EE5585: HOMEWORK 1

INSTRUCTOR: A. MAZUMDAR

All problems carry equal points
(1) A source emits letters from an alphabet $\mathcal{X}=\{1,2,3,4,5\}$, with $p(1)=0.15, p(2)=$ $0.04, p(3)=0.26, p(4)=0.05, p(5)=0.50$.

- Calculate the entropy of this source.
- Find a Huffman code for this source.
- Find the average length of the Huffman code.
(2) Answer the following short questions.
- Consider the code $\{0,01\}$. Is this code uniquely decodable? Why? Is it instantaneous?
- Suppose $\mathcal{X}=\{0,1\}$. The random variable (source) X takes value in \mathcal{X}, with $\operatorname{Pr}(X=$ $0)=\frac{3}{4}$ and $\operatorname{Pr}(X=1)=\frac{1}{4}$. What is the probability that the source produce a sequence 0000011111 ?
(3) Write the Lempel-Ziv parsing for the file

$$
\mathcal{F}=0000010111000100001010000100011100101010100100 .
$$

What is the number of bits that you need to write the entire compressed file (with LZ algorithm).
(4) Consider a random variable X that takes on four values with probabilities $(1 / 3,1 / 3,1 / 4,1 / 12)$.

- Construct a Huffman code for this random variable.
- Show that there exist two different sets of optimal lengths for the codewords; namely, show that codeword length assignments $(1,2,3,3)$ and $(2,2,2,2)$ are both optimal.
- Conclude that there are optimal codes with codeword lengths for some symbols that exceed the Shannon code length $\left\lceil\log \frac{1}{\log p(a)}\right\rceil$.
(5) Although the codeword lengths of an optimal variable-length code are complicated functions of the message probabilities $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$, it can be said that less probable symbols are encoded into longer codewords. Suppose that the message probabilities are given in decreasing order, $p_{1}>p_{2} \geq \cdots \geq p_{m}$.
- Prove that for any binary Huffman code, if the most probable message symbol has probability $p_{1}>2 / 5$, that symbol must be assigned a codeword of length 1 .
- Prove that for any binary Huffman code, if the most probable message symbol has probability $p_{1}<1 / 3$, that symbol must be assigned a codeword of length ≥ 2.

