
EE5585 Data Compression April 4, 2013

Lecture 19
Instructor: Arya Mazumdar Scribe: Katie Moenkhaus

Kolmogorov Complexity

A major result is that the Kolmogorov complexity of a random sequence on average is close to the
entropy. This captures the notion of compressibility. Also, an algorithmically incompressible binary
sequence as defined by the Kolmogorov complexity has approximately the same numer of 1s and 0s. The
di↵erence between the number of 0s and 1s gives insight into how compressible a signal is. Kolmogrov
complexity can be defined for numbers as well as sequences. For n 2 Z,

K(n) = min
p:U(p)=n

l(p)

where K(n) denotes the Kolmogorov complexity of n, and l(p) is the minimum length of the computer

program. Some integers have low Kolmogorov complexity. For exmple, let n = 55
55

5

. Even though
this is a very large number, it has a short description. Also, e is easily described. Even though it is an
irrational numer, it has a very short description of the basis of the natural logarithm, so it is actually a
function such that the derivative of the function is itself.

Note,

K(n)  log⇤ n+ c

where log⇤ n = log n+ log log n+ log log log n+ . . . , so long as the each term is positive.

Theorem 1 There exists an infinite number of integers for which K(n) > log n.

Proof (by contradiction): Assume there exist a finite number of integers for which K(n) > log n.
From Kraft’s Inequality,

X

n

2�K(n)  1

If the assumption is true, then there will be only a finite number of integers for which K(n) > log n.
Then there is a number n

0

for which all n � n

0

=) K(n)  log n. Then
X

n�n0

2�K(n) �
X

n�n0

2� logn =
X

n�n

o

1

n

The series
P
n

1

n

doesn’t converge, so

X

n�n

o

1

n

= 1

It follows that
X

n

2�K(n) = 1

This contradicts with
P
n

2�K(n)  1, and thus the assumption is false. ) 9 a finite number of integers

for which K(n) > log n.

This illustrates that there is an infinite number of integers that are not simple to describe, i.e. they
will take more than log n bits to describe. Given a binary sequency, if

|#1s�#0s| � ✏

n

then the sequence can be compressed.
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Transform Coding

Consider a height/weight data set.

Because the data is highly correlated, a clockwise rotation can be done to obtain new axes such that the
line of best fit becomes the new prominent axis.

Thus the di↵erence between any data point and the axis is small, and fewer bits are needed to describe
them. In the new data set, the entries are uncorrelated. Ideally, there will be 0 correlation in the new
coordinates. Note that the correlation between random variables X and Y is E[(X � E(X)) (Y �E(Y ))],
where E(X) denotes the expected value of X. If X and Y are independent, then Cor = 0. Similarly, if
the correlation is large, the variables are highly correlated. Without loss of generality, E(X) = E(Y ) = 0.
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This is just subtracting the mean from each set. Let

X =

2

6664

x

1

x

2

...
x

N

3

7775
; E(X) =

2

6664

0
0
...
0

3

7775

In the height/weight data, there were only two variables, i.e. height is x
1

and weight is x
2

. The rotation
is done by multiplying by a matrix:

Y = AX

Y is another N -dimensional vector, and A is N ⇥ N . It is desirable to have A be an orthonormal
matrix, i.e. AT

A = I. If this holds, then the result is an orthogonal transformation. For any orthogonal
transformation, Parseval’s Theorem is true. This says that

X

i

�

2

y

i

=
X

i

E(y2
i

)

= E(kY k2
2

)

= E(Y T

Y )

= E(XT

A

T

AX)

= E(XT

X)

= E(kXk2
2

)

=
X

i

E(x2

i

) =
X

i

�

2

x

i

If �
x

is the variance of x, then
P
i

E(x2

i

) =
P
i

�

2

x

i

stems from the fact that X is a zero-mean, random

variable. Thus, the transformation conserves the total energy. The transformation should ensure that
the new data are uncorrelated. The correlation is representated by the covariance matrix, C

x

, defined
as

C

x

= E(XX

T ) = E

2

6664

x

1

x

2

...
x

N

3

7775
⇥
x

1

x

2

. . . x

N

⇤

= E

2

6664

x

2

1

x

1

x

2

. . . x

1

x

N

x

1

x

2

x

2

2

. . . x

2

x

N

...
...

. . .
...

x

1

x

N

x

2

x

N

. . . x

2

N

3

7775

=

2

6664

�

2

x1
E(x

1

x

2

) . . . E(x
1

x

N

)
E(x

1

x

2

) �

2

x2
. . . E(x

2

x

N

)
...

...
. . .

...
E(x

1

x

N

) E(x
2

x

N

) . . . �

2

x

N

3

7775

Note that this is a symmetric matrix. From the definition of the trace of a matrix,

Trace(C
x

) =
X

i

�

2

x

i
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which is the total energy of the signal. The transform matrix A should minimize the o↵-diagonal ele-
ments of the covariance matrix.

C

y

= E(Y Y

T )

= E(AXX

T

A

T )

= AE(XX

T )AT

= AC

x

A

T

Because A

T

A = I and A is an orthogonal matrix, AT = A

�1. Thus,

C

y

= AC

x

A

�1

C

y

A = AC

x

The ideal covariance matrix C

y

is a diagonal matrix. Suppose

C

y

=

2

666664

�

1 0
�

2

. . .

0 �

N�1

�

N

3

777775

Thus 2

666664

�

1 0
�

2

. . .

0 �

N�1

�

N

3

777775
A = AC

x

Because X is zero mean, Y is also zero mean. Suppose

A =

2

6664

a

11

a

12

. . . a

1N

a

21

a

22

. . . a

2N

...
...

. . .
...

a

N1

a

N2

. . . a

NN

3

7775

=) C

y

A =

2

6664
�

1

2

6664

a

11

a

21

...
a

N1

3

7775
�

2

2

6664

a

12

a

22

...
a

N2

3

7775
. . . �

N

2

6664

a

1N

a

2N

...
a

NN

3

7775

3

7775

=

2

6664
C

x

2

6664

a

11

a

21

...
a

N1

3

7775
C

x

2

6664

a

12

a

22

...
a

N2

3

7775
. . . C

x

2

6664

a

1N

a

2N

...
a

NN

3

7775

3

7775

For ease of notation, let

A

i

=

2

6664

a

1i

a

2i

...
a

Ni

3

7775
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In general,

C

x

A

i

= �

i

A

i

�

i

is an eigenvalue of C
x

, and A

i

is the corresponding eigenvector.

A =
⇥
A

1

A2 . . . A

N

⇤

Thus, the transform matrix A is

A =
⇥
eigenvectors of C

x

⇤

The eigenvalues are simply �

i

= �

2

y

i

. This is called the Karhunen-Loève Transform (KLT). The
process for finding the KLT is

1. Subtract o↵ the mean:
x

1

! x

1

� E(x
1

)
x

2

! x

2

� E(x
2

)
...
x

N

! x

N

� E(x
N

)

2. Find the covariance matrix. If there are M elements in each vector, then the total energy is

�

2

x

n

=
1

M

MX

i=1

x

2

ni

for each n going from 1 to N . The correlations are then

⇢

x

n

,x

m

=
1

M

MX

i=1

x

n

x

m

The covariance matrix is then

C

x

=

2

6664

�

2

x1
⇢

x1,x2 . . . ⇢

x1,xN

⇢

x1,x2 �

2

x2
. . . ⇢

x2,xN

...
...

. . .
...

⇢

x1,xN

⇢

x2,xN

. . . �

2

x

N

3

7775

3. Knowing the covariance matrix C

x

, find the eigenvalues and eigenvectors. Form the transform
matrix A as

A =
⇥
A

1

A2 . . . A

N

⇤

where A

i

represents the i

th eigenvector of C
x

.

The process outlined above is called Principal Component Analysis. The goal of this analysis is to
find a matrix that transforms the vectors to a new coordinate system in which they are uncorrelated.
So ideally,

C

y

=

2

666664

�

1 0
�

2

. . .

0 �

N�1

�

N

3

777775
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Keep only the eigenvalues that are largest. The energy lost in this process is the sum of the eigenvalues
that are not used in the compression scheme. This is the mean square error. Suppose that the eigenvalues
are ordered, i.e. �

1

> �

2

> · · · > �

N

. If all {�
i

}N
i=N0

are unused, then the mean square error is

MSE =
NX

i=N0

�

i

This is one measure of the distortion induced by compressing the signal. KLT optimally minimizes
E(y

i

y

j

), but it is computationally ine�cient because for each new data set, a new transform matrix has
to be computed. Instead, some standard transform matrices are used. One such of these is

F =
1p
N

2

66666664

1 1 1 1 . . . 1
1 ! !

2

!

3

. . . !

N

1 !

2

!

4

!

6

. . . !

2N

1 !

3

!

6

!

9

. . . !

3N

...
...

...
...

. . .
...

1 !

N�1

!

2(N�1)

!

3(N�1)

. . . !

(N�1)(N�1)

3

77777775

This is an example of a generic transform matrix. Typically, ! = e

�i

2⇡
N . This is the Discrete Fourier

Transform (DFT) matrix. The DFT projects data along the rows, and each row has a frequency kernel.
Thus, it produces the frequency components of the data.

Y = FX

=

2

6664

Y 1
Y 2
...

Y

N

3

7775

The values {Y
i

}N
i=1

are the frequency components. Compressing a signal by omitting any of the low
amplitude Y

i

s (usually high frequency) e↵ectively filters the signal.
If the low amplitude Y

i

s are scattered about the vector, filtering is still being done, but it is not
necessarily characterizable as a low, high, or band-pass filter. This is a widely used compression scheme.
In the case of images, most frequently a Discrete Cosine Transform (DCT) is used.

A

ij

=

8
<

:

q
1

N

cos

⇣
j⇡(2i+1)

2N

⌘
i = j

q
2

N

cos

⇣
j⇡(2i+1)

2N

⌘
i 6= j

For correlated data that forms a first-order Markov chain, then the energy compaction factor is very close
to the energy compaction factor of KLT. The DCT has very good performance for highly correlated data.

A problem with modern technology is that image capturing systems, for example, lack hardware ca-
pable of these data compression techniques, so much more information is captured than is actually used
after the compression. The process is outlined below.
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Ideally, the sensing and compression would be combined into a compressed sensing step.

The compressed sensing block contains a matrix �. If the discrete signal is X, ideally the sensors will be
able to do the transform matrix multiplication �X. Given any signal to be sensed, X, there is hardware
to implement the linear combination of the rows of �. The multiplication is

2

64
�

11

�

12

. . . �

1N

...
...

. . .
...

�

M1

�

M2

. . . �

MN

3

75

2

64
x

1

...
x

N

3

75 =

2

64
y

1

...
y

M

3

75

where M ⌧ N for compression. Note that � is no longer a square matrix; it is short and fat. Thus
only M samples are taken, and compression and sensing occur all in the same step. This can be done in
hardware.

Decoding Transform Codes

In decoding, X needs to be recovered from Y , but there is not a unique solution for X given � and Y .
However, some more information is known about X. Given any transform matrix F , FX is a vector
that has few non-zero entries. F is known.

� = �̃F

Note that � is M ⇥N , �̃ is M ⇥N , and F is N ⇥N .

Y = �X

= �̃FX

= �̃X̃

where X̃ = FX. X̃ is a sparse vector, i.e. it has few non-zero values. Let k be the number of non-zero
entries of X̃. k ⌧ N . Knowing �̃ is equivalent to knowing �, since F is known. The formulation of the
problem is then: Given Y = �X and �, find X, where X has k ⌧ N non-zero values. Also find the
matrix � for which this problem is solvable.

7



EE5585 Data Compression April 9, 2013

Lecture 20
Instructor: Arya Mazumdar Scribe: Aritra Konar

1 Review

In the last class, we studied about Transform Coding, where we try to assign a new set of basis vectors
to the data. If the data exhibits some form of correlation, we apply a linear unitary transformation to
rotate the axes such that most of the data fits through one of the axes. The result is that the data is
sparse, and along this axis. Meaning we can throw away the entries that have values near zero, thereby
compressing the data. However, this approach su↵ers from two drawbacks.

i) It may happen that the data cannot be fit through a single (or a smaller set of) axis. In this case
the linear transforms (using DFT matrix or DCT matrix for example) will not be able to compress the
data. This is shown in the diagram below, where the data is fitted by a nonlinear function.

Figure 1: Example of data fitting by a non - linear function

ii) In this approach, the the data is acquired from a sensor array, following which a basis is determined
in which the representation of the data is sparse, and then the sparse entries are thrown away to achieve
data compression. Since a lot of the data samples obtained are thrown away, we may then seek an
approach where we can compress the data by sensing only a small number of samples.

2 Compressed Sensing/Sampling

Suppose we have N pixels of an image we want to compress. We may capture the pixels using an array of
N sensors to obtain a data vector, to which we then apply a linear unitary transformation (by multiplying
it with the DFT matrix for example) to obtain a sparse representation of the data. We can then throw
away the small entries to compress the data.

Alternatively, we may only use M (⌧N) sensors to capture the pixels. The diagram below illustrates
this approach.
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Figure 2: Single Pixel Camera

Here, each sensor senses a linear combination of N pixel values. The output of each sensor is given
by

y

i

= a1iz1 + a2iz2 + ......+ a

Ni

z

N

where the coe�cients of the linear combination are determined from the reflection coe�cients of the
mirrors placed at an angle ✓

Hence, the output of the sensor array consists of M linear samples drawn from z. The output vector
y may be represented as

y = Az

where A ! M ⇥N , y ! M ⇥ 1, z ! N ⇥ 1
We observe that dimensionality reduction is achieved by mapping the N ⇥ 1 vector of pixels into a

M ⇥ 1 vector of observations, since M ⌧ N .
Now, z has a property. We take the DFT matrix and use it to transform z into a sparse vector having

only k ⌧ N non - zero entires (i.e, z is compressible).
The next problem we face is how to recover z from the compressed data vector y. If the matrix A

were square, full rank and hence invertible, we could have easily recovered z from y by the relation

z = A

�1
y

However, since A is a fat matrix, we have an underdetermined system of linear equations with an
infinte number of solutions. We will try to use the sparsity property of z(in some domain) to recover z
given A, y.

Decompose
A = �F

where A ! M ⇥N , � ! M ⇥N , F ! N ⇥N (Fourier Matrix in some domain where z has a sparse
representation).

This is a valid matrix decomposition since F is an invertible matrix =) � = AF

�1

Hence, we have y = Az= �Fz = �x where x= Fz. x is an N ⇥ 1vector having only k ⌧ N non -
zero values. Thus, in other words, x is k sparse.

We have now reduced the problem to the one of recovering x from the under-determined system of
equations y = �x where x is k sparse. The matrix � is to be designed such that unambiguous recovery
of x is possible. This happens if and only if, for any two k sparse vectors x1 and x2
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�x1 6= �x2

) �(x1 � x2) 6= 0

This statement implies that any two k sparse vectors should not get mapped to the same obeservation
vector y. Otherwise, unique recovery will not be possible. Since x1�x2 is atmost 2k sparse, the left hand
side of the above expression is the weighted sum of any 2k columns of the matrix �. Since the linear
combination of the columns 6= 0, it follows that any 2k columns of � must be linearly independent.

) M � 2k

The above expression implies that for stable recovery, the number of samples required for compressive
sensing must be greater than equal to twice the sparsity of the data vector x. Note that this statement
is somewhat analogous to the Nyquist Sampling Theorem.

Also, since we do not know the locations of the k sparse samples in the N ⇥ 1data vector x, we must
use M � 2k samples. If we knew the exact locations of the sparse entries, then we would require only
k columns of � to be linearly independent, implying that only M= k samples would be su�cient for
stable recovery. Hence, we see that we must pay a penalty for not knowing the locations of the sparse
entries of x by requiring a greater number of samples.

Our ultimate goal, now, is to determine a matrix � that is 2k ⇥N dimensional and any 2k columns
are linearly independent.

Let us consider an example of signal recovery where x is 1 sparse 6⇥ 1 vector and � is given by

� =

2

4
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

3

5

If the observation vector y = �x is also known, then we can easily recover x. We know that y is
obtained from a linear combination of the columns of � with the coe�cients of the combination being
the elements of the vector x. Since x is 1 sparse, with only a single non - zero entry, then y is simply the
scaled column of � whose coe�cient is the non - zero entry of x. Hence, knowing y, we can determine
the non -zero entry of x and from the position of the corresponding column in �, we can determine the
position of the non - zero entry in x.

Note however, in this case, we used M = 3 > 2 samples in the sampling matrix �. In general, if we
wanted to use M = 2k samples, we could use a Vandermonde matrix given by

� =

2

6666664

1 1 1 1 1 1
↵1 ↵2 . . . ↵

N

↵12 ↵22 . . . ↵

N

2

. . . . . .

. . . . . .

↵1N�1 ↵2N�1 . . . ↵

N

N�1

3

7777775

where ↵

i

2 R, such that ↵
i

6= ↵

j

8i 6= j

We can choose any M ⇥M = 2k⇥ 2k submatrix of � which will be non - singular, full rank with m

linearly independent columns.

 =

2

6666664

1 1 1 1 1 1
↵

i1 ↵

i2 . . . ↵

iM

↵

2
i1

↵

2
i2

. . . ↵

2
iM

. . . . . .

. . . . . .

↵

M�1
i1

↵

M�1
i2

. . . ↵

M�1
iM

3

7777775

3



where we choose i1, i2, ....., iM from the matrix �
Let ↵

ij = �

j

. Then,

 =

2

6666664

1 1 1 1 1 1
�1 �2 . . . �

M

�

2
1 �

2
2 . . . �

2
M

. . . . . .

. . . . . .

�

M�1
1 �

M�1
2 . . . �

M�1
M

3

7777775

 is a square Vandermonde matrix with

det =
Y

1j<im

(�
i

� �

j

)

Since �
i

6= �

j

for i 6= j, is guaranteed to be non singular, full rank with M= 2k linearly independent
columns.

Thus, the Vandermonde matrix � can be used to recover x from the observation y. However, the
entire success of this scheme hinges on the assumption made at the beginning that x is k sparse. In
reality, x may only be approximately k sparse, with k prominent values and another N � k values that
are close to, but not zero. If this is the case, then this scheme fails, because only M = 2k columns are
not enough to guarantee recovery. The contributions from the other columns of will be non - zero in
this case since x is not exactly k sparse. We now seek a scheme that guarentees stable recovery even if
x is approximately k sparse.

Suppose x̂ is our estimate of x. The error " is given by

" =k x̂� x k2
l2
= (x̂� x)T (x̂� x)

Now, we would like to bound this error even if x is not exactly k sparse.
Suppose x

k

is a vector that has the k largest co-ordinates of x with all others zero. Then, we may
write an approximately k sparse vector x in terms of x

k

as

x = x

k

+ "

=) " = x� x

k

where x is an exact k sparse vector and " is the error in x not being exactly k sparse.
We would like a recovery guarantee of the form

k x̂� x k
l2 c k x� x

k

k
l2 ........(r)

The above statement implies that when x is exactly k sparse, then x

k

= x and the right hand side of
the above equation is zero, from which we get x̂ = x. In this case, perfect recovery is achieved. However,
when x is only approximately k sparse, even then x̂ is not too far from x! We are now ready to state a
theorem which gives the recovery guarantee given by (r) subject to some conditions.

3 Theorem

Recovery with guarantee given by (r) will require M = c1k log(N/k) samples. Then, there exists a
M ⇥N sampling matrix � with M = c1k log(N/k) which gives guarantee

k x̂� x k
l2

cp
k

k x� x

k

k
l1 ........($)
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Note that, since we are dividing by
p
k, the error bound obtained is quite tight. This scheme

guarantees stable recovery even when x is only approxumately k sparse. We can determine x̂ which
satisfies the above error bound by a linear program called Basis Pursuit which is a polynomial time
algorithm.

3.1 Basis Pursuit

Given y = �x where x is approximately k sparse, then we can obtain x̂ which gives guarantee ($) by
solving the following optimization problem with a linear constraint

min
s.t.�x̂=y

k x̂ k
l1

3.2 Fun Facts about Norms

If q is an integer, then the L

q norm of a N ⇥ 1 vector x is given by

k x k
lq= (

NX

i=1

| x
i

|q)
1
q

When q ! 1, L1 = max | x
i

|
When q ! 0, L0 =number of non zero entries of x

4 Restricted Isometry Property

A sampling matrix �is said to possess �
k

RIP, if, for any k sparse vector v,

(1� �

k

)kv k22k �v k22 (1 + �

k

) k v k22
We choose the smallest �

k

such that the above expression is true. Note that, if �
k

is 0, then

k v k22=k �v k22
Thus, � is an orthogonal transform that preserves the norm (energy) of the k sparse vector v.However,

even if �
k

6= 0, even then � is approximately orthogonal since the energy in the signal is only changed
by a factor �

k

. In 2005, Candes and Tao showed that if

�2k 
p
2� 1

That is, if for any 2k sparse vector the energy is preserved by a factor of
p
2 � 1 = 0.414,then, x̂

obtained from Basis Pursuit will give guarantee

k x̂� x k
l2

cp
k

k x� x

k

k
l1

Later on, it will be shown that if � is a random matrix with iid Gausssian or Bernoulli random
variables as it’s entries, then with very high probability, � satisfies RIP.
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EE5585 Data Compression April 11, 2013

Lecture 21
Instructor: Arya Mazumdar Scribe: Zhongyu He

Compressed Sensing

From last lecture, compressed sensing can be boiled down to a simple mathematical problem as the

following equation:

�x = y

where � is an m ⇥ N matrix, x is an N ⇥ 1 vector, y is an m ⇥ 1 vector. And the linear system is

undetermined.

Given � and y, we need to solve for x ,which is approximately sparse, i.e., x has at most k prominent

coordinates. Therefore, we want to design such a matrix � that can give us stable solutions.

Stable recovery

Suppose x̂ is our estimate. xk is a vector with k largest coe�cient of x.

Suppose x =

2

66664

123

6.4

�2.5

193

4.5

3

77775
, x2 =

2

66664

123

0

0

193

0

3

77775
, then x� xk =

2

66664

0

0.4

�2.5

0

4.5

3

77775

The stable solution must satisfy the following:

kx̂� xk`2  Ckx� xkk`1

where C is some constant.

If x has exactly k non-zero elements, then the equation above will give us the exact solution. If not,

the error will be bounded by some small value. That’s what is called stable recovery.

Basis Pursuit Algorithm(�,y)

Now we have an algorithm called Basis Pursuit, with � and y as input. It states as following:

min kzk`1

Subject to : �z = y

This is an optimization problem and can be solved by a linear program.

k-RIP

For any k-sparse vector z, if

(1� �k)kzk2`2  k�zk2`2  (1 + �k)kzk2`2

is satisfied with the smallest �k. Then � will be called (k,�k)-RIP. RIP is short for Restricted Isometry

Property.

1



Theorem 1(by Candes, Tao 2005/2006)

If � is (2k,�2k)-RIP with

�2k <

p
2� 1 ⇡ 0.414

that is
(1� 0.414)kzk2`2  k�zk2`2  (1 + 0.414)kzk2`2 8 2k-sparse z

Then, basis pursuit solution x̂ will satisfy

kx̂� xk`2  (c/

p
k)kx� xkk`1

This property guarantees that stable recovery would happen.

Theorem 2

If m = c1k logN then there exists m⇥N matrix � that has �2k <

p
2� 1.

If we choose an m⇥N independent zero-mean random Gaussian matrix satisfying the theorem above,

then that matrix with a very high probability will have the RIP. This tells us how to construct �, but

this is not our concern here.

Proof of Theorem 1

Assume x̂ = x+ h ) h = x̂� x, where h is the error vector.

We will bound from above khk`2
First of all,

kxk`1 � kx̂k`1 = kx+ hk`1
Now assume a vector v and a subset T ✓ {1,2,· · · N}. vT is the projection of v on T.

For example:

v =

2

66664

5

3

4

�1

2

3

77775
, T = {1,4,5}, then vt =

2

66664

5

6

0

�1

2

3

77775

kxk`1 � kxT0 + hT0 + xT c
0
+ hT c

0
k`1 (1)

= kxT0 + hT0k`1 + kxT c
0
+ hT c

0
k`1 (2)

� kxT0k`1 � khT0k`1 � kxT c
0
k`1 + khT c

0
k`1 (3)

) kxT0k`1 + kxT c
0
k`1 � kxT0k`1 � khT0k`1 � kxT c

0
k`1 + khT c

0
k`1 (4)

) khT c
0
k`1  khT0k`1 + 2kxT c

0
k`1 (5)

where T0 is the k-largest coordinate of x.

*Reasonnings for (2)(4)

For example,

2



x̂=

2

66666666664

9

4

2

3

1

�1

�9

6

3

77777777775

, x̂T0=

2

66666666664

9

0

0

0

0

0

�9

6

3

77777777775

, x̂T c
0
=

2

66666666664

0

4

2

3

1

�1

0

0

3

77777777775

,

kx̂k`1 = |9|+ |4|+ |2|+ |3|+ |1|+ |� 1|+ |� 9|+ |6|
= kx̂T0k`1 + kx̂T c

0
k`1

**Resonings for (3)

By Triangle Inequality

Lemma

If z, z

0
are two vectors that are k1-sparse and k2-sparse respectively; moreover, the coordinates where

z, z

0
are non-zero do not overlap. Then

| < �z,�z

0
> |  �k1+k2kzk`2kz0k`2

Proof

| < �z,�z

0
> | = 1

4

⇥
k�z + �z

0k2`2 � k�z � �z

0k2`2
⇤

=

1

4

⇥
k�(z + z

0
)k2`2 � k�(z � z

0
)k2`2

⇤

(1� �k1+k2)kz ± z

0k2`2  k�(z ± z

0
)k2`2  (1 + �k1+k2)kz ± z

0k2`2

) | < �z,�z

0
> |  1

4

⇥
(1 + �k1+k2)kz + z

0k2`2 � (1� �k1+k2)kz + z

0k2`2
⇤

=

1

2

�k1+k2kz + z

0k2`2

Now

|< �z,�z

0
>

kzk`2kz0k`2
| = | < �

z

kzk`2
,�

z

0

kz0k`2
> |

 1

2

�k1+k2k
z

kzk`2
+

z

0

kz0k`2
k2`2

= �k1+k2

) | < �z,�z

0
> |  �k1+k2kzk`2kz0k`2

Lemma proved.
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Let’s come back to the proof of Theorem 1.

T0 is the k-largest coe�cients of x.

T1 is the k-largest in absolute value coe�cients of hT c
0
.

T2 is the next k-largest in absolute value coe�cients of hT c
0
.

.

.

.

Next, we will show that both khT0[T1k and kh(T0[T1)ck are bounded.

Note that for any j � 2,

khTjk`2 
p
k max value in hTj (Definition of l2 norm)


p
k average absolute value in hTj�1


p
k

k

khTj�1k`1

Now

kh(T0[T1)ck`2 = k
X

j�2

hTjk`2


X

j�2

khTjk`2

=

1p
k

X

j�1

khTjk`1

=

1p
k

khT c
0
k`1

 1p
k

(khT0k`1 + 2kxT c
0
k`1) (6)

Because

kzk`1 � kzk`2
|z1|+ |z2| �

p
|z1|2 + |z2|2

kzk`2 � kzk`1p
number of elements

)
q
z

2
1 + z

2
2 + · · ·+ z

2
k � |z1|+ |z2|+ · · ·+ |zk|p

k

So from(6),

kh(T0[T1)ck`2  khT0k`2 +
2p
k

kxT c
0
k`1

) kh(T0[T1)ck`2  kh(T0[T1)k`2 +
2p
k

kxT c
0
k`1 (7)

Now we have

kh(T0[T1)k
2
`2  1

1� �2k
k�h(T0[T1)k

2
`2 (8)

k�h(T0[T1)k
2
`2 =< �h(T0[T1),�h(T0[T1) >

=< �h(T0[T1),�(h� h(T0[T1)c) >

4



Since �h = �(x̂� x) = �x̂� �x = y � y = 0

) k�h(T0[T1)k
2
`2 =< �h(T0[T1),��h(T0[T1)c >

=< �h(T0[T1),�
X

j�2

�hTj >

 | < �hT0 ,�
X

j�2

�hTj > |+ | < �hT1 ,�
X

j�2

�hTj > |


X

j�2

⇥
| < �hT0 ,�hTj > |+ | < �hT1 ,�hTj > |

⇤


X

j�2

(�2kkhT0k`2khT1k`2 + �2kkhT1k`2khTjk`2)

Since

p
a+

p
b 

p
2(a+ b)

) k�h(T0[T1)k
2
`2  �2k2kh(T0[T1)k`2(kh(T0[T1)k`2 +

2p
k

kxT c
0
k`1)

from (8) ) kh(T0[T1)k
2
`2  1

1� �2k


�2k2kh(T0[T1)k`2(kh(T0[T1)k`2 +

2p
k

kxT c
0
k`1)

�

kh(T0[T1)k`2(1�
p
2�2k

1� �2k
)  2p

k

kxT c
0
k`1)

kh(T0[T1)k`2  1

(1�
p
2�2k

1� �2k
)

2p
k

kxT c
0
k`1) (9)

khk`2  kh(T0[T1)k`2 + kh(T0[T1)ck`2

= 2kh(T0[T1)ck`2 +
2p
k

kxT c
0
k`1

from (9) )  (

2

(1�
p
2�2k

1� �2k
)

+ 1)

2p
k

kxT c
0
k`1

) kx̂� xk`2  (

2

(1�
p
2�2k

1� �2k
)

+ 1)

2p
k

kx� x2k`1

where

0

BB@
2

(1�
p
2�2k

1� �2k
)

+ 1

1

CCA is positive for any �2k >

p
2� 1

QED (End of the Proof for Theorem 1)
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EE5585 Data Compression April 16, 2013

Lecture 22
Instructor: Arya Mazumdar Scribe: Cheng-Yu Hung

Review of Compressed Sensing

Consider a general linear measurement process that produces an m ⇥ 1 observation vector y in terms
of a N ⇥ 1 signal vector x and the columns of a m ⇥ N(m ⌧ N) measurement matrix �. It can be
expressed as

�x = y (1)

It is noted that the signal vector x is an approximately k-sparse vector which has at most k(⌧ N)
non-zero entries.

Basic Pursuit

Given y and �, recovery of the unknown signal vector x can be pursued by finding the sparsest estimate
of x which has the constraint �x = y, i.e.,

minimize
x

||x||l0
subject to �x = y.

However, this is an NP-hard problem. Convex relaxation methods cope with the intractability of the
above formulation by approximating the l

0

norm by the convex l

1

norm. This is a well-known algorithm
which is called basic pursuit. The above formulation is changed to

minimize
x

||x||l1
subject to �x = y.

(2)

Many linear programmings can solve this problem, such as the simplex method or interior point methods.

Stable Recovery and Restricted Isometry Property (RIP)

The RIP imposes that there exists a 0 < �

2k < 1 such that for any z that has at most 2k nonzero entries,

(1� �

2k)||z||2l2  ||�z||2l2  (1 + �

2k)||z||2l2 (3)

Candes et al. (2006) have shown that if � satisfies RIP with �

2k  p
2 � 1, then the solution x̂ to

equation (2) will achieve the stable recovery,

||x̂� x||2l2  cp
k

||x̂� xk||2l1 , (4)

where xk is the restriction of x to its k largest entries.

Design Good Measurement Matrices �

One of main issues is to find a matrix � with RIP: �
2k <

p
2 � 1. Given the N ⇥ 1 vector x and

m⇥N(m ⌧ N) measurement matrix �, we denote a m⇥ 2K matrix �I , and a 2k ⇥ 1 vector z = xI ,
where I ✓ {1, · · · , N}, |I| = 2k. Since �

2k <

p
2� 1, the RIP becomes as the following:

0.586 = (1� �

2k) 
||�z||2l2
||z||2l2

 (1 + �

2k) = 1.414. (5)

1



We want any 2k columns of � satisfying the above inequalities (5). Actually, (5) is also equivalent to

0.586  eigenvalues of �T
I �I  1.414. (6)

or

0.586  sigular values of �I  1.414. (7)

But the question is what kind of matrix � has this property of (7)?
The answer is that the matrix � can be a random matrix chosen in the following way:

� =
1p
m

2

64
�

11

· · · �

1N
...

. . .
...

�m1

· · · �mN

3

75 ,where �ij
iids N (0, 1). (8)

with high probability for any I such that �I satisfies

0.586  eigenvalues of �T
I �I  1.414.

In particular the high probability is 1� e

�↵m, for some ↵ > 0.
Then,

Pr(RIP-2k isn’t satisfied) (9)

= Pr(9 a set of 2k columns for which (7) is not satisfied) (10)


✓
N

2k

◆
e

�↵m (11)

= (
Ne

2k
)
2k

e

�↵m (12)

= e

2k log (

Ne
2k )�↵m (13)

if ↵m � 2 · 2k log (Ne

2k
) (14)

 e

�↵m
2 ! 0 as m ! 1 (15)

In summary, suppose that the entries of the m ⇥ 2k matrix �I are i.i.d. Gaussian with zero mean and
variance 1

m . Then, with high probability, � satisfies the required RIP condition for stable recovery to
hold, provided that

m >

4

↵

k log (
Ne

2k
). (16)

Moreover, sensing matrices whose entries are iid from a Bernoulli distribution (+ 1p
m

with prob. 1/2

and � 1p
m

with prob. 1/2), columns normalized to a unit norm, also obey the RIP given equation (16).

It is noted that since m >

4

↵k log (
Ne
2k ), the observation signal’s dimension is m = O(k log N

k ), while the
dimension of input signal is N .

Di↵erential Encoding

In many sources we are interested in, the sampled source output {xn} does not change a lot from one
sample to the next. This means that the variance of the sequence of di↵erence {dn = xn � xn�1

} are

2
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Figure 1: Compressed sensing

substantially smaller than that of the source output sequence. In other words, for the correlated data
the distribution of dn is highly peaked at zero. It is useful to encode the di↵erence from the sample to
the next rather than encoding the actual sample values since the variance of quantization error in the
di↵erences is less than in the actula output samples. This technque is called differential encoding.

Quantize with Di↵erential Encoding

Consider a sequence {xn} in Figure 2. A di↵erence sequence {dn} is generated by taking the di↵erence
xn � xn�1

. The di↵erence sequence is quantized to obtain the sequence {d̂n}. So,

d

0

= x

0

(17)

d

1

= x

1

� x

0

(18)

d

2

= x

2

� x

1

(19)

... (20)

dn = xn � xn�1

. (21)

The above equations can be written as a matrix form, i.e.,

2

666664

1
�1 1

�1 1
. . .
�1 1

3

777775

2

666664

x

0

...

xn

3

777775
=

2

666664

d

0

...

dn

3

777775
or

2

666664

1
1 1
1 1 1
...

...
. . .

. . .
1 1 · · · 1 1

3

777775

2

666664

d

0

...

dn

3

777775
=

2

666664

x

0

...

xn

3

777775
(22)

And

d̂n = Q[dn] = dn + qn, where qn is the quantization error. (23)

At the receiver, the reconstructed sequence {x̂n} is obtained by adding d̂n to the previous recon-
structed value x̂n�1

:

x̂n = x̂n�1

+ d̂n. (24)

3
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Figure 2: Output samples {xn} and di↵erence samples {dn}

Let us assume that both transmitter ans receiver start with the same value x

0

, that is, x̂
0

= x

0

. Then,
follow the quantization and reconstruction process:

x̂

0

= d

0

+ q

0

(25)

x̂

1

= x̂

0

+ d̂

1

= d

0

+ q

0

+ d

1

+ q

1

= x

1

+ q

0

+ q

1

(26)

x̂

2

= x̂

1

+ d̂

2

= d

0

+ d

1

+ q

0

+ q

1

+ d

2

+ q

2

= x

2

+ q

0

+ q

1

+ q

2

(27)

... (28)

x̂n = d

0

+ d

1

+ · · ·+ dn + q

0

+ q

1

+ · · ·+ qn = xn +
nX

i=0

qi (29)

So, at the ith iteration we get

x̂i = xi +
iX

j=0

qj . (30)

We can see that the quantization error accumulates as the process continues. According to central limit

4
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Figure 3: Quantizer of di↵erential encoding

theorem, the sum of these quantization error is Gaussian noise and its mean is zero, but in fact, before
that happens, the finite precision of machines causes the reconstructed value to overflow.
Therefore, instead of dn = xn�xn�1

, we use dn = xn� x̂n�1

. By use of this new di↵erencing operation,
we repeat the quantization and reconstruction process. Assume that x̂

0

= x

0

,

d

1

= x

1

� x

0

(31)

d̂

1

= d

1

+ q

1

(32)

x̂

1

= x

0

+ d̂

1

= x

0

+ d

1

+ q

1

= x

1

+ q

1

(33)

d

2

= x

2

� x̂

1

(34)

d̂

2

= d

2

+ q

2

(35)

x̂

2

= x̂

1

+ d̂

2

= x̂

1

+ d

2

+ q

2

= x

2

+ q

2

(36)

So, at the ith iteration, we have

x̂i = xi + qi, (37)

and there is no accumulation of the quantization error. The quantization error qi is the quantization
noise incurred by the quantization of the ith di↵erence and it is significantly less than the quantization
error for the original sequence. Thus, this procedure leads to an overall reduction of the quantization
error and then we can use fewer bits with a di↵erential encoding to attain the same distortion.

Subband Coding

Consider the sequence {xn} in the Figure 4. We see that while there is a significant amount of sample-to-
sample variations, there’s also an underlying long-term trend shown by the blue line that varied slowly.
One way to extract this trend is to use moving window to average the sample value. Let us use a window
of size two and generate a new sequence {yn} by averaging neighboring values of xn:

yn =
xn + xn�1

2
. (38)

The consecutive values of yn will be closer to each other than the consecutive values of xn. Thus, the
{yn} can be coded more e�ciently using di↵erential encoding than the sequence {xn}. However, we
want to encode the sequence {xn}, not {yn}. Therefire, we need another sequence {zn}:

zn = xn � yn = xn � xn + xn�1

2
=

xn � xn�1

2
. (39)
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Figure 4: A rapidly changong source output that contains a long-run component with slow variations.

Then, the sequences {yn} and {zn} can be coded independently of each other.
Notice that we use the same number of bits for each value of yn and zn, but the number of elements in
each of the sequences {yn} and {zn} is the same as the number of elements in the original sequence {xn}.
Although we are using the same number of bits of bits per sample, we are transmitting twice as many
samples ans doubling the bit rate. We can avoid this by sending every other value of yn and zn. Let’s
divide the sequences {yn} into {y

2n} and {y
2n�1

}, and similarly, divide {zn} into {z
2n} and {z

2n�1

}. If
we transmit either the even-numbered subsequencse or odd-numbered subsequences, we would transmit
only as many elements as in the original sequence.
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Lecture 23
Instructor: Arya Mazumdar Scribe: Trevor Webster

Di↵erential Encoding

Suppose we have a signal that is slowly varying. For instance, if we were looking at a video frame by
frame we would see that only a few pixels are changing between subsequent frames. In this case, rather
than encoding the signal as is, we would first sample it and look at the di↵erence signal and encode this
instead:

dn = xn � xn�1

This dn would then need to be quantized, creating an estimate (d̂n) which would contain some quanti-
zation noise (qn)

Q(dn) = d̂n

d̂n = dn + qn

What we are truly interested in recovering are the values of x. Unfortunately, the quantization error will
get accumulated in the value of x. The reason being, that the operation forming dn is of the following
matrix form

0

BBBBB@

1 1 0 0 0 0
0 �1 1 0 0 0
0 0 �1 1 0 0
...

... 0
. . .

. . . 0
0 0 0 0 �1 1

1

CCCCCA

Inverting this matrix we obtain the accumulator matrix

0

BBBBB@

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
...

...
...

...
. . . 0

1 1 1 1 . . . 1

1

CCCCCA

1



If you make an error in the dn the noise in xn will be accumulated as follows

x̂n = x0 +
Pn

i=0 qn

The quantization noise qn can be positive or negative and in the long term we expect it to add up to
zero, but what happens with high probability is that the range of the error becomes too great for us to
handle. Therefore, we adopt the following strategy

dn = xn � x̂n�1

We can then implement this technique using the following encoder

The corresponding decoder will look as follows

This encoder/decoder scheme shown is governed by the relationship introduced previously. Rearranged
it looks as follows

x̂n = d̂n + x̂n�1

Walking through an example using this scheme we would have the following sequence

x̂0 = x0 (1)

x̂1 = d̂1 + x̂0 (2)

= d1 + q1 + x̂0 (3)

= x1 + q1 (4)

x̂2 = d̂2 + x̂1 (5)

= d2 + q2 + x̂1 (6)

= x2 + q2 (7)

(8)

2



We see that in general

x̂n = d̂n + x̂n�1

= dn + qn + x̂n�1

= xn + qn

Notice that while the quantization noise qn was originally accumulated in xn, by adopting the aforemen-
tioned strategy we have made each estimate of xn dependent on only its own respective quantization
error. This type of method is known as a Di↵erential Pulse Coded Modulation Scheme (DPCM).

Di↵erential Pulse Coded Modulation Scheme

Generalizing the method described above, we see that we use a previous predicted value of xn, denoted
by pn, to construct the di↵erence sequence which is then quantized and used to predict the current value
of xn. Furthermore, the predicted xn is operated on by a Predictor (P ) which provides an estimate of
the previous xn in order to recursively find the di↵erence signal. This is shown in the respective encoder
and decoder figures below

Formalizing this procedure, we write

pn = f(x̂n�1, ˆxn�2, ˆxn�3, . . . , x̂0)
dn = xn � pn

= xn � f(x̂n�1, ˆxn�2, ˆxn�3, . . . , x̂0)

We are hopeful that the values of dn are much smaller than the values of xn, given that it is a di↵erence
signal for a slowly varying signal. So if we were looking at the energy in dn we would guess it to be
much smaller than the energy in xn. When we are dealing with the energy of a signal it is analogous to
its variance, which we define as follows
So if we were to optimize something in this DPCM scheme, we would want to find f such that we
minimize the energy in dn
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Find f(x̂n�1, ˆxn�2, ˆxn�3, . . . , x̂0) such that �d
2 is minimized.

�d
2 = E[(xn � f(x̂n�1, ˆxn�2, ˆxn�3, . . . , x̂0))2]

Since it is necessary to know previous estimates of xn in order to calculate f , but we also need to know
f in order to calculate previous estimates, we find ourselves in a roundabout and di�cult situation.
Therefore, we make the following assumption. Suppose,

pn = f(xn�1, xn�2, xn�3, . . . , x0)

In other words, we design the predictor assuming there is no quantization. This is called a Fine Quan-

tization assumption. In many cases this makes sense because the estimate of xn is very close to xn, as
the di↵erence signal is very small, and the quantization error is even smaller. Now we have

�d
2 = E[(xn � f(xn�1, xn�2, xn�3, . . . , x0)2]

Considering the limitations on f , we note that f can be any nonlinear function. But we often don’t know
a way to implement many nonlinear functions. So we assume further that the predictor f is linear and
seek the best linear function. By definition, a linear function expressing f(xn�1, xn�2, xn�3, . . . , x0) will
merely be a weighted sum of previous values of xn. Assuming we are looking back through a “window”
at the first N samples of a signal, the predictor can then be expressed as follows

pn =
PN

i=1 aixn�i

Now the variance of dn becomes

�d
2 = E[(xn �

PN
i=1 aixn�i)2]

Now we need to find the coe�cients ai which will minimize this variance. To do this we take the
derivative with respect to ai and set it equal to zero.

@�d
2

@a1
= E[�2(xn �

PN
i=1 aixn�i)xn�1]

= �2E[xnxn�1 �
PN

i=1 aixn�ixn�1] = 0
...

@�d
2

@aj
= 2E[xnxn�j �

PN
i=1 aixn�ixn�j ] = 0

By setting the derivative above to zero and rearranging, we see that the coe�cients we are looking for
are dependent upon second order statistics

E[xnxn�j ] =
PN

i=1 aiE[xn�ixn�j ]

We make the assumption that x is stationary, wich means that the correlation between two values of xn

is only a function of the lag between them. Formally, we denote this by the fact that the expectation of
the product of two values of xn separated in time by k samples (also known as the autocorrelation) is
purely a function of the time di↵erence, or lag, k

E[xnxn+k] = Rxx(k)

The relationship governing the coe�cients ai can then be rewritten using this notation as

Rxx(j) =
PN

i=1 aiRxx(i� j) for 1  j  N

Thus, looking at the autocorrelation functions for each j we have
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Rxx(1) =
PN

i=1 aiRxx(i� 1)

Rxx(2) =
PN

i=1 aiRxx(i� 2)

...

Rxx(N) =
PN

i=1 aiRxx(i�N)

Now that we have N equations and N unknowns we can solve for the coe�cients ai in matrix form

0

BBBB@

Rxx(0) Rxx(1) . . . Rxx(N � 1)

Rxx(1) Rxx(0)
...

...
. . .

...
Rxx(N � 1) . . . Rxx(0)

1

CCCCA

0

BBB@

a1
a2
...
an

1

CCCA
=

0

BBB@

Rxx(1)
Rxx(2)

...
Rxx(N)

1

CCCA

Rewriting this more compactly where R is a matrix and a and P are column vectors we have

Ra = P
a = R�1P

Thus, we see in order to determine the coe�cients for a linear predictor for DPCM we must invert the
autocorrelation matrix and multiply by the autocorrelation vector P . Once we have determined the
coe�cients we can design the predictor necessary for our DPCM scheme.

Now suppose that our signal is rapidly changing as shown below

We see that since the signal varies significantly over short intervals the di↵erence signal dn would be
very large and DPCM might not be a very good scheme. Suppose instead that we passed this rapidly
changing signal through both a low pass and high pass filter as shown below

Low Pass High Pass
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Let us create two signals based o↵ the values of xn to emulate this low pass and high pass response. Let
yn represent an averaging operation that smoothes out the response of xn (low pass) and let zn represent
a di↵erence operation which emulates the high frequency variation of xn (high pass).

yn = xn+xn�1

2

zn = xn�xn�1

2

Applying this method for each xn we would send or store two values (yn and zn). This is unnecessary.
Instead, what we can do is apply the following strategy

y2n = x2n+x2n�1

2

z2n = x2n�x2n�1

2

Then we can recover both even and odd values of xn as follows

y2n + z2n = x2n

y2n � z2n = x2n�1

This process of splitting signal components into multiple portions is called decimation and can be
extrapolated out further until a point at which you perform bit allocation. This method is called
sub-band coding. We note that DPCM is well suited for the yn low pass components whereas another
technique would likely suite the zn high pass components more e↵ectively.

Distributed Storage

Today’s storage systems often utilize distributed storage. In such a system, data will be stored in many
separate locations on servers. Suppose we want to do data compression in such a system. What we
would like to do is query a portion of our data set - this could be 1 page out of an entire document for
instance. Rather than having to sift through the entire data set to find 1 page, we would like to be able
to go directly there. In other words, we would like such a system to be query e�cient. For this reason
suppose we divide data out into sections, such as by page, before compressing it in an e↵ort to preserve
information about where the data came from. Such a partitioning of a data set is shown below

(101|010|011| . . . | . . .)

Next we define query e�ciency as the # of bits we need to process to get back a single bit. Suppose
that the partitioned bit stream shown above has length N and we have partitioned it in chunks of m = 3
bits. In this instance, the query e�ciency would be m.

Suppose we have a binary vector of length n represented by x which we can compress to H(x) + 1. Our
compression would then be

Compression Rate = H(xn
1 )+1
n

= H(xn
1 )

n + 1
n

= nH(x)
n + 1

n
= H(x) + 1

n

Now, in the case of our previous example regarding query e�ciency. The compression rate will be

Rate = H(x) + 1
m

= H(x) + 1
query efficiency
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If we were able to compress the file as a whole the query e�ciency would be huge and the Compression
Rate would be

Rate = H(x) + 1
N

Di↵erence in rate from optimal = 1
Query Efficiency

Thus we see there is a trade o↵ between Compression Rate and Query E�ciency. Let us end the lecture
by propose a research problem were we find a better relation between query e�ciency and redundancy.
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EE5585 Data Compression April 23, 2013

Lecture 24
Instructor: Arya Mazumdar Scribe: Yuanhang Wang

Recap - Sub-band Coding

In the last class we talked about sub-band coding. In the first step of it, signal goes into two parts,
high frequency component (details, local property) and low frequency component (average values, global
property). Then after several LPFs we will end with the average value of this signal. The idea is
that we don’t need some of the details that comes from HPFs, so we throw them out and do the data
compression.

One possible way to achieve this is doing the DFT in each step. The main problem of DFT is that we
may not have a single matrix to achieve the whole steps. Suppose we have some changes in time domain.
Then we cannot know how it changes from observing frequency domain. According to uncertainty
principle in Fourier analysis, a function f and its Fourier transform F cannot be simultaneously well
localized. To take care of that, we need something else called wavelets.

Wavelets

Wavelet is also one of data transform coding techniques. It is a kind of multi-resolution coding.
Let’s look at the Haar Wavelet first.

Definition 1 (Mother function of Haar wavelet  (x))

 (x) =

8
>>>>>><

>>>>>>:

1, 0  x < 1

2

�1, 1

2

 x < 1

0, otherwise
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Now our idea is to find some basis space for any function f .
Here let’s consider the space of all square-integrable real-valued functions H. A function is said to

be square-integrable if Z
+1

�1
|f(x)|2dx < 1 (1)

Definition 2 (Hilbert Space) A Hilbert space H is an inner product space that is also a complete
metric space with respect to the distance function induced by the inner product.

In space H, two square-integrable real-valued functions f and g have an inner product, which is
defined as

< f, g >=

Z
f(x)g(x)dx (2)

Norm is defined as kfk, where
kfk2 =

Z
|f(x)|2dx =< f, f > (3)

Our idea is to change the basis of f(x) and represent it in other basis, say, g(x). Then the expression
will be:

f(x) =
X

k

Ckgk(x), k = 0, 1, 2, ...

Also we have the concept of Lebesgue Space: The space of all measurable functions f on the interval [T
1

,
T
2

] satisfying Z T2

T1

|f(x)|2dx < 1

is called the L2 space, L2[T
1

,T
2

].

Let’s define
 
0,0(x) =  (x)

and
 j,k(x) = 2

j
2 (2jx� k), where j 2 N, k 2 Z.

It’s clear that

 j,k(x) =

8
><

>:

2
j
2 , k

2

j  x <
k+ 1

2
2

j

2
�j
2 ,

k+ 1
2

2

j  x < k+1

2

j

2



Here the set { j,k, j 2 N, k 2 Z} is an orthonormal basis in L2[R].
Let’s verify that this basis is orthonormal. We can notice that:

Z
+1

�1
| j,k(x)|2dx =

Z
+1

�1
(2

j
2 )2| (2jx� k)|2dx =

Z k+1

2j

k
2j

2jdx = 2j
1

2j
= 1

Also it’s easy to prove that:

Z
+1

�1
 j,k(x) j0,k0(x)dx = 0, if j 6= j0and k 6= k0

So { j,k, j 2 N, k 2 Z} forms an orthonormal basis.

Now let’s try to use this basis to represent function f(x).

f(x) =
X

j�0, k2Z
cj,k j,k(x)

In practice, we take discrete points of f(x) and use  (x) to represent it. For example, y= [0 -3 -24 54
29 ...], then our graph would be:

Now let’s look at the translating and scaling operations on mother function.
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The rows show how translating works, and the columns show how scaling works.

Definition 3 (Scaling function of Haar wavelet �(x))

�(x) =

8
><

>:

1, 0  x < 1

0, otherwise

We use �k(x) or �0,k(x) to denote �(x� k), and �
1,k(x) = �

0,k(2x). Here are the steps that we use
to approximate an arbitrary function f(x):

1. Approximate only using �k(x)(translating):
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The approximation �0f (x) =
P

C
0,k�(x� k), where C

0,k =
R
f(x)�(x� k)dx =

R k+1

k f(x)dx. C
0,k is

the average value of f(x) in each interval.
2. Based on step one, we do the scaling:

�
1,k(x) = �(2x� k) =

8
><

>:

1, k
2

 x < k+1

2

0, otherwise

This approximation �1f (x) =
P

C
1,k�1,k(x), where C

1,k = 2
R
f(x)�

1,k(x)dx = 2
R k+1

2
k
2

f(x)dx. C
1,k is

still the average value of f(x) in each smaller interval.
We can see that:

C
1,2k + C

1,2k+1

= 2

Z k+ 1
2

k
f(x)dx+ 2

Z k+1

k+ 1
2

f(x)dx = 2

Z k+1

k
f(x)dx = C

0,k

So we may apply this property to construct a kind of sub-band coding like:

This is a simple wavelet called Haar wavelet, and eventually it gives you a matrix of transformation.
There are also other complex wavelet like Daubechies Wavelets. They all belong to MRA (Multires-

olution Analysis), and ideas are similar (have a mother fuction  (x) and approximate function using
 (2jx� k)).
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Fixed to Fixed Almost Lossless Coding

Let’s look at our lossy coding techniques:

lossy coding techniques

8
>>><

>>>:

transform coding

rate� distortion theory

quantization

sub� bandcoding

In all of these cases, especially in transform coding, we are taking a set of vectors and transform it to
another set of vector. So it is from fixed length message to fixed length codewords. No matter what the
message is the length of codewords are the same.

But when we do lossless coding:

lossless coding techniques

(
Huffman code

Lempel Ziv

They are all fixed to variable length codes. For example, when we do Hu↵man coding, if X = {a, b, c, d},
our codewords can be a = 0, b = 10, c = 110, d = 111, which are not fixed.

Let assume X is a source alphabet, say {0,1}, and x 2 Xn. Can we uniformly map x to a k length
string? Is there a way to do lossless coding in this case, which is fixed length to fixed length?

The answer is that we cannot do exact lossless coding but we can do something almost lossless. So
that requires our decoder work with high probability.

Suppose we have a binary sequence of length n:

x = 00...101......

Assume each bit has Pr(0) = 1� p, Pr(1) = p and they are i.i.d.. Then we know:

Pr(00111011) = f(number of 10s, L) = pL(1� p)n�L

So

Pr(a sequence having L 10s) =

✓
n

L

◆
pL(1� p)n�L ⇡ 2nh(

L
n )

p
n

2L log p+(n�L) log (1�p)

=
1p
n
2n[h(

L
n )+

L
n log p+(1�L

n ) log (1�p)]

=
1p
n
2n[�

L
n log

L
np�(1�L

n ) log

(1�L
n )

1�p ]

=
1p
n
2�nD(

L
n ||p)

We know that D(p||q) � 0, and it is 0 only when p = q.
So when L 6= np, D(Ln ||p) > 0, and 1p

n
2�nD(

L
n ||p) will diverge to 0 with n ! 1. It is not 0 only

when L ⇡ np, or n(p� ✏)  L  n(p+ ✏). Then in this case

✓
n

np

◆
⇠ 2nh(p)

The size of these sequences is 2nh(p), so we only need nh(p) bits to keep any of them.
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Suppose k = nh(p), then we can have fixed length codes that use only nh(p) bits. Therefore the rate
of compression is

Rate =
k

n
= h(p) = entropy

Now we compress the data from fixed length to fixed length, but we have probability of error that
equals to sequences that does not have np 1’s. Even the probability is very small with very large n, those
sequences are still there. But our decoder will work with very high probability. This connects lossless
coding to lossy coding.

7



EE5585 Data Compression April 25, 2013

Lecture 25
Instructor: Arya Mazumdar Scribe: Zhongyu He

1 Wavelet Decomposition

Suppose we have a signal as the figure 1. What we want to do is to approximate the signal.

Figure 1: Approximated Signal.

One way of doing that is to take a function as figure 2 and use the shifted version of it. This is the
simplest thing we can do. We can have this piecewise linear approximation as stated in red in figure
1. This also captures the quantization processes. The signal between two points will be quantized to a
certain value.

Figure 2: Block Wavelet

The signal in figure 2 is as following

�(t) =

(
1 0  t < 1

0 otherwise

The shifted version of this signal will be

�(t� k), k = 0, 1, · · ·

Using the shifted version of the function in figure 2, we can approximate the signal in figure 1 in
some resolution. However, this function has very low resolution. Between 0 and 1 we have only 1 value.
If we want to approximate the signal better, we need to scale the function.
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The shifted scaled function will be as follows:

�(2t� k) =

(
1 0  2t� k < 1

0 otherwise

=

8
<

:
1

k

2
 t <

k + 1

2
0 otherwise

Now, with the new function above, we double the resolution. We can improve the resolution by
scaling the function more as above. From the Nyquist rule, once the frequency is twice of the maximum
frequency of the original signal, the signal can be recovered without any lose.

Now this function defined as:

�j,k(t) = �(2jt� k) =

(
1 0  2jt� k < 1

0 otherwise

=

8
<

:
1

k

2j
 t <

k + 1

2j

0 otherwise

Use the above function to approximate the signal as stated in red in figure 1.
Then we have the 0th order approximation. The coe�cient C are average value of f between k and

k+1.

�

0
f (t) =

X

k

C0,k�0,k(t)

C0,k =
1

1

Z
f(t)�0,k(t)dt

=

Z k+1

k
f(t)dt

This is actually a very low resolution approximation of the signal we have. In order to get high
resolution, we can do higher order approximation.

1st order approximation:

�

1
f (t) =

X

k

C1,k�1,k(t)

C1,k =
1

1/2

Z
f(t)�1,k(t)dt

= 2

Z (k+1)/2

k/2
f(t)dt

C1,2k = 2

Z k+1/2

k
f(t)dt

C1,2k+1 = 2

Z k+1

k+1/2
f(t)dt

C1,2k + C1,2k+1 = 2

Z k+1

k
f(t)dt = 2C0,k

) C0,k =
1

2
[C1,2k + C1,2k+1]

We can go further and further. 2nd order approximation:
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�

2
f (t) =

X

k

C2,k�2,k(t)

C2,k =
1

1/4

Z
f(t)�2,k(t)dt

= 4

Z (k+1)/4

k/4
f(t)dt

...

�

j
f (t) =

X

k

Cj,k�j,k(t)

Cj,k = 2j
Z (k+1)/2j

k/2j
f(t)dt

We can do the above procedures until we get the resolution we want. Suppose we are representing
in 1st order approximation.

�

1
f (t) =

X

k

C1,k�1,k(t)

Such representation can be split into two lower resolution parts:

�

0
f (t) =

X

k

C0,k�0,k(t), C0,k =
1

2
[C1,2k + C1,2k+1]

and �

1
f (t)� �

0
f (t)

We can see that higher resolution signal can be represented by lower resolution ones. Let’s look at
the interval from l to l+1.

Figure 3: Interval from l to l+1.

We have:

�

1
f (t)� �

0
f (t) =

8
><

>:

C1,2l � C0,l l  t < l +
1

2

C1,2l+1 � C0,l l +
1

2
 t < l + 1

=

8
><

>:

1

2
[C1,2l � C1,2l+1] l  t < l +

1

2

� 1

2
[C1,2l � C1,2l+1] l +

1

2
 t < l + 1
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Define a function  :

 (t) =

8
><

>:

1 0  t <

1

2

� 1
1

2
 t < 1

Then we have

�

1
f (t)� �

0
f (t) =

1

2
[C1,2l � C1,2l+1] (t� l)

=
X

b0,k 0,k(t)

Where b0,k =
1

2
[C1,2k � C1,2k+1]

 0,k(t) =  (t� k)

Now we can see that coe�cients of lower resolution parts can be represented by coe�cients of higher
resolution parts. And the wavelet par  (t) is called Haar Wavelet.

Depending on what kind of signal we want to approximate, blocks function may not be the best
choice. Functions like figure 4 may be the optimal wavelet to approximate some signals.

Figure 4: �(t)

Then we have shifted: �(t � k), and scaled: �(2jt � k) = �j,k(t). Then we will represent the signal
with whatever resolution we need with these functions.

Again, as what we did above:

�

j
f (t) =

X
Cj,k�j,k(t)

Cj,k =
< f,�j,k >

< �j,k,�j,k >

=

R
f(t)�j,k(t)dtR
(�j,k(t))2dt

Also �j,k(t) can be split into two parts. �j�1,k(t) and �j,k(t) � �j�1,k(t). We can go further if �(t)
is known.

2 Data Compression Course Frame

What have we learn from this course? What to do with that? That is Data Compression. Data
compression is not only compression but also recovery, because if you don’t have a decoding algorithm,
then you have no use to compress the data.
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Therefore, there are two kinds of techniques base on the recovery that we can give. One is lossless
recovery. The other one is lossy recovery.

2.1 Lossless Recovery

What is the limit of lossless compression? There are two parallel things.
Given a data string with unknown distribution, the best compression we can get is fromKolmogorov

Complexity . On the other hand, if the distribution of a random variable is known to us or we can try
to model the data as a random variable, we can not go beyond the Entropy in compression.

So in some way, the Kolmogorov Complexity is more general than the Entropy.
Now there are several coding procedure that can take you to the value of Entropy. With these

methods, we can get to the value of Entropy very closely, if not exactly.

2.1.1 variable length coding

1. Distribution is Known
Hu↵man Coding
Shannon Coding
Arithmetic Coding
In this part, we also have the notions of Unique Decodability and Prefix free code. All the codes are both
unique decodable and prefix free code. We also discuss research problems on fix free code. 2. Universal
Coding Lempel-Ziv Algorithm

2.1.2 Fixed to fix length coding

This is a special case when distortion is equal to zero.

2.2 Lossy Coding

More general case come from the Lossy coding when distortion is not zero. And the theory is given
by Rate-Distortion . We know this distortion can be the worst case and the average case. The Rate
Distortion theory tells us that the compression algorithm we’re using is lossy with some error. But given
a certain amount of error, we can get the rate of compression we can achieve.

Then we look at Quantizers. This is one important way to achieve this trade o↵ between compres-
sion rate and rate distortion.

2.2.1 Scalar Quantizers

Uniform Quantizers
Optimal Quantizers.(We have to look at Lloyd’s Algorithm)
In most of the cases, scalar quantizers are far away from what Rate Distortion theory promises. The
solution is to go to Vector Quantizers.

2.2.2 Vector Quantizers

Basically in Vector Quantizers, we are doing clustering .
We have multiple kinds of algorithms like Linde Buzo Gray and K-means-Clustering.

There are two things the Vector Quantizers exploit.

1. Shape Gain

Most of the Vector Quantizers try to use rectangles to shape the decision region. This may not be the
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best way to quantize but it’s the most prominent way in Vector Quantizers.

2. Correlation between Data.

We saw the example of Height-Weight. This example consist of random variables but they are highly
correlated as in figure 5. We can draw a regress line and turn it into 1-dimensional quantization.

Figure 5: Height-Weight

When you have correlated data, one way to do that is to rotate the axes. That gives you another
tool to go the rate-distortion functions apart from the quantizers.

2.2.3 Transform coding

In transform coding, you basically rotate the axes by using a linear operator. In this case, just multiply
the data by a transform matrix to transform the data to another orthonormal axes.

1. Karhunen-Loeve transform

If we want to minimize the distortion, the best thing to do is Karhunen-Loeve transform, which
depends on the data. The process of doing this transform is called Principle Component Analysis

If we want to find some algorithm that is independent of the data, we can look at the following.

2. DCT or DFT.

These are standard transform coding techniques working well for a very large classes of signals.

Now that we use transform coding to get rid of many dimensionality, why do we need to acquire that
many signal? This leads to the idea of sensing of the signals. That’s Compressed Sensing .

3. Compressed Sensing.

This time, the transform matrix is not a square matrix but a rectangular matrix. So we need to look
at the su�cient condition for existence of such sampling schemes. And then we have one decoding
algorithm called Basic Pursuit that does the recovery. And there is Restricted Isometry Property for
this scheme.

If we want to deal with a larger width of signals, we need some more techniques as follows.
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4.Predictive Coding

5.Di↵erential Coding(DPCM)

6.Subband Coding
We will separate out this di↵erent signals into wavelets. The most prominent wavelet is Haar Wavelet.

Above are the basic building blocks of this course. Most of the applications will be a combination of
multiple techniques. They are highly correlated with each other.

3 Homework 4 Solution

Problem 1 Consider the following matrix �:

1 0 0.5
�2 1 1

�

We observe samples of an 1-sparse vector x

y = �x =


0
5

�

Find out x.
Next, suppose we observe:

z = �x =


10.1
�20.1

�

For a general vector x. Find out x using l1-minimization (basis pursuit).
Solution:

Question 1: Due to the linear independence, such problem has a unique solution. A universal way
to solve is to assume:

x1 =

2

4
a

0
0

3

5
, x2 =

2

4
0
a

0

3

5
, x3 =

2

4
0
0
a

3

5, Then we will get the solution x =

2

4
0
5
0

3

5

Question 2: assume

x =

2

4
a1

a2

a3

3

5

min :kxkl1
s.t. :�x = z

) min :|a1|+ |a2|+ |a3|
s.t. :a1 + 0.5a3 = 10.1

� 2a1 + a2 + a3 = �20.1

) min :|10.1� 0.5a3|+ |0.1� 2a3|+ |a3| = f

7



Case1: a3 > 20.2

f = 0.5a3 � 10.1 + 2a3 � 0.1 + a3 = 2.5a3 � 10.2

) min.f = 2.5⇥ 20.2� 10.2 = 60.5, when a3 = 20.2

Case2: 0.05 < a3 < 20.2

f = 10.1� 0.5a3 + 2a3 � 0.1 + a3 = 2.5a3 + 10

) min.f = 2.5⇥ 0.05 + 10 = 10.125, when a3 = 0.05

Case2: 0 < a3 < 0.05

f = 10.1� 0.5a3 + 0.1� 2a3 + a3 = �1.5a3 + 10.2

) min.f = 10.125, when a3 = 0.05

Case2: a3 < 0

f = 10.1� 0.5a3 + 0.1� 2a3 � a3 = �2.5a3 + 10.2

) min.f = 10.2, when a3 = 0

) x =

2

4
10.075

0
0.05

3

5

Problem 2 Following table shows height-weight data of 12 monkeys:

Find out an orthonormal transform matrix to compress this data. Suppose you compress this two-
dimensional data to one-dimensional. Show the data-compression procedure. What is the average
error/distortion?

Solution:

The correlation of the data is y=1.5x. Then follow the procedure of transform coding to find angle
✓ and transform matrix

A =


cos✓ sin✓

�sin✓ cos✓

�

Then follow the procedure and can easily get the solution.
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Lecture 27
Instructor: Arya Mazumdar Scribe: Fangying Zhang

Distributed Data Compression/Source Coding In the previous class we used a H-W table as a
simple example, now let’s consider that as a X-Y table. The two columns are correlated. Suppose Alice
has X and Bob has Y . Alice wants to compress X data by using entropy H(X) and Bob wants to com-
press Y data by using entropy H(Y ). However they are using one decoder and the rate of compression
is R(X) +R(Y ) = H(X) +H(Y ). Now a remarkable thing about Slepian coding is even there’s no link
between Alice and Bob, they can still do better than H(X)+H(Y ). So what is the best thing you could
do if you know both X and Y (X and Y is an entirety)? Here, you could do H(X,Y ),
H(X,Y ) = H(X) +H(Y |X)  H(X) +H(Y ) (equal when they are iid.) so we can compress more than
H(X) +H(Y ).

Let us formalize this is a more regress way. Now suppose you have two discrete sources X,Y and their
distribution probability p(x), p(y), which are formed from making N independent drawings from a joint
probability distribution p(x, y). If you want to compress X, so you’ll see a N-length sequence coming from
X, which is expressed asXn. And the encoding function would be mapping to a index 2nR1 of a codeword:

f1 : Xn ) (1, 2, ..., 2nR1)

, then it needs log(2nR1) = nR1 bits to express it. The Alice’s compression rate is R1 and so any n-bits
sequence would be compressed to nR1 bits. Similarly,

f2 : Y n ) (1, 2, ..., 2nR2)

. The Bob’s compression rate is R2.

Then there is a single decoding function g, which is:

g : (1, 2, ...2nR1) ⇤ (1, 2, ..., 2nR2) ) xn ⇤ yn.

So this gives you back the sequences.

In this process, the error probability Pr(g(f1(xn), f2(yn) 6= (xn, yn))) = P
(n)
e . (R1, R2) is achievable if

9 encoding and decoding functions, such that P (n)
e ) 0, and R1 � H(X), R2 � H(Y ).

Surprisingly, by using Slepian Wolf Theorem,
you can do as well as this with out communication between Alice and Bob.

1 Slepian Wolf Theorem

1973 Slepian Wolf Coding

The Slepian-Wolf theorem deals with the lossless compression of two or more correlated data streams
(Slepian and Wolf, 1973). In the best-known variation, each of the correlated streams is encoded se-
parately and the compressed data from all these encoders are jointly decoded by a single decoder as
shown in Figure 1 for two correlated streams. Such systems are said to employ Slepian-Wolf coding,
which is a form of distributed source coding. Lossless compression means that the source outputs can
be constructed from the compression version with arbitrary small error probability by suitable choice of
a parameter in the compression scheme.
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Figure 1: Block diagram for Slepian-Wolf coding: independent encoding of two correlated data streams
X and Y

The e�ciency of the system is measured by the rates in encoded bits per source symbol of the
compressed data streams that are output by the encoders. The Slepian-Wolf Theorem specifies the set
of rates that allow the decoder to reconstruct these correlated data streams with arbitrarily small error
probability. As shown in Figure 1, encoder 1, observes X and then sends a message to the decoder which
is a number from the set 1, 2, ..., 2nR1 . Similarly, encoder 2, observes Y and then sends a message to
the decoder which is a number from the set 1, 2, ..., 2nR2 . The outputs from the two encoders are the
inputs to the single decoder. The decoder, upon receiving these two inputs, outputs two n-vectors X̂
and Ŷ which are estimates of X and Y , respectively. The systems of interest are those for which the
probability that X̂ does not equal X or Ŷ does not equal Y can be made as small as desired by choosing
n su�ciently large. Such a system is said to be an Achievable System and the rate pair (R1, R2) for
an achievable system is said to be an achievable rate pair. The achievable rate region is the closure of
the set of all achievable rate pairs.

The achievable rate region for the pair of rates, (R1, R2) , is the set of points that satisfy the three
inequalities:

1).R1 +R2 > H(X,Y )

2).R1 > H(X|Y )

This means even if you’ve known Y(Alice knows Bob), X can not compress beyond H(X|Y ), and it’s
always smaller than H(X). Same case for Bob.

3).R2 > H(Y |X)

(2) and (3) declare that if there is a communication channel between Alice and Bob, or say they know
each other what they have, the H(X|Y ) is the natural boundaries that they can know the best. This
achievable rate region is shown in Figure 2.
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Figure 2: Achievable Rate Region

The significance of the Slepian-Wolf theorem is seen by comparing it with the entropy bound for
compression of single sources. Separate encoders which ignore the source correlation can achieve rates
only R1 + R2 � H(X + Y ) . However, for Slepian-Wolf coding, the separate encoders exploit their
knowledge of the correlation to achieve the same rates as an optimal joint encoder, namely, R1 + R2 �
H(X,Y ).

2 Coin Tosses

Alice and Bob are tossing a coin.
For x(Alice)andy(Bob) : Pr(1) = 0.5, P r(0) = 0.5, P r(x = y) = 0.75. They are correlated. This table
gives a p(x, y).

Figure 3:

Now Alice and Bob want to compress this tosses sequence. Because this is half-half probability, they
both need 1bit at least, which is 2bits totally to store. However, now if you use Slepian, you can compress
more than this. You can achieve:

R1 +R2 = H(X,Y )

=
3

8
⇤ log(8

3
) +

1

8
⇤ log 8 + 3

8
⇤ log(8

3
) +

1

8
⇤ log 8

= 3� 3

4
⇤ log 3

= 1.811

R1 � H(X|Y )

= h(
3

4
)

3



=
3

4
⇤ log(4

3
) +

1

4
⇤ log 4

= 2� 1.189

= 0.811.

Similarly, R2 � 0.811. So you can still compress more even there is no communication between X and
Y.

3 Proof: Typical Sequence

Before we prove this, let’s recall if we have only on single source. We call this a fixed-to-fixed N-length
coding, which depends on the typical sequence suppose you have xn 2 Xn is called typical sequence if

2�n(H(X)+✏)  Pr(xn)  2�n(H(X)�✏). If A(n)
✏ is a set of typical sequence, then

2�n(H(X)�✏)  |A(n)
✏ |  2�n(H(X)+✏)

This is called Asymmetric Equiputation Property. If you want to get a set of typical sequence, you
need to log the left and right side.

4 Another Proof: Random Binning

If we have f : xn ) 1, 2, ..., 2nR, then f(xn) = Random index from 1, 2, ..., 2nR. Consider g : 1, 2, ..., 2nR )
xn, which means find out a typical sequence that was signal to the index i and output that

P (n)
e = Pr(xn /2 A(n)

✏ ) + Pr(9yn 6= xn, yn 2 A(n)
✏ , f(yn) = f(xn))

=
X

xn2Xn

P (xn)Pr(9yn 2 A(n)
✏ ; f(yn) = f(xn))

= 3� 3

4
⇤ log 3


X

xn2Xn

P (xn)
X

yn2A
(n)
✏ :yn 6=xn

Pr((yn) = f(xn))


X

xn2Xn

P (xn)
X

yn2A
(n)
✏

2�nR

= 2�nR2n(H(X)+✏)

Whenever R > H(X)+ ✏, 2n(H(X)+✏) ) 0. So we can get a code arbitrarily close to H(X). Now we need
to extend this idea for that distributed.

What we have here two encoders:

f1 : xn ) 1, 2, ..., 2nR1

and

f2 : yn ) 1, 2, ..., 2nR2 .
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You can consider each of the index of bins, so whenever you have a sequence, you randomly throw it
in one of the bins. f1 and f2 are both random binning. The idea is the sequence we have is a typical
sequence but no bin will contain more than one typical sequence, cuz there’s no enough number of bits.
So only by looking at the bin, you can find out what the sequence was. The decoder g(i, j) : Find out

(xn, yn) 2 A
(n)
✏ , such that f1(xn) = i and f2(yn) = j.

When will this be successful? Again, let’s calculate the error P (n)
e .

E0 = (xn, yn) /2 A(n)
✏

E1 = 9x̃n 6= xn, (x̃n, yn) 2 A(n)
✏ ); f1(x̃n) = f1(x

n)

E1 = 9ỹn 6= yn, (x̃n, yn) 2 A(n)
✏ ); f2(ỹn) = f2(y

n)

E2 = 9(x̃n, ỹn), x̃n 6= xn, ỹn 6= yn, (x̃n, ỹn) 2 A(n)
✏ ); f1(x̃n) = f1(x

n), f2(ỹn) = f2(y
n)

P (n)
e = Pr(E0 [ E1 [ E2 [ E12)

 Pr(E0) + Pr(E1) + Pr(E2) + Pr(E12) > 0,

P r(E1) =
X

(

xn, yn)P (xn, yn)Pr(9x̃n, (x̃n, yn) 2 A(n)
✏ , f1(x̃n = f1(xn)))


X

(

xn, yn)P (xn, yn)
X

(

x̃n, (x̃n
1 , ỹ

n) 2 A(n)
✏ )2�nR1

= 2�nR1A(n)
✏ (X|Y )

 2�nR1 ⇤ 2n(H(X|Y )+✏.

E0 ) 0;

When R1 > H(X|Y )+ ✏, Pr(E1) ) 0; when R2 > H(Y |X)+ ✏, Pr(E2) ) 0; when R1+R2 > H(X,Y ),

Pr(E12) ) 0; Thus P (n)
e = 0.

What is the more e�cient encoder would be?
If X ⇠ Ber( 12 ), Y ⇠ Ber( 12 ), Pr(x = y) = 3

4 . X and Y are correlated. Suppose Pr(x 6= y)) = p,
Pr(x = y) = 1 � p). p = 1

4 in this case. Alice(X) compresses up to H(X), which is 1bit. Bob(Y) will
compress in the following way. He will take a random Bernoulli m ⇤ n(m < n) matrix � multiply the y
sequence and get a real integer number set. Let this number set mod2, which means if you have even
number, you place a 0; if you have a odd number, you place a 1. Eventualy you get n bits by this
multiplication and totally you have 1 + m

n bits. So the compression rate is 1 + m
n .

Now there are two things we need to know. First of all is what is the value of m from Y. This a problem
from a m ⇤ n bits to m bits. The following method can solve it.

Step: 1 Decode to find xn

Once you find xn, the unknown is yn.

�xn mod 2 ) �yn mod 2

= �(xn � yn) mod 2

= �zn mod 2

Here,

zn = z1z2...zn = xn � yn

5



Each of there z are iid.

Pr(zi = 1) = Pr(xi 6= yi) = p,

Pr(zi = 0) = 1� p.

Then find out zn from �znmod2. Once you find out zn, you can add it by xn and thus you get yn.
The condition of finding this zn :
The typical set of z is

2�n(H(X)�✏)  |A(n)
✏ (z)|  2�n(H(X)+✏)

in which,

H(z) = H(p) = �p log p� (1� p) log(1� p)

and,

|A(n)
✏ (z)| ⇠ 2nh(p)

9 a typical ˜z(n) 2 A
(n)
✏ (z) for which the probability

Pr(�z̃n = �zn mod 2)

The error probability

P (n)
e  2nh(p) ⇤ 2�m

if the error m > nh(p), then m
n > h(p) + c and P

(n)
e would be zero.
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1     Distributed Data Compression 

 From the previous lectures we have learn that for two data sources X and Y, one can acheive 
rates at R1 + R2 ≥  H(X  +  Y),  with  two  seperated  encoders  which  ignore  the  source  correlation.  However,  
if the two sources X and Y are correlated with each other, an optimal joint encoder can acheive 
compression rates at H(X,Y), by applying the Slepian Wolf Theorem.  

 Now let us consider a similar problem, supoose there are two set of data X and Y, which both 
have n number of elements (x1, x2, x3...xn) and (y1, y2, y3,... yn). These two set of data are corelated 
and not independent. The data sets are sent to two different encoders before being compressed together 
and being sent to a single joint decoder, as the relation shown in Figure 1.  

                           

              Figure 1: Block diagram of two correlated data sets 

 Such system is measured by the compress rate in bits per source symbol of the output streams of 
encoders. The single decoder is designed to be able to reconstruct the correlated data streams after 
compression in an optimal way. As we can see, encoder 1 has a rate of R1 = nH(X) while encoder 2 has 
a rate of R2 = nH(Y). The claim is if there is a communication channel between Encoder 1 and Encoder 
2, by Slepian Wolf Theorem, the achievable rate of compression is: 

  nH(X)  +  nH(Y)  ≥ nH(X,Y)              ∙∙∙∙∙∙∙    (1) 

which means it can be compressed to H(X,Y) bits/symbol. 
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1.1     Distributed Data Compression with Bernoulli Source 

  Now let us consider the following example: assume there are two correlated data sources X 
(x1,x2,x3...xn) and Y(y1,y2,y3...yn). X is Bernoulli(q) with the following properties: 

  Pr(xi = yi) = 1- p;;        Pr(xi  ≠  yi)  =  p. 

Hence, Y is also Bernoulli(p + q +2pq) since: 

  Pr(Y=1)  =  Pr(X = 1 and Y = X) + Pr(X = 0 and Y ≠  X) 

      =   q (1 - p) + (1 - q)p 

      =  p + q + 2pq 

The rate of compression we can achieve is to equal to: nh(q) + nh(p + q +2pq) bits. However, by the 
inequality (1) the optimal solution is to achieve nh(q) + nh(p) bits. 

 Since:  n[ H(X,Y) ]   =  n[ H(X)  +  H(Y|X) ] 

    = n[ H(X) + H(Z) ] 

      Where Zi = Xi +Yi mod 2, for i = 1 to n 

    = n[ h(q) + h(p) ] 

Notice it is always true that p < ଵଶ, implies that: 

  q ( 1 - 2p ) > 0          ∙∙∙∙∙∙∙∙∙∙∙>> p + q +2pq > p 

and nh(q) + nh(p) is a increasing function. 

 

 

 

 

 

1.2     Distributed Data Compression over Mod-2 Arithmetic  

 Suppose there are two data sources X (x1,x2,x3...xn) and Y(y1,y2,y3...yn)  over vector space Fn  = 
{0, 1}n . Let Z = X + Y. Notice that Z is also equal to X - Y or Y - X, due to fact that they are in mod-2 
arithmetic.  

 Figure 2 shows the block diagram of sources X, Y and Z, where Z is Bernoulli(p). 



                       

      Figure 2 

The rates of compression of X and Y is nH(X) and m bits, respectively. From what was discussed above, 
the achievable number of bits per symbol for such problem is: 

 H( X ) + ௠௡   =  h(q) + ௠௡    

Then we claim that there exists an m×n (m < n) matrix  Φ, such  that  m  ≈  nh(p).  With  such  matrix  Φ,  
source  data  Y  can  be  recovered  from  ΦY. 

 Here is the process of how to decode in the decoder: when we looking at the output of decoder, 
we  have  nH(X)  and  ΦY.  Then  do  the  following: 

 (1) decode X from nH(X); 

 (2) find  ΦX  simply  by  multiplying  with  each  other;; 

 (3)  find  ΦZ  =  Φ(X+Y)  =  ΦX  +  ΦY;; 

 (4)  recover  Z  from  ΦZ;; 

 (5) find Y from Y = X + Z. 

 However, when recovering  Z  from  ΦZ  from  step  (4),  there  is  no  unique  solution  Z.  But  since  any  
solution of Z would work for the problem purpose, we turn to the typical set of Z, with arbitrarily small 
error probability. First, let us put some definitions around here: 

We know that Z is a Bernoulli(p), let ΦZ = b for simple. For the typical set of Z: Aε
(n)(p) and | Aε

(n) | ≤ 2 
n(h(p)+ε . Now the goal is to find a vector Ẑ from the typical set Aε

(n) that satisfies ΦẐ = b. Such job could 
be complicated and require computer as a companion. But once we have the output Ẑ from whatever the 
tools we may used, we can recover Y from Y = X + Ẑ. 

 The probability of error Pe
(n)can be calculated in bounds of: 

 Pe
(n)  ≤  Pr( Z ∉ Aε

(n)(p) ) + Pr( ∃Z' ≠ Z; Z ∈ Aε
(n)(p) and ΦZ' = b ) 

  ≤ ∑ Pr  (  ௓ᇲ∈  ୅க(୬)(୮)ୟ୬ୢ  ୞′ஷ୞   ΦZᇱ =   b)  



To calculate Pr (ΦZ' = b), we first choose Φ to be randomly uniformly with iid Bernoulli(ଵଶ) entries. 

൥
𝛷11 ⋯ 𝛷1𝑛
⋮ ⋱ ⋮

𝛷𝑚1 ⋯ 𝛷𝑚𝑛
൩  ×   

𝑍1′
⋮
𝑍𝑛′

  =     
𝑏1
⋮
𝑏𝑚

 

    Φ matrix: m× n Z' b 

 Φ11Z1' + Φ12Z2' + ⋯ + Φ1nZn' = b1 

Since Φ is Bernoulli(1/2), the probability of making Z' to equal bi is equal to ଵଶ, implies that:  

 Pr (ΦZ' = b) = ଵଶ   ×  
ଵ
ଶ   ×  ⋯  ×  ଵଶ   =    ଵଶ೘. Substitute it back the error inequality:  

 Pe
(n) ≤ | Aε

(n)(p) | × ଵଶ೘ 

  ≤ 2௡(௛(௣)ା  ఌ) × 
ଵ
ଶ೘ 

 Pe
(n) goes to ଵଶnε' if m = n(h(p) + ε + ε' . 

Now that nh(q) + m = n[h(q) + ௠௡]  ≈  n[h(q)  +  h(p)]. 

 

 

1.3     Distribution Data Compression when two sources are closed 

 Consider a similar problem with the case that the two sources X (x1,x2,x3...xn) and Y(y1,y2,y3...yn)  
are very closed to each other (ie. X-Y to be minimum). The process diagram is shown in Figure 3 below: 

      Figure 3 



Let Z = X - Y, which can be considered as a noise function Ɲ(0, 𝜎ଶ). The job once again is to find Z 
from ΦZ = b. Since the noise figure should be as small as possible, we want to find   min 
||𝑍||௟ଶଶ , such that ΦZ = b. 

 

♠ Claim: Assuming that ΦΦ-1 is nonsingular, Ẑ = ΦT (ΦΦT)-1 b 

♠ Proof: suppose that Z satisfies ΦZ = b. 

 Then  ||Z||୪ଶଶ   =   |หZ −   Ẑ +   Ẑ  ห|୪ଶଶ   

   =  |หZ −   Ẑห|୪ଶଶ  + Z  Ẑ T(Z-  Ẑ) + ||Z||୪ଶଶ   

The term of Z  Ẑ T(Z-  Ẑ) goes to zero due to: 

   Ẑ T(Z-  Ẑ)  = bT(ΦΦT)-1Φ(Z -  Ẑ ) 

   = bT(ΦΦT)-1(b - b) 

   = 0 

Hence,     ||Z||୪ଶଶ  ≥ |หẐห|୪ଶଶ   

Now we have: ΦẐ = ΦΦT (ΦΦT)-1 b, which could be used as a solution. 

 

 

2     Linear Error-Correcting Code 

 

    
      Figure 4 



 In general, as Figure 4 shown, suppose we have a data sources X ∈ Fn  = {0, 1}n going through a 
communication channel, which flips 0 to 1 with probability of Pr(p),with some noises Z. the output Y of 
the channel is known. The process we discussed above is used to recover X by finding Z and calculating 
ΦY. Such processing code is called Linear Error-Correcting code. 


