashion without information exchange amasers. Ifall maximum SINR constraints
are exactly met, then the powers returned by this algorithentlze optimal solution of (1), due to
ASla. If not, these powers may be used as initialization Hierdolver of (2), developed next.

With the objective of solving (2), set"® := Inp>, Y := [, (—o0, y*] and observe that in
addition to (2b) and (2c), problem (2) has an additional earset constrainty, z) € YxRM. Lety;,

i, i; denote Lagrange multipliers corresponding to minimum amagimum SINR constraints (2b)
and (2c), respectively. The Lagrangian function of the exnequivalent of (2) is then

L(y,z,v, A\ ) Zm(h“f ) +Z,uz[ Zi(ni+2hkieyk) — 1}

ki

1 h” evi

+§:%(mmh6% >+§}x(mm 1) @

For brevity, letw:={y,z,v, A\, u} denote all optimization variables and Lagrange multiglier

e~

Problem (2) is solved via the following first-order algoriththat utilizes the gradient of.(w)

to simultaneously update primal and dual variables withstamt stepsizg¢ and[z]" := max{0, z}:

yi(t +1) = min {yi(t) - 5827(:;) w(t),ylmax} (5a)
2t +1) = z(t) - gag(z‘f’) (5b)
i lw(t)
vi(t+1) = ()+5(mnmt%“ﬂz—1)+ (5¢)
1) = [0+ 300 pye )] (50)
- +
4 t 1) = 4 t —zi(t) n; + h i vk () -1 5
e+ 1) = [pu0) +.8(7 (e + S e ©) 1) (5e)

2Throughout this section references to (2) will in fact refeits convex equivalent after the transformatjgn= e¥* andg; = .
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The gradientV,, L(w) is used in (5) to minimizd.(w) with respect toy, z, and maximize it with
respect tav, A, u; i.e., a saddle point is sought. Convergence is analyzedeamext subsection.
From an implementation perspective, it is worth stressimgt in compliance with FCC, the
power constraints are respectidoughout the iterationslue to the projection operation in (5a). In
addition, updates in (5) use a constahtwhich enables tracking and is thus attractive for mobile

CR networks. Means of distributing the iterations (5) arplesed in Subsection III-B.

A. Convergence and sensitivity analysis

In order to analyze the convergence of (5), an additionalrapsion is due:

A$A. Problem(2) is strictly feasible, i.e., there exigt, ¢ with 0 < p < p™** such that(2b) and
(2c) hold as strict inequalities.

This last assumption corresponds to Slater's constraiatifqgation, which guarantees the exis-
tence of optimal Lagrange multipliers [17, Sec. 3.3.5]. i@dizing on AS4, the following lemma
characterizes the optimal Lagrange multipliers of (2);pitsof is in Appendix A.

Lemma 1. If (1) is feasible and AS1-AS4 hold, then: (i) the optimal Lagrangétipliers for
constraints(2c) are positive, i.e.p* > 0; and (ii) the Lagrangian function at the optimal Lagrange
multipliers, L(y, z, v*, X\*, u*), is strictly convex iny and z over R*V.

The first part of Lemma 1 is a strict complementary slacknesslt, which in general does not
follow from the Karush-Kuhn-Tucker (KKT) necessary comatis for optimality; for details on these
notions, see e.g., [17, Sec. 3.3]. Moreover, notice that (arof Lemma 1 holds even for utilities
that are not strictly convex iy and z, e.g.,u;(h;;e¥i/e*) = In(h;e¥i /e*).

Now let dist(zx, X) := mingcy || — &||2 denote the distance of a point from a setX’; and
2* the set of optimalv vectors. Using Lemma 1, the following proposition estdi#is the global
convergence of iterations (5) to a neighborhood &t

Proposition 2. Suppos€l) is feasible, and AS1-AS4 hold. For anynd § with 0 < € < 4, there
exist positived,(e, ) and (e, d) such that for any stepside< 5 < (e, d) and any initial point
w(0) € Y x RM x R3M with dist(w(0), 2*) < 4, the iteratesw(t) in (5) satisfydist(w(t), 2%) < e
for all t > tq(e,0)/[.

Proposition 2 asserts that the iterate@) reach (and remain within) an arbitrarily small neigh-
borhood of 2* from any initial point. The stepsize and the number of iterationsemhepon the

initialization and the desired neighborhood size. The promvided in Appendix A relies on
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Lemma 1. The numerical examples presented in Section V with@hstrate that the iterations
not only remain arbitrarily close to the optimal solutiomit lactually converge.

It is well-known that the activation of a constraint in an iogkzation problem entails a penalty
in the achieved optimal value. Sensitivity analysis can §eduo study the effect of changes in the
constraints on the optimal utility value. Such analysis éstipent when the constraints are fixed
beforehand (e.g., if they are QoS levels dictated by a speagiiplication), but also when they have
to be settled by the system designer. A brief sensitivityyesisfor problem (1) (via (2)) is presented
next. Since incorporating maximum SINR constraints is trennieature of (1), the focus here is
on the effect of varying***. The analysis for the minimum SINR constraint is similar.

To specify the problem, lex;, i = 1,..., M, be the optimal Lagrange multipliers returned by (5)
andu;,, the optimal value of problem (2); and hence of (1) in view obrsition 1. Suppose that
v is changed toy* + 6,7, ¢; € R. The objective is to quantify the effect 6fy*** on u;,.
Both smaller as well as larger changesdof= [§y,...,d,,]" are of interest.

Let w0t (6) be the optimal value of (1) and (2) under the aforementioregtipbation, and suppose
that AS3 holds also withy*** + §;7** instead of+***. With this notation,u;,, = u(0). The
effects of small values of are studied first. To this end, the value of the derivative.gf(d) can
be used, and it is computed next based on known quantities.

Let {e;}M, denote the vectors iR" with 1 on thei-th component and O elsewhere. Also let
©* C R*M denote the set of optimal Lagrange multiplier vectar§, A7, u7]7 of (2). Under AS1-
AS4, [18, Theorem 2.3.2] asserts that,(d) has directional derivative in any direction R*/;
its values in the directions; and —e; along with bounds for the derivative values are listed in
Table I. These bounds depend ¢fi** and the optimal\} returned by (5); hence, they are easily
computable. The first bound is immediate; the second is elérby settingdL/0z; = 0 (cf. (18)),
using (3) and assuming that th&** constraint is active, so that' = 7 andv; = 0.

The derivatives are used to evaluate the increase or deccgabe sum-utility value when the
SINR constraintg*** change. In particular, i* is changed to,*** + §,7* with ¢; > 0 small,
thenu},, is increased byD., u(0) - §; approximately. On the other hand,~f*** is decreased to
ymex — §ymax with 6; > 0 again small, then , is approximately decreased Wy _,u0(0) - 0;.

The optimal multipliers\ can also be used to assess the effect of larger changes iartbeation
8. The following inequality holds for als € RM (cf. [19, eq. (6.23)])

M
utot(é) S u;:kot + Z )\;k(sz (6)

i=1
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Inequality (6) offers an upper bound on the optimal sumitytivith the following qualitative
implications. If A is large andj; < 0, then the sum-utility decreases considerablyXifis small
andd; > 0, then the sum-utility increases, but not much. Note thoungit from inequality (6) one

cannot draw conclusions for other combinations of signs; aind values of\’.

B. Distributed implementation

To develop a distributed counterpart of (5), consider thevdgves in (5a) and (5b)

8[/ ’ hiiey’i hiiey’i ) ) )\2 hiiey’i : e

= —u, —+ ey hjpe + — vyt 7a
y; ! ( ez ) e ZJ#Z it ymax ez i hj;eYi (7a)
6L / hiiey’i hiieyi ) )\2 hiiey’i : e

=U; | —— — U T n; + h i Yk ) — +v; mm___ 7b
0z; u’( ez ) e pic ( Zk#l ki€ ) ymax ez v hi;evi (7b)

The updates (5) take place at;Ti is assumed that Rxs able to estimate the gafry; and the
SINR he¥® /(n; 432 hiie?*®), and feed the latter back to its peer, Per time slott. Tx; needs
also to obtainh,;; via feedback but this may happen only during the start-ups@hmovided that
h;; changes at a scale much slower than the algorithm’s conveegéme. Then, all terms needed
for the updates (5) are known locally at;Txvith the exception of the sury;_, hijuj(t)e—zf(t),
which is associated with the IpN constraints in (2c).

In order to make the aforementioned sum available af fimo schemes that have been proposed
for power control problems different from (2) can be adaptedhe problem at hand: message
passing [10, Sec. 3.4], [7], [6], and “the reversed netwdi3, Sec. 6.5], [8], [9, Chapter 4]. The
latter has the attractive feature of not requiring exchasigieformation among links.

1) Message passingUsers in this scheme exchange information over a controhralato
facilitate power management decisions, as in e.g., [4, &c3]. To be specific, each Tkroadcasts
its variable;(t)e=*®, which can be readily interpreted as the current estimatth@fcost paid
due to local interference. Moreover, each; Tieeds to know the path gaing; of the links causing
interference to the non-peer receivers; Rkis is possible if reciprocity holds and the Rransmits
a training signal; alternatively, Txcan transmit a training signal so that Festimates:;; and feeds
it back. The quantities involved in the message passingllagrated in Fig. 1.

2) Reversed networkAll links here are assumed reciprocal. Every receiver bexoantransmitter
and vice-versa. In order to use the reversed network, the d&ry", ., h;;p;e=* of OL/dy; in (7a)
is re-written ase¥ M ke — e¥ihype~. The main idea is that the sum?., hyjpe™ > 0

represents received power at each Wken all transmitters of the reversed network (i.e., all)Rx
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transmit simultaneously symbols with powefe=*. These symbols do not need to be known at
the Tx; only thetotal received poweneeds to be estimated.

Notice that eachs;e=* term is unknown at Rx but known at Tx The feature that the power
for the reversed network transmission is unknown at theespoonding transmitters is not present
in previous works. In order to address this, variabig$), u;(t), \;(t), v;(t) are also updated at
Rx;. The key is that each receiver already measures all guesntieeded for these updates, namely
the received poweh;e¥() and the IpN termm; + 37, hye¥(*) in order to have an estimate of the
current SINR. Clearly, for the peers ;Tand Rx to have identical copies of;(t), u(t), A\:(t) and
v;(t), the initializations must be identical, requiring only cdmation between peers.

IV. MULTI-CHANNEL NETWORKS

The approach pursued so far will be generalized in this @edtb devise globally convergent
algorithms for optimal power control in multi-channel netks. Due to space limitation, emphasis

will be placed on stressing the differences with respech&sdingle-channel case.

A. Optimal power control

Users here may transmit over an orthogonal set of frequeasgids := {1, ..., F'}, also referred
to as channels, subcarriers or tones. The power pbixchannelf is p; , the noise power at Rxon
channelf is n; s, and the (power) path gain from o Rx; on channelf is h;; ;. Moreover, each
user adheres to spectral maskp; ; < pi"#*, and maximum power budget, p; ; < pj***. Hence,
each user's power must lie IR; := {p; ;|0 < p;y < P>V f € F; X piy < p*™}. The received
SINR at Rx on channelf is v; y := hy; pi p/(Nif + Xk i fDr,s); VECIOrp; == [p1 s, ..., Darg)”
contains the power loadings for usgrnd similar to the single-channel cage; is the gain matrix
for channelf.

The aim is to formulate the power control problem for a mahannel network incorporating
diverse QoS constraints. Two ways of generalizing the Qast#® in (1) are possible: (i) individual
bounds per user; and (ii) individual bounds per user and r#idnThe optimal solution of (ii) can
be readily obtained by implementing the single-channebrtigm of Section Il per channel, and

projectingp; onto P; per iteration. For this reason, emphasis here is placed oergkzation (i).

3As a way of illustration, suppose QoS is measured in termsatf. IClearly (i) corresponds to bounding the aggregateafite

each user (sum-rate across channels), while (ii) correisptm bounding each user’s rate on every channel.
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The QoS that each user receives is an aggregate measure mértbemance attained when all
channels are utilized. Utility functions, s, U; ; andV; ; model the contribution of the performance
over individual channelg € F to the total QoS. These functions may represent differerfope
mance measures; one example is communication rate. Therparice over an individual channel
is a function of the SINRy/; this is made explicit by writingu; ;(+/), Ui s(v) and V; (7).
Furthermore, the contribution of the per-channel utilitythe total QoS is linear. Therefore the
SUMSY. e wip (7)), Y per Uip (7)) and Y ;e Vi y (7)) are measures of the total QoS per user. The
first amounts to the objective to be maximized, the secondésl to ensure minimum QoZ™™»,
and the third to set an upper bound on the received @83‘. Thus, the optimization problem

generalizing (1) to multi-channel networks is

M F
{piegg)i{e/vl} Zi:l Zle Wi, (Vi.s) (8a)
subj. to Zj;l Ui,f(%’, ) Umln and Z sz Vi, ) V;max Vie M. (8b)

Recall that in the single-channel case QoS constraints apgped one-to-one to SINR constraints
when link-specific utilities are selected to be monotonic (tb)). For this reason, there was no
need to introducé’; ;(v; r) andV; ¢(v; ¢) in the optimization problem (1). But this is impossible
for the multi-channel generalization in (8) because the-sititities are involved in (8b).

Similar to the single-channel case, a solution to (8) willpjaesued through a suitable relaxation.

With g; :=[q14,-..,qu )" representing the local IpN vector, we will solve:
M F

max , Wi, r (P, f i p ) U 9a
(pecPo e WeM}lel > sy iy (i iy /i) (9a)

: 3 min .
SU.bJ. to Zle Uz7f(hzz,fpz,f/qZ7f) Z Uz s Vie M (9b)

F max -
Zle Vig(has gpig/dip) < ViH5,Vie M (9¢)

The assumptions that will ensure optimality and convexityhe relaxed problem are:

ASS. Utilities u; ¢(;, ) are chosen so that: (a); (v r) are strictly increasing, twice continuously
differentiable, withlim,, , .o+ u; f(7is) = —oo; and (b) —v;w; (vi)/ui(y:) > 1 for v; > 0.

ASG. Utilities U; ¢(;,r) satisfy ASL.

AST. Utilities V; ¢(v;,r) are chosen so that: (a) are strictly increasing, concavel amice con-

tinuously differentiable; and (b) satisty~; ;V."; (vir)/ Vi ;(7i.r) < 1 for 4y > 0.
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ASS. It holds thatn; ; > 0 for all 7 and f, and gain matrixA ; is irreducible for all f.

AS9. If every user has a maximum utility constraint ((9c)), there are nop;, ¢; with p;, € P;,
g; € R such that(9c) holds with equality for alli.

As in the single-channel case, AS5-AS7 guarantee the capvaix(9) under the transformation
pif = e¥if, q; p = e*f. Examples of utilities satisfying AS7 a#€ ;(vi.r) = Invyi.r, Vir(vig) = vi.ss
andV; s(vi,r) = In(1 + ; 5). Utilities satisfying AS5 and AS6 are those satisfying ASimilar to
[7], the fairness condition in AS5a precludes assignmerzieod power to any channel, which may
be restrictive for some multi-channel systems. Note als ithjust one terminal does not upper-
bound its QoS (e.g., when primary users are present), AS&isfisd. However, different from the
single-channel case, there is no standard algorithm #leit® validate AS9 for the hypothetical
case of all users meeting their maximum QoS constraints eqtiality.

The optimality of the relaxation is established in the faliog result, proved in Appendix B.

Proposition 3. Assume that probler8) is feasible, and AS5a, AS6a, AS7a, AS8, and AS9 hold.
Then at the optimal solutiop; ;, q; ; of (9), constraint(9d) holds as equality, i.e.,

qu:an—i-Z#ihji,fp;f Vie M, VfelF. (10)

Proposition 3 states that the optimal power allocations el &s the optimal objective values
of (8) and (9) coincide. As with Proposition 1, no assumptonconvexity is needed. Furthermore,

Proposition 3 implies that an efficient solution of (8) canfbend via (9); this is pursued next.

B. Power allocation algorithm
Let v;, \; be Lagrange multipliers for the minimum and maximum QoS tags, (9b) and (9c¢),
and y; s for (9d). Also lety, z, v, A, n denote vectors collecting variablgs;, z; ¢, v, Ai, i,
respectively, for alk and f. The notationw is used fory, z, v, A, u collectively. Further, define
Vi =Ayislyis < Inp"*V feF;Xpehis < pr@=Y} and) := [T, V;. The Lagrangian of (9) is
L(w) == — Zi,f wi,p(hii et [e*7) + Zi,f 'ui’f[e_zw (ni’f - Zk;éi h’f@feyk’f) - 1}
= 3230, U b e [€2) = UP™) 4 57 0 (32 Vg (g™ fe47) = V™). (11)
As in Section lll, a first-order (gradient) algorithm is eropéd to solve (9) iteratively using
yi(t +1) = [yi(t) — BV, L(w(?))]y, (12a)

#(t+1) = z(t) — BV, Lw(t)) (12b)
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vilt+ 1) = [(t) + B(= X2, Ui (has geror @ fe=50) 4 gpin) | (12c)
Nlt+1) = [Mt) + B3, Vighi e @ fesr®) — ) | (12d)
pip(t+1) = [Mz‘,f(t) + 5(6_2i’f(t) (ni,f + Zk# hki,ft?y’“’f(t)) - 1)r (12e)

where/ is a constant stepsize, and),, is the projection ofc onto the sef);. Since)); is a closed
convex set, the projection in (12a) can be implemented effity. Note that spectral mask and
sum-power constraints are respected throughout the diggrihanks to the projection in (12a).

The convergence analysis parallels the single-channel @810, Lemma 2 and Proposition 4
are the counterparts of AS4, Lemma 1 and Proposition 2, céisply. Proofs are in Appendix B.

ASI10. Problem(9) is strictly feasible, i.e., there exigt g with p; € P;, ¢; € RY, for all : such
that (9b), (9c), and (9d) hold with strict inequality.

Lemma 2. If (1) is feasible and AS5-AS10 hold, then: (i) the optimal Lageangultipliers for
constraints(9d) are positive, i.e.u* > 0; and (ii) the Lagrangian function at the optimal Lagrange
multipliers, L(y, z, v*, X*, u*), is strictly convex iny and z over R?MF",

Proposition 4. Assume thatl) is feasible and AS5-AS10 hold. For anynd § with 0 < e < 4,
there exist positivedy (e, §) andty(e, d) such that for any stepsize< g < fy(¢,d) and any initial
point w(0) € ¥ x RMF x RYF*? with dist(w(0), 2%) < 4, the iteratesw(t) in (12) satisfy
dist(w(t), 2*) < e for all t > ty(¢,0)/3, where2* is the set of optimad vectors.

Distributed implementationit can be easily verified that if path gaing ; and SINR for all chan-
nels are fed back from Rxthen all terms in (12) are known at ;Dexcept the sunx-,.; hy; ppej r(t)
e~%s® for all f. For the latter to become available, message passing oretlesed network
approach can be utilized. The operations are the same aseimsitigle-channel case, with the

additional feature that they are performed for every chhrfne

V. NUMERICAL RESULTS

Numerical tests are presented in this section to corrobatta analytical claims and also to
compare the performance of the developed algorithm with dh&arious existing algorithms.

Test case 1: Single-channel network®nsider a peer-to-peer network using CDMA. With
denoting the distance between ;Tand Rx and B the spreading gain, it is assumed that gains
h;; follow a (deterministic) path loss model with; = d;;* and h;; = B‘ld;j4 for ¢ # j. In this
case, matrixA is irreducible (cf. AS2). The parameters describing theisdested are listed in

Table II, while the Tx-Rx; positions are shown in Table Ill. The selected utility JesAS1. First,
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algorithm (5) is applied to power control without consttajnand it is seen to obtain the same
power allocation as other algorithms in the literature usedhis problem. Then, focus is turned
to a problem with minimum and maximum QoS constraints. I1$ ttase, the QoS requirements

adopted are similar to those in [6, Sec. 7], mapped to SINBe&land listed in Table Il as well.

The developed algorithm is applied first to power controlhwitt constraints, namely for the
solution of (1a). This is done by setting very small minimudNB constraints and very large
maximum SINR constraints, so that they are all inactivehia tase, AS3 is automatically satisfied.
The values selected arg™™ = 10~> and y® = 10° for all i. There are several algorithms in
the literature which solve (1a) optimally under AS1, nam@WP [7], gradient projection for
minimization [8], and variable splitting [9, Sec. 4.3]; us from all these will be the same.
The optimal sum-utility and SINR per user obtained with theveloped algorithm (labeled as

“Lagrangian”) and the ones in [7], [8] are listed in Table WVhe results are identical, as expected.

Consider next a problem having diverse QoS constraints wailies listed in Table Il. Algorithms
Qo0S-ps-DSA and QoSe-DSA in [6] rely on game theory to solyeEach of these is developed in
general for multichannel networks and each has two versior@e version power is allocated over
all channels (MC-Qo0S-ps-DSA, MC-QoSe-DSA), while in theestonly one channel is selected for
transmission (SC-QoS-ps-DSA, SC-QoSe-DSA). In order tees(l), the algorithms are restricted
to the case where there is a single available channel; tleetwith versions (MC- and SC-) reduce to
the same algorithm. The sum-utility and SINR per user adddw the Lagrangian algorithm and
the two alternatives are provided in Table V, where the SINR#ating the constraints are shown
in boldface. For completeness, the SINRs obtained from tdwedard power control algorithm are
listed in the last column of Table V. Observe that< v* for i € {1, 5, 6,8}, confirming that AS3
indeed holds. These values were used to initialize (5). tthiserved that QoS-ps-DSA and QoSe-
DSA cannot always meet all users’ SINR requirements (aljhatnese requirements are feasible,
see, e.g., user 1). Note also that the sum-utility is not maad (compare 32.4 with 23.6). On
the other hand, it is expected that the optimal sum-utilitthe unconstrained problem (1a) will be
higher than that of (1) because the constraints (1b) aresegpon the SINRs. This is quantified in

this test by comparing the corresponding entries of Tablearid V.

Time trajectories of powers and Lagrange multipliers amgated in Fig. 2. The plots corroborate
that the proposed iterations converge (cf. Propositiora(l, the fact that all the IpN constraints are

active (uF > 0), as asserted by Lemma 1. However, although the convergemekatively fast (100-
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300 iterations), this number is one order of magnitude highan its suboptimal game-theoretic
counterparts QoS-ps-DSA and QoSe-DSA. This happens beaaurs/ergence of the Lagrange
multipliers slows down to satisfy the diverse (two-sided)SQequirements.

Test Case 2: Multi-Channel NetworkSach Tx-Rx; pair is placed on the same position as in
the previous test case, but now a frequency selective medebied. Specifically, there afé= 16
channels available and each path gajp, is obtained from a realization of a 4-tap channel. The
taps follow Rayleigh fading, are equally spaced, and haweepalelay profile (1,1/2,1/8,1/10). The
realizations across links are independent. The path loss each channel follows the model with
hij.r = d;;'. The remaining parameters are listed in Table VI.

First, algorithm (12) is used for the solution of the unceoaisied problem (8a), using™» = —150
and V;"** = 150. The objective value(, ; u; s(vis)) and the sum-utility per use; w; s(vir)
fori=1,..., M) are listed in Table VII. The corresponding ones obtainethfiDADP [7], which
solves (8a) optimally, are also shown in Table VII. The resabincide, as expected.

When the QoS constraints of Table VI are imposed, resultsiodd by different algorithms are
listed in Table VIII. Algorithms MC-Qo0S-ps-DSA and MC-QoBSA attempt to solve (8) [6]. As
in the single-channel case, the results of Table VIl ilatd that existing schemes might not always

satisfy all QoS constraints, and may achieve lower objectaiue than the Lagrangian algorithm.

VI. CONCLUSIONS

Power control algorithms were developed for DSA networkthvarimary and secondary users
or peer users willing to cooperate. A distinct feature of titeeel design is the incorporation of
diverse (maximum and/or minimum) QoS constrains per usst-B-peer networks with co-channel
interference were considered for both single- and multinctel settings. The QoS level of each user
was captured through utility functions that depend on tleived SINR.

The novel power control algorithm has been obtained as thico of a sum-utility maximization
subject to maximum and minimum utility (or SINR) constrainiThe presence of interference
intimately couples the users’ power control decisions apiesents a challenge to develop efficient
optimal solutions. However, a two-step relaxation rermughe problem convex and amenable to
distributed implementation was presented for a broad déssilities.

Using this relaxation, a first-order Lagrangian method #iatultaneously updates primal and dual

variables was developed and its convergence to the optinolmian established. Two distributed
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implementations were also introduced. Finally, numerieats confirming the analytical claims and

comparing the performance gains relative to existing selsewere presented.

APPENDIX

A. Single-channel networks

To prove Proposition 1, the following lemma, which appliesthe case where all users have
maximum SINR constraints, is required.

Lemma 3. If AS2 holds and there is np in the feasible set of1) such thaty;, = ~™** for all
i € M (cf. AS3), then there are np, g in the feasible set of2) such thath;;p;/q; = ~"** for all
i€ M.

Proof of Lemma 3: The feasibility problem of the SINRs** in (1) can be written as

p=DH")Ap+ D" (13a)
0<p<p™™ (13b)
If the spectral radius oD (y™**) A (see [20, p. 35] for a definition) satisfietD (y™**)A) < 1, then
the linear system in (13a) accepts a unique positive solgtig™>) := (I — D(y™*)A) " D(y™)n;
see, e.g., [13, Theorem A.35]. Since (13) does not have di@olby assumption, then either
p(D(v**¥)A) > 1, or, p(D(y™*)A) < 1 but with p(y™*) £ p™.
Achievability of v™* in (2) can now be posed as the following feasibility problenpi q:
Vi = hapi/ @i, @ > i+ Zk# hiipr, Vi € M; 0 <p < p™*. (14)

Clearly g can be eliminated, so (14) becomes

p > D(")Ap +D(v"™)n (15a)

0<p<pm™ (15b)

If p(D(y™*>*)A)>1, then (15a) cannot have a nonnegative solutipn>( 0). Otherwise, the
Subinvariance Theorem [13, Lemma A.37] and> 0 leads to a contradiction.

If p(D(y™>)A) < 1, the solutions of (15a) form a cone with appgy™®), andp > p(y™)
for all p in the cone [21]. lfp(y™*) £ p™*, then (15) represents an empty set [21, Lemmar3].

“The views and conclusions contained in this document argetiod the authors and should not be interpreted as repregehg

official policies, either expressed or implied, of the Armgdearch Laboratory or the U. S. Government.
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Proof of Proposition 1: First note that the feasibility of (1) implies the feasityilof (2), and
a solution to (2) exists due to Weierstrass Theorem [17, .PAR).
Having shown the existence of solution to (2), the proof gfi§3by contradiction. Assume that

there exists a userwith dominantg;, meaning that at the optimum (2c) is inactive for ugeie.,

G >t Y, i (16)

If all users have maximum SINR constraints, then from Lemniaf@llows that at the optimum
of (2) (in fact at any feasible, g of (2)) at least one usern. will have inactivey*; i.e., v =

hmmPl, /a5, < Y. Any such user at the optimal point must hawen-dominanty’,, i.e.,

@ =Ny + Zk# PPy a7

otherwise,q?, could be reduced, yielding higher objective value. In theecaf at least one not
having maximum SINR constraint, (17) obviously holds (foattuser). Comparing (16) with (17),
it follows thati # m. Moreover, since it has been assumed tfias dominant, them;p} /¢ = ™.
Thus, the user seM can be divided into three disjoint grougs, G, Gs (cf. Fig. 3). InG, are
the users with inactive (or absent)®* (these must have non-dominajjf). Groupsg., Gs; contain
users with active max SINR constraint and in partic@arcontains the ones with dominagt

Now consider the usere G, with dominantg; (cf. (16)) and activey***; and the usem < G,
with non-dominany’, (cf. (17)). Due to the irreducibility ofA there exists a sequence of distinct
indicesi = ko, k1, ..., ki1, ky = m with the property{ki,...,ki_1} € Go U G3 for somem € G;
such that the corresponding channels ositive i.e., hy,x, > 0,..., hy,_,x > 0 [20, Sec. 6.2].

The main argument is that one can successively decygassdg;, for . =0,1,...,1 -1, but
keep the same ‘local SINRi,, ., p;. /g, = 7™, until reaching usem with inactive+>**. Note that
pp, >0for.=0,1,...,1 -1, sincey™ > 0. Specifically, attempt to decrease both ¢; by the
same proportion, i.e., S@t = oy, p;, ¢ = a,q; With ay, < 1. The resulting ‘local SINR’ for: is
still maximum, butg;, has become dominant singg,., > 0, i.€.,q}, > 1k, +> gz gy Pk P+ Tk i
Thenpj, andg;, can be reduced, renderigg, dominant. Proceeding likewise acrass 0, ...,1—1,
py, andg; can be reduced, yielding

Gopor > M+ O hegaPe+ Y Pk D
ke{ko,....k.} k¢ {ko,....k.}

When usem € G, is reached (i.e4+ 1 =), ¢, is decreased but without changipfy (recall that

vr < ymax), This yields a highety,,,, and hence higher objective value, which is a contradiction
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Now proofs of Lemma 1 and Proposition 2 are provided; foardtalso applies here.
Proof of Lemma 1: (i) Since problem (2) has an additional convex set congiréin z) €
Y x RM, we use the necessary conditions of [17, Prop. 3.3.11]. & benditions are more general
than the KKT, in that they also include a multiplier for theadient of the objective function (not
only the constraints). But when Slater’s constraint quadifon holds (cf. AS4), such a multiplier is
not needed (see e.g., [17, pp. 334-335]). Due to the spewiatsre of the constraint seg;(< v,

z; € R), the first of the aforementioned conditions can be written a

oL <0 oL

=0, Vi e M. (18)

(y*, 2%, v A%, u*)

— Y aZZ

y*,z*,u*,k*,u*)
It will be shown thatp* > 0. This cannot be concluded fromL/Jz; = 0 alone (using (7b)

into (18)), due to the term arising from the maximum SINR d¢aaist. Substituting (7b) into (18)

and (7a) intadL/0y; = —0; for somed; > 0, summing the previous two equations, arranging them

into matrix form and using (3), gives the equation for theiropt p*
I - D(e")ATD(hsie™*)u" = 6, (19)

where slightly abusing notation, heil®(z;) denotes anV/ x M diagonal matrix with elements
71,...,xy on the diagonal. The matri(e¥ )ATD(h;e=* ) is irreducible, and has column sums
smaller than 1 due to (3) and; > 0; hencep[D(e¥% )ATD(hye %)) < 1 [20, Theorem 8.1.22].
Furthermore, we hav@ > 0 and 8 # 0 (the reason why # 0 will be explained soon). Now
using [13, Theorem A.36] it follows readily that the solutiof system (19) ipositive i.e., u* > 0.

Assume thatd = 0. Since p[D(e¥ )ATD(h;e %)] < 1, matrix I — D(e¥ )ATD(hye %) is
invertible and the solution of (19) ig* = 0. Now from AS3, there is a usérfor whom~; < ~™x.
From the (weak) complementary slackness condition in [X@pP3.3.11], it follows that\! = 0.
Setting (7b) to zero (cf. (18)) and substituting = 0, AS1la yieldsu; > 0, contradictingu™ = 0.

(i) The main idea is to show that the Hessian (with resped¢h&primal variablegy, z) of the
Lagrangian function (4) evaluated at the optimal Lagrangstipiiers is positive definitefor all
(y,z) € R?M, In particular, the Hessian is positive semidefinite, sipmgblem (2) is convex. Here
it is shown that for the optimal Lagrange multipliers, theskian is invertible for ally, z) € R?M.

The Hessian with respect to the primal variablgsz takes the partitioned form

V2L V,V.L
V.V,L V2L

Hll H12
H21 H22

V2L(y, z, V", A", u*)= = : (20)
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Diagonal blocksH;;, H,, (not shown for brevity) are diagonal matrices, wibsitivediagonal
elements due to AS1, AS2, and > 0. The off-diagonal blocks satisff,, = HY, with

H12 = D[u;’(h“eyz/ezl)(hmeyz/ezl)Q + u;(h“eyl/ezl)(h“eyl/ezl)]
= D(e")ATD(pihis /) = DI\ hise) /(™) + (A6 (hige)].
The off-diagonal blocksH,, and H,; are nonpositive matrices. To show that the Hessian is
nonsingular, we apply [22, Chapter 6, Theorem 2.3, Comtlitip,)]. The vector that satisfies the
aforementioned condition for the Hessian matrix here isvbetor of length2)M/ with 1 in each

entry. Then, with(H),;; denoting thei, j entry of the Hessian, the condition becomes

i M+i
> (H);; >0, > (H)mgiy >0, i=1,..., M. (21)
j=1 j=1
It holds that>!_,(H);; = (H); and >34 (H) e = ping/e®, i = 1,..., M. Then the first

condition in (21) is true because the diagonal entrie¥ef are positive; while the second holds
becausequ* > 0 andn; > 0 (cf. AS2). O

Proof of Proposition 2: The iterations (5) solve for a saddle point of the Lagrang@gnover
Y x RM x R3M. So the first step is to assert that the optimé in (2) are exactly these saddle
points. Then the convergence claim is proved directly afteoking [23, Theorem 1], and therefore
it suffices to show that the conditions required by the theoaee satisfied.

Indeed, the optimal primal solutions and geometric mu#igl of (2) are exactly the saddle points
of (4) overy xRM xR3M [17, Prop. 5.1.6]. But the geometric multipliers coincidighthe Lagrange
multipliers associated with the optimal solution [19, Prégdl.2] since the problem is convex and
a solution exists (cf. the proof of Proposition 1). Finatlye set of Lagrange multipliers associated
with the optimal primal solution is nonempty due to AS4 (tfe tproof of Lemma 1).

Now it is shown that the three conditions of [23, Theorem 1lgHor the problem at hand:

(i) The sets over which the saddle points are soughk(R" x R3") are closed and convex.

(i) The set of saddle points of the Lagrangian is boundedstht has to be shown that the
set of optimal primal solutions is bounded; but this folloreadily from Weierstrass’ theorem (cf.
the proof of Proposition 1). Moreover, the set of Lagrangdtipliers associated with the optimal
primal solution is bounded [19, Prop. 6.4.3], due to AS4.

(iii) For any (y, z) # (y*, z*) it holds thatL(y*, z*, v*, A\*, u*) < L(y, z,v*, A\*, u*) (referred
to in [23] as stability of the saddle points with respect({n z)). This follows immediately from

the strict convexity ofL(y, z, v*, A*, u*) in (y, z) over R*M (cf. Lemma 1). O
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B. Multi-channel networks

The proofs for this case are very similar to the single-cledcase. Here only the points differ-
entiating the arguments in the two cases are described.

Regarding Proposition 3, the proof is again by contradictibhe main argument must be made
for every channel, hence the need for AS8. Moreover, noteptha> 0 for all i and f due to AS5;
hence, it is indeed possible to successively reduce thengoavel arrive to a contradiction.

Now the first part of Lemma 2 can be shown again by manipulatignecessary optimality
conditionsdL/dy; < 0, 0L/0z; ; = 0 and arriving to a linear system of the form (19) per channel.
For the second part, note that the Hessian with respegtdad z is block diagonal, where each
block corresponds to the variables organized per chanmkhas the form of (20). The proof then
follows the proof of Lemma 1(ii); we apply again [22, ChapérTheorem 2.3, Conditio(Js)],
where now the vector of all ones and length/ F* works.

Finally, Proposition 4 can be proved by invoking [23, Theor&] and using arguments similar

to those in the proof of Proposition 2.
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Fig. 1. Quantities involved in message passing.
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User setM
G Inactiveypax Active e
Active ¢}, Gs: Inactive g} Gs: Active g;

Fig. 3. Division of user set in proof of Proposition 1.
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TABLE |
DIRECTIONAL DERIVATIVES OF SUM-UTILITY AS FUNCTION OF THE PERTURBATION

De,utot(0) = min {A\;| v, I, IN;, j #ist(v, A, pn) €O}
0 S Deiutot(o) S )\;k

D(_e;yutot(0) = —max {A\;| v, Tp, IN;, j #ist(v,A p) € 07}
—ui (7" )%™ < Di—epyutot (0) < —A7

TABLE Il
SIMULATION PARAMETERS FOR TEST CASEL.

M =8, B=128 3=0.1

U; = ln(’yi) Vi

P =1W, pi"™/n; =40dB Vi

Initialization: z; = Inn;, A =0, vs =0, ps =1Vie M
Y = 140, 477 = 20000, i € {1, 6}

=8 A =20, i€ {2,3,4]

=20, 7 = 140, i € {5, 7,8}

TABLE Il
COORDINATES OF8 TX-RX PAIRS (SHOWN IN 2 COLUMNS). TX ARE DEPLOYED OVER A SQUARE AREA OF SIDELOM. EACH RX
IS LOCATED BETWEENL AND 3 METERS AWAY FROM ITS PEER TRANSMITTERPOSITIONS ARE RANDOMLY SELECTED

Tx; Rx: (1=1,2,3,4) | Tx;; R (i =5,6,7,8)
(4.80,5.15)(4.92,3.67)] (6.17,3.18),(6.95,4.40)
(5.61,6.06);(6.11,7.51)| (6.85,5.88);(8.07,6.70)
(6.16,9.67):(4.70,10.93) (5.10,1.30);(4.45,0.12)
(6.62,8.22):(5.17,9.39)| (7.14,2.54);(5.83,1.05)
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UNCONSTRAINED OPTIMIZATION IN SINGLE-CHANNEL NETWORKS: SUM-UTILITY (TOP) AND SINR PER USER(BOTTOM).
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TABLE IV

. A Gradient
Lagrangian| ADP projection alg’

> u; || 33676 | 33676] 33676
Y1 81.16 81.07 81.03
Y2 43.35 43.34 43.34
3 191.03 191.08 191.09
Y4 6.24 6.24 6.24
s 55.22 55.28 55.30
Y6 443.06 443.00 443.00
Y7 542.09 546.16 547.54
¥8 7.59 7.53 7.51

All algorithms initialized randomly within the
power constraints.

a pmax fpymin. — 40 dB; all prices initialized ran-
domly in (0,1/(n;B)).

b Stepsize = 0.2.

TABLE V
OPTIMIZATION WITH DIVERSE QOS CONSTRAINTS IN SINGLECHANNEL NETWORKS: SUM-UTILITY (TOP) AND SINR PER USER
(BOTTOM).
. Standard power
Lagrangian| QoS-ps-DSA| QoSe-DSA control alg.
Sui ]| 324 | 236 | 236 |
Y1 140.0 0.0137911 0.0137911 70.4
Y2 20.0 20.0 20.0 20.0
Y3 20.0 20.0 20.0 20.0
Ya 20.0 20.0 20.0 20.0
s 32.9 52.5.0 52.5 81.4
Y6 786.1 655.3 655.3 734.2
v7 140.0 140.0 140.0 140.0
8 30.0 32.2 32.2 24.1
a pmax /pmin — 40dB; all powers initialized ap™*; all prices initialized

at 10~*. Powers took (continuous) values [jpi*®, pa*].

TABLE VI
SIMULATION PARAMETERS FOR TEST CASE2.

M =8, F =16, 3=0.025

wi(vif) = Uis(vif) = Vis(yig) =iy VieM, feF

p?lax/ni,f =40dB Vie M7 f eF

Initialization: y;, 5 = In(p;*** /M), 2,y = Inn, ¥,
Ai=0,v,=0, =1 VieM, feF

Projection onta); via MATLAB’s f m ncon

U™ =250, i € {1,5,6,7,8}

UP™ = —40, i € {2,3}

U™ =30, i=4

VX =50, i € {1,2,3,4,5,6}

V=10, i € {7,8)
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TABLE VII
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UNCONSTRAINED OPTIMIZATION IN MULTI-CHANNEL NETWORKS. SUM-UTILITY (TOP) AND INDIVIDUAL UTILITIES PER USER

(BOTTOM).

| Lagrangian] DADP?

Zi,f uzf |

| -149.96 |-149.96

-21.09 -21.11
-52.99 -52.99

-8.12 -8.12

-38.05 -38.05
-6.12 -6.10
9.10 9.10

18.26 18.35
-50.95 -51.05

»|00O~NO OIS WNPE

P /i

min

= 40 dB; stepsize =

0.05; 30 inner iterations per dual.
All powers initialized randomly

in (e
(0,1/n;,

OPTIMIZATION WITH DIVERSE QOS CONSTRAINTS IN MULTI-CHANNEL NETWORKS. SUM-UTILITY (TOP) AND INDIVIDUAL

,p) and all prices in

£)-

TABLE VI

UTILITIES PER USER(BOTTOM).

| Lagrangian] MC-QoS-ps-DSA| MC-QoSe-DSA

> ul || -162.38 | -317.50 |  -688.46
1 -16.90 -68.85 -82.67
2 -40.00 -114.50 -102.75
3 -38.13 -6.69 -104.85
4 -30.00 -48.81 -89.13
5 -8.76 5.63 -63.15
6 4.23 -3.43 -79.98
7 8.20 10.14 -70.13
8 -41.03 -91.14 -95.80
a pmax fpymin - — 40 dB; all powers initialized randomly in

(p™im, p*) and all prices

es in(0, 1/n; 7). Powers took (con-
tinuous) values so that;"'" < Zf pir < pio* for all users.
Projection onto power constraints via MATLABfsi ncon.



