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Low rank approximation and decomposition of
large matrices using error correcting codes
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Abstract—Low rank approximation is an important tool used
in many applications of signal processing and machine learning.
Recently, randomized algorithms were proposed to effectively
construct low rank approximations and obtain approximate
singular value decompositions of large matrices. Similar ideas
were used to solve least squares regression problems. In this
paper, we show how matrices from error correcting codes can
be used to find such low rank approximations and matrix
decompositions, and extend the framework to linear least squares
regression problems.

The benefits of using these code matrices are the following:
(i) They are easy to generate and they reduce randomness
significantly. (ii) Code matrices have low coherence and have a
better chance of preserving the geometry of an entire subspace of
vectors. (iii) For parallel and distributed applications, code matri-
ces have significant advantages over structured random matrices
and Gaussian random matrices. (iv) Unlike Fourier or Hadamard
transform matrices, which require sampling O(k log k) columns
for a rank-k approximation, the log factor is not necessary
for certain types of code matrices. (v) Fast multiplication is
possible with structured code matrices, so fast approximations
can be achieved for general dense input matrices. (vi) Under
certain conditions, the approximation errors can be better and
the singular values obtained can be more accurate, than those
obtained using Gaussian random matrices and other structured
random matrices. (vii) For least squares regression problem
min ‖Ax − b‖2 where A ∈ Rn×d, the (1 + ε) relative error
approximation can be achieved with O(d log(1/δ)/ε) samples,
with probability 1− δ, when certain code matrices are used.

Index Terms—Error correcting codes, low rank approximation,
matrix decomposition, randomized algorithms.

I. INTRODUCTION

MANY scientific computations, signal processing, data
analysis and machine learning applications, lead to

large dimensional matrices that can be well approximated by
a low dimensional (low rank) basis [35], [52], [26], [18]. It
is more efficient to solve such computational problems by
first transforming these high dimensional matrices into a low
dimensional space, while preserving the invariant subspace
that captures the essential information of the matrix. Low-
rank matrix approximation is an integral component of tools
such as principal component analysis (PCA) [30], as well
as is an important instrument used in many applications like
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computer vision (e.g., face recognition) [48], signal processing
(e.g., adaptive beamforming) [40], recommender systems [19],
information retrieval and latent semantic indexing [7], [6], web
search modeling [31], DNA microarray data [3], [41] and text
mining, to name a few examples. Several algorithms have been
proposed in the literature for finding low rank approximations
of matrices [35], [52], [26], [18], [11], [27]. Recently, research
focussed on developing techniques that use randomization for
computing low rank approximations and decompositions of
such large matrices [26], [45], [33], [50], [39], [32], [12]. It is
found that randomness provides an effective way to construct
low dimensional bases with high reliability and computational
efficiency. Similar ideas based on random sampling have been
proposed in the recent literature for solving least squares (`2)
linear regression problems [20], [45], [43], [12], [39], [21],
[13].

Randomization techniques for matrix approximations aim
to compute a basis that approximately spans the range of an
m×n input matrix A, by sampling the matrix A using random
matrices, e.g. i.i.d Gaussian [26]. This task is accomplished by
first forming the matrix-matrix product Y = AΩ, where Ω is
an n × ` random matrix of smaller dimension ` � {m,n},
and then computing the orthonormal basis of Y = QR that
identifies the range of the reduced matrix Y . It can be shown
that A ≈ QQ>A with high probability. Recently, it has been
observed that structured random matrices, like subsampled
random Fourier transform (SRFT) and Hadamard transform
(SRHT) matrices can also be used in place of fully random
matrices [50], [32], [39], [47]. This paper demonstrates how
matrices from error correcting codes can be a good choice for
computing such low rank approximations.

The input matrices whose low rank approximation is to
be computed usually have very large dimensions (e.g., in the
order of 106− 109 [26], [51]). In order to form a Gaussian (a
fully) random matrix that samples the input matrix, we need
to generate a large quantity of random numbers. This could
be a serious practical issue (in terms of time complexity and
storage). This issue can be addressed by using the structured
random matrices, like SRFT and SRHT matrices. An important
practical advantage of using these structured random matrices
is that their structure allows the computation of matrix-matrix
product at a cost of O(mn log2 `), making the algorithms
fast (also known as fast transforms) for general dense input
matrices. However, with these matrices mixing of columns
might not be as uniform, and there is potential loss in the
accuracy.

Another major drawback with fast transforms is that for
parallel and distributed applications, particularly when the
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input matrix is sparse and/or its columns are distributively
stored, it is found that FFT-like algorithms are significantly
slower due to communication issues or other machine related
issues (machines are optimized for matrix-vector operations)
[51]. Also for a rank-k approximation, these matrices require
sampling ` = O(k log k) columns. Other practical issues
arise such as: the Fourier Transform matrices require handling
complex numbers and the Hadamard matrices exist only for
the sizes which are in powers of 2. All these drawbacks can
be overcome if the code matrices presented in this paper are
used for sampling the input matrices.

In digital communication, information is encoded (by
adding redundancy) to (predominantly binary) vectors or code-
words, that are then transmitted over a noisy channel [14].
These codewords are required to be far apart in terms of some
distance metric for noise-resilience. Coding schemes usually
generate codewords that maintain a fixed minimum Hamming
distance between each other, hence they are widespread and act
like random vectors. We can define probability measures for
matrices formed by stacking up these codewords (see section
II-B for details). The idea is to use subsampled versions of
these code matrices as sampling matrices in the randomized
techniques for matrix approximations.

The idea of using code matrices for such applications is not
new in the literature. A class of dual BCH code matrices were
used in [2], [32] for Fast Johnson-Lindenstrauss Transform
(FJLT) to perform fast dimensionality reduction of vectors.
Code matrices have also been used in applications of sparse
signal recovery, such as compressed sensing [4] and group
testing [22], [37]. For matrix approximations, it is important
to show that the sampling matrices used can approximately
preserve the geometry of an entire subspace of vectors. In
section VI-C, we show that the subsampled code matrices with
certain mild properties preserve the geometry of vector sub-
spaces with high probability. Similar to Fourier and Hadamard
sampling matrices, fast multiplication is possible with code
matrices from certain class of codes due to their structure
(see section V for details). Hence, fast approximations can be
achieved for general dense input matrices, since the matrix-
matrix product can be computed in O(mn log2 `) cost with
these code matrices.

Importantly, the shortcomings of SRFT/SRHT matrices in
parallel and distributed environments can be overcome by
using code matrices and treating them as dense transforms (de-
tails in sections V, VIII). In addition, for certain subsampled
code matrices, the logarithmic factor in the number of samples
is not required (see section VI-E for an explanation). This
is a significant theoretical result that shows order optimality
can be achieved in the number of samples required with
deterministic matrices. Similar improvements were posed as
an open problem in [17] and in [39]. In the context of sparse
approximations such improvements appear as main results in
many places, see Table 1 of [5].

Randomized approximation algorithms are used to approxi-
mately solve overdetermined least squares regression problem
faster [20], [45], [21], [13]. Here, we are given a matrix
A ∈ Rn×d and a vector b ∈ Rn, with n � d. The goal is
to solve the least squares regression problem minx ‖Ax− b‖2

faster, (where ‖.‖2 is `2 norm) and output a vector x′ such
that, with high probability,

‖Ax′ − b‖2 ≤ (1 + ε)‖Ax̂− b‖2,

where x̂ is the `2 minimizer given by the Moore-Penrose
pseudo inverse of A, i.e., x̂ = A†b [24]. For details on the
applications where we encounter such extremely overdeter-
mined linear system of equations, we refer to [51]. The idea
of randomized approximation [20] is to use a sampling matrix
to reduce the dimensions of A and b, and then solve the
smaller problem to obtain x′. In section VII, we show how
the code matrices can be used as the sampling matrix in this
least squares regression problem.

The organization of the rest of this paper is as follows: Sec-
tion II gives the notation used, the problem set up and a brief
introduction to error correcting coding techniques. Section III
discusses the construction of the subsampled code matrices
and the intuition behind the construction. The algorithm of the
present paper is described in section IV and the computational
cost of the algorithm is discussed in section V. Section VI
discusses the error analysis of the algorithm, by first providing
the deterministic error bounds for the algorithm. To use these
deterministic error bounds, it is required to show that the
subsampled code matrices preserve the geometry of an entire
subspace of vectors with high probability. This is shown in
section VI-C. The bounds for the approximation errors and the
singular values obtained by the algorithm are derived in section
VI-D. In section VII, we extend the framework to linear
least squares (`2) regression problem and in section VIII, we
discuss the choice of error correcting codes for different types
of input matrices and computational environments. Section
IX illustrates the performance of code matrices via several
numerical experiments.

II. PRELIMINARIES

First, we present some of the notations used and give a brief
description of error correcting codes used in communication
systems and information theory.

A. Notation and Problem Formulation

Throughout the paper, ‖ · ‖2 refers to the `2 or spectral
norm. We use ‖ · ‖F for the Frobenius norm. The singular
value decomposition (SVD) of a matrix A is denoted by A =
UΣV > and the singular values by σj(A). We use ej for the
jth standard basis vector. Given a random subset T of indices
in {1, . . . , 2r} with size n and r ≥ dlog2 ne, we define a
restriction (sampling) operator ST : R2r → RT given by

(STx)(j) = xj , j ∈ T.

A Rademacher random variable takes values ±1 with equal
probability. We write ε for a Rademacher variable.

In low rank approximation methods, we compute an or-
thonormal basis that approximately spans the range of an
m×n input matrix A. That is, a matrix Q having orthonormal
columns such that A ≈ QQ>A. The basis matrix Q must
contain as few columns as possible, but it needs to be an
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accurate approximation of the input matrix. I.e., we seek a
matrix Q with k orthonormal columns such that,

‖A−QQ>A‖ξ ≤ ε, (1)

for a positive error tolerance ε and an integer ξ ≥ 2.
The best rank-k approximation of A with respect to both

Frobenius and spectral norm is given by the Eckart-Young
theorem [23], and it is Âk = UkΣkV

>
k , where Uk and

Vk are the k-dominant left and right singular vectors of A,
respectively and diagonal Σk contains the top k singular values
of A. So, the optimal Q in (1) will be Uk for ξ ∈ {2, F}.

B. Error Correcting Codes

In communication systems, data are transmitted from a
source (transmitter) to a destination (receiver) through physical
channels. These channels are usually noisy, causing errors in
the data received. In order to facilitate detection and correction
of these errors in the receiver, error correcting codes are used
[34]. A block of information (data) symbols are encoded into a
binary vector1, also called a codeword. Error correcting coding
methods check the correctness of the codeword received. The
set of codewords corresponding to a set of data vectors (or
symbols) that can possibly be transmitted is called the code.
As per our definition a code C is a subset of F`2, ` being an
integer.

A code is said to be linear when adding two codewords
of the code coordinate-wise using modulo-2 arithmetic results
in a third codeword of the code. Usually a linear code C is
represented by the tuple [`, r], where ` represents the codeword
length and r = log2 |C| is the number of information bits
that can be encoded by the code. There are ` − r redundant
bits in the codeword, which are sometimes called parity check
bits, generated from messages using an appropriate rule. It
is not necessary for a codeword to have the corresponding
information bits as r of its coordinates, but the information
must be uniquely recoverable from the codeword.

It is perhaps obvious that a linear code C is a linear subspace
of dimension r in the vector space F`2. The basis of C can
be written as the rows of a matrix, which is known as the
generator matrix of the code. The size of the generator matrix
G is r × `, and for any information vector m ∈ Fr2, the
corresponding codeword is found by the following linear map:

c = mG.

Note that all the arithmetic operations above are over the
binary field F2.

To encode r bits, we must have 2r unique codewords. Then,
we may form a matrix of size 2r × ` by stacking up all
codewords that are formed by the generator matrix of a given
linear coding scheme,

C︸︷︷︸
2r×`

= M︸︷︷︸
2r×r

G︸︷︷︸
r×`

. (2)

For a given tuple [`, r], different error correcting coding
schemes have different generator matrices and the resulting

1Here, and in the rest of the text, we are considering only binary codes. In
practice, codes over other alphabets are also quite common.

codes have different properties. For example, for any two
integers t and q, a BCH code [9] has length ` = 2q − 1
and dimension r = 2q − 1 − tq. Any two codewords in this
BCH code maintain a minimum (Hamming) distance of at least
2t + 1 between them. The pairwise minimum distance is an
important parameter of a code and is called just the distance
of the code.

As a linear code C is a subspace of a vector space, the null
space C⊥ of the code is another well defined subspace. This
is called the dual of the code. For example, the dual of the
[2q − 1, 2q − 1− tq]-BCH code is a code with length 2q − 1,
dimension tq and minimum distance at least 2q−1−(t−1)2q/2.
The minimum distance of the dual code is called the dual
distance of the code.

Depending on the coding schemes used, the codeword
matrix C will have a variety of favorable properties, e.g.,
low coherence which is useful in compressed sensing [36],
[4]. Since the codewords need to be far apart, they show
some properties of random vectors. We can define probability
measures for codes generated from a given coding scheme.
If C ⊂ {0, 1}` is an F2-linear code whose dual C⊥ has a
minimum distance above k (dual distance > k), then the code
matrix is an orthogonal array of strength k [16]. This means,
in such a code C, for any k entries of each codeword c say
c′ = {ci1 , ci2 , . . . , cik} and for any k bit binary string α, we
have

Pr[c′ = α] = 2−k.

This is called the k-wise independence property of codes. We
will use this property of codes in our theoretical analysis (see
section VI for details).

The codeword matrix C has 2r codewords each of length
` (a 2r × ` matrix), i.e., a set of 2r vectors in {0, 1}`. Given
a codeword c ∈ C, let us map it to a vector φ ∈ R` by
setting 1 −→ −1√

2r
and 0 −→ 1√

2r
. In this way, a binary

code C gives rise to a code matrix Φ = (φ1, . . . , φ2r )>. Such
a mapping is called binary phase-shift keying (BPSK) and
appeared in the context of sparse recovery (e.g., p. 66 [36]).
For codes with dual distance ≥ 3, this code matrix Φ will
have orthonormal columns. In section VI-C, we will show that
these code matrices with certain mild properties can preserve
the geometry of vector subspaces with high probability. Hence,
in the randomized techniques for matrix approximations, we
can use a subsampled and scaled version of this matrix Φ to
sample a given input matrix and find the active subspaces of
the matrix.

III. CONSTRUCTION OF SUBSAMPLED CODE MATRIX

For an input matrix A of size m×n, and a target rank k, we
choose r ≥ dlog2 ne as the dimension of the code (length of
the message vector) and ` > k as the length of the code. The
value of ` will depend on the coding scheme used, particularly
on the dual distance of the code (details in section VI-C). We
consider an [`, r]-linear coding scheme and form the sampling
matrix as follows: we draw the sampling test matrix say Ω as

Ω =

√
2r

`
DSΦ, (3)
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where
• D is a random n × n diagonal matrix whose entries

are independent random signs, i.e., random variables
uniformly distributed on {±1}.

• S is the uniformly random downsampler, an n×2rmatrix
whose n rows are randomly selected from a 2r × 2r

identity matrix.
• Φ is the 2r × ` code matrix, generated using an [`, r]-

linear coding scheme, with BPSK mapping and scaled
by 2−r/2 such that all columns have unit norm.

A. Intuition

The design of a subsampled code matrix is similar to the
design of SRFT and SRHT matrices. The intuition for using
such a design is well established in [47], [26]. The matrix
Φ has entries with magnitude ±2−r/2 and has orthonormal
columns when a coding scheme with dual distance of the codes
is ≥ 3 is used.

The scaling
√

2r

` is used to make the energy of the sampling
matrix equal to unity, that is, to make the rows of Ω unit
vectors. The purpose of multiplying by D is to flatten out
input vectors, we refer to [47] for further details. For a fixed
unit vector x, the first component of x>DSΦ is given by
(x>DSΦ)1 =

∑n
j=1 xjεjφj′1, where φj′1 are components of

the code matrix Φ, the index j′ depends on the downsampler
S and εj is the Rademacher variable from D. This sum clearly
has zero mean and since entries of Φ have magnitude 2−r/2,
the variance of the sum is 2−r. The Hoeffding inequality [28]
shows that

P{|(x>DSΦ)1| ≥ t̃} ≤ 2e−2
r t̃2/2.

That is, the magnitude of the first component of x>DSΦ is
about 2−r/2. Similarly, the argument holds for the remaining
entries. Therefore, it is unlikely that any one of the ` com-
ponents of x>DSΦ is larger than

√
2 log(2`)/2r, (the failure

probability is `−1).
The downsampler S is a formal way of saying, if n < 2r, we

choose n out of 2r possible codewords to form the sampling
matrix Ω. Uniform downsampling is used in the theoretical
analysis to get an upper bound for the singular values of Ω
(see section VI-D). In practice, we choose n numbers between
1 to 2r, use the binary representation of these numbers as the
message vectors (form M ) and use the generator matrix G
of the coding scheme selected to form the sampling matrix Ω
using (2) and BPSK mapping. For dense input matrices, it is
advantageous to choose these numbers (message vectors) to be
1 to 2dlog2 ne, to exploit the availability of fast multiplication
(see details in section V).

IV. ALGORITHM

We use the same prototype algorithm as discussed in [26]
for the low rank approximation and decomposition of an
input matrix A. The subsampled code matrices given in
(3), generated from a chosen coding scheme is used as the
sampling test matrix. The algorithm is as follows:

Algorithm 1 Prototype Algorithm
Input: An m× n matrix A, a target rank k.
Output: Rank-k factors U,Σ, and V in an approximate
SVD A ≈ UΣV >.
1. Form an n× ` subsampled code matrix Ω, as described
in Section III and (3), using an [`, r]−linear coding scheme,
where ` > k and r ≥ dlog2 ne.
2. Form the m× ` sample matrix Y = AΩ.
3. Form an m× ` orthonormal matrix Q such that
Y = QR.
4. Form the `× n matrix B = Q>A.
5. Compute the SVD of the small matrix B = ÛΣV >.
6. Form the matrix U = QÛ .

The prototype algorithm requires only two passes over the
input matrix (single pass algorithms can also be developed
[26, §5.5]), as opposed to O(k) passes required for classical
algorithms. This is particularly significant when the input
matrix is very large to fit in fast memory (RAM) or when
the matrices are streamed [26]. The randomized techniques
allow us to reorganize the calculations required to exploit the
input matrix properties and the modern computer architecture
more efficiently. The algorithm is also well suited for imple-
mentation in parallel and distributed environments [51]. For
more details on all the advantages of randomized methods
over classical techniques, we refer to [45], [50], [26].

Several algorithms have been developed in the literature
which build on the above prototype algorithm. An important
requirement (rather a drawback) of the prototype algorithm is
that, to obtain a good approximation, the algorithm requires
the singular values of the input matrix to decay rapidly [26].
Methods such as randomized power method [26], [42] and
randomized subspace iteration [26], [25] have been proposed
to improve the performance (accuracy) of the prototype al-
gorithm, particularly when the singular values of the input
matrix decay slowly. In these methods, step 2 in algorithm 1
is replaced by Y = (AA>)q

′
AΩ, where q′ is a small integer.

However, these algorithms require 2(q′ + 1) passes over A.
Use of structured random matrices like SRFT and SRHT
are proposed for faster computation of the matrix product
Y = AΩ [50], [32], for dense input matrices. Algorithm 1
can also be modified to obtain the eigenvalue decompositions
of square input matrices [26]. In all these modified algorithms,
we can replace the random sampling matrix by our subsampled
code matrix. For the analysis in the following sections, we
shall consider the prototype algorithm 1.

V. COMPUTATIONAL COST

The key advantage of using structured random matrices
(SRFT or SRHT) in the randomized algorithms is that, for
a general dense matrix we can compute the matrix-matrix
product Y = AΩ in O(mn log2 `) time, exploiting the struc-
ture of Fourier/Hadamard matrices [45], [50], [39], [32], [26].
The idea of fast multiplications was inspired by articles on
Fast Johnson-Lindenstrauss Transform (FJLT) [1], [2] where
it is shown that matrix-vector products with such structured
matrices can be achieved in O(n log2 `) time. Interestingly,
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Ailon and Liberty [2] give dual BCH code matrices and
Hadamard matrices (that are actually a special codes called
1st order Reed-Muller codes) as examples.

Many, if not most of the structured codes can be decoded
using the Fast Fourier Transform (FFT) [8]. The corresponding
2r × ` code matrix Φ of such structured codes (after BPSK
mapping) will have every column of Φ equal to some column
of a 2r×2r Hadamard matrix, see definition 2.2 in [2]. Hence,
for a general dense matrix in RAM, the matrix-matrix product
Y = AΩ with these structure code matrices can be achieved in
O(mn log2 `) time using the technique described in [2], [32].
If n < 2r, we choose the top 2dlog2 ne codewords of Φ as the
rows of Ω such that the columns of Ω are some columns of a
2dlog2 ne × 2dlog2 ne Hadamard matrix.

Fast multiplications are possible with matrices from another
class of codes known as cyclic codes. In cyclic codes, a
circular shift of a codeword results in another codeword of that
code. So a 2r×` code matrix Φ generated using an [`, r]-cyclic
code scheme will consist of 2r/` blocks of circulant matrices
of size ` × ` stacked up when appropriately rearranged. It is
known that the matrix-vector products with circulant matrices
can be performed in O(` log2 `) operations via FFT [24]. So
for a general dense input matrix, the matrix-matrix product
Y = AΩ with such code matrices can also be achieved in
O(mn log2 `) time.

The remaining steps (steps 3 − 6) of the algorithm can be
computed in O((m + n)k2) time using the row extraction
method described in [26]. Therefore, for a general dense input
matrix in RAM, the total computational cost of algorithm 1
using a structured code matrix is O(mn log2 `+ (m+ n)k2).

For sparse input matrices or when the columns of A are
distributively stored, we can choose codewords at random from
a desired code (as described earlier) making Ω unstructured
and Y = AΩ a dense transform, similar to a random sampling
matrix. The computational cost of the algorithm for such cases
is O(nz(A)` + (m + n)k2), where nz(A) is the number of
nonzero entries in the input matrix A. We will see that, for
code matrices with certain properties, ` = O(k/ε) which is
advantageous in these cases (compared to SRFT/SRHT which
require ` = O(k log k/ε)). Additional details of the choice
of the code matrix for different types of input matrices and
computational environments are given in section VIII.

VI. ANALYSIS

This section discusses the performance analysis of the
subsampled code matrices as sampling matrices in algorithm 1.
First, we give the deterministic error bounds for the algorithm
for a given sampling matrix Ω. Then, we show how code
matrices preserve the geometry of an entire subspace of
vectors by establishing connection to Johnson Lindenstrauss
Transforms (JLT) and random sign matrices via the k-wise
independence property of the codes. Finally, we give the
bounds for the approximation error and the singular values
obtained from the algorithm.

A. Setup

Let A be an m × n input matrix with SVD given by A =
UΣV >, and partition its SVD as follows

A = U

k n−k[ ]
Σ1

Σ2

n[ ]
V >1 k

V >2 n−k
. (4)

Let Ω be the n × ` test (sampling) matrix, where ` is the
number of samples. Consider the matrices

Ω1 = V >1 Ω and Ω2 = V >2 Ω. (5)

The objective of any low rank approximation algorithm is to
try and approximate the subspace which spans the top k left
singular vectors of A. The test matrix Ω is said to preserve
the geometry of an entire subspace of vectors, if for any
orthonormal matrix V , a matrix of the form V >Ω is well
conditioned [26].

B. Deterministic Error bounds

Algorithm 1 constructs an orthonormal basis Q for the range
of Y , and the goal is to quantify how well this basis captures
the action of the input matrix A. Let QQ> = PY where PY
is the unique orthogonal projector with range(PY )=range(Y ).
If Y is full rank, we can express the projector as : PY =
Y (Y >Y )−1Y >. We seek to find an upper bound for the
approximation error given by, for ξ ∈ {2, F}

‖A−QQ>A‖ξ = ‖(I − PY )A‖ξ.

The deterministic upper bound for the approximation error for
algorithm 1 is given in [26]. We restate theorem 9.1 in [26]
below:

Theorem 1 (Deterministic error bound): Let A be m×n ma-
trix with singular value decomposition given by A = UΣV >,
and fixed k ≥ 0. Choose a test matrix Ω and construct the
sample matrix Y = AΩ. Partition Σ as in (4), and define
Ω1 and Ω2 via (5). Assuming that Ω1 is full row rank, the
approximation error satisfies for ξ ∈ {2, F}

‖(I − PY )A‖2ξ ≤ ‖Σ2‖2ξ + ‖Σ2Ω2Ω†1‖2ξ . (6)

An elaborate proof for the above theorem can be found in
[26]. Using the submultiplicative property of the spectral and
Frobenius norms, and the Eckart-Young theorem mentioned
earlier, equation (6) can be simplified to

‖A−QQ>A‖ξ ≤ ‖A− Âk‖ξ
√

1 + ‖Ω2‖22‖Ω
†
1‖22. (7)

Recently Ming Gu [25], developed deterministic lower bounds
for the singular values obtained from randomized algorithms,
particularly for the power method [26]. Given below is the
modified version of Theorem 4.3 in [25] for algorithm 1.

Theorem 2 (Deterministic singular value bounds): Let A =
UΣV > be the SVD of A, for a fixed k, and let V >Ω be
partitioned as in (5). Assuming that Ω1 is full row rank, then
algorithm 1 must satisfy for j = 1, . . . , k:

σj ≥ σj(Ak) ≥ σj√
1 + ‖Ω2‖22‖Ω

†
1‖22
(
σk+1

σj

)2 (8)



6 MANUSCRIPT SUBMITTED

where σj are the jth singular value of A and Ak is the rank-k
approximation obtained by our algorithm.
The proof for the above theorem can be seen in [25]. For
a given sampling matrix Ω, the major challenge is to show
that Ω1 is indeed full rank. That is, we need to show that for
any orthonormal matrix V , with high probability V >Ω is well
conditioned.

C. Subsampled Code Matrices Preserve Geometry

Recall from section III the construction of the ‘tall and thin’
n × ` subsampled error correcting code matrices Ω. One of
the critical facts to show is that these matrices approximately
preserve the geometry of an entire subspace of vectors. This
will imply that Ω1 will be full rank and we can use the
deterministic bounds mentioned above for our analysis. To
prove this, we establish connections between the properties
of code matrices and two important results existing in the
literature. The first connection is to the well known Johnson-
Lindenstrauss Transform (JLT) [29] and the second is with
random sign matrices. Both these connections depend on the
k-wise independence property of the code matrices.

1) Connection to Johnson-Lindenstrauss Transform: One
of the primary results developed in the randomized matrix
algorithms literature was establishing the relation between the
Johnson-Lindenstrauss Transform (JLT) and preserving the
geometry of subspaces [45]. We first give the definition of
JLT and then state this important result. We will then show
that code matrices under certain mild conditions satisfy JLT.

Definition 1: A matrix Ω ∈ Rn×` is Johnson-Lindenstrauss
Transform with parameters ε, δ or JLT(ε, δ) for any 0 < ε, δ <
1, if for any vector v ∈ Rn, it holds

(1− ε)‖v‖22 ≤ ‖v>Ω‖22 ≤ (1 + ε)‖v‖22
with probability 1 − δ, under certain conditions on ` which
will depend on ε, δ and the reduced dimension desired.
So if the sampling matrix Ω is JLT, it preserves the distance of
any vector v whose dimensionality reduction we seek. Sarlos
[45] gave the important relation between JLT and random
matrix sampling (also known as subspace embedding). The
following lemma which is corollary 11 in [45] gives this
relation.

Lemma 3: Let 0 < ε, δ < 1 and f be some function. If
Ω is a JLT from Rn to O(k log(k/ε)/ε2.f(δ)), then for an
orthonormal matrix V ∈ Rn×k, n ≥ k we have

Pr(∀ ∈ [1..k] : |1− σi(V >Ω)| ≤ ε) ≥ 1− δ

The above lemma shows that, if the sampling matrix Ω is
JLT and ` = O(k log(k/ε)) (choosing f(δ) close to ε2), then
the singular values of V >Ω are bounded, i.e., V >Ω is well
conditioned with high probability. So, if our subsampled code
matrix is a JLT, then it will preserve the geometry of V with
high probability.

Next, we give two results that show that code matrices with
certain mild properties satisfy the JLT property. The first result
is by Ailon and Liberty [2], where they show a matrix Ω
which is 4-wise independent will satisfy JLT. Interestingly,
they give the 2 error correcting dual BCH codes as examples

and also show how fast multiplication can be achieved with
code matrices. A small drawback here is that the maximum
entries of A need to be restricted.

The second (stronger) result is by Clarkson and Woodruff
[12] (see Theorem 2.2), where they show if Ω is a
4dlog(

√
(2)/δ)e-wise independent matrix, then Ω will satisfy

the JLT property. We know that a code matrix with dual
distance > k is k-wise independent. Thus, any error correcting
code matrix with a dual distance > 4 (more than 2 error
correcting ability) will preserve the geometry of and entire
subspace of vectors (i.e., Ω1 is full rank) with high probability.

2) Code matrices as random sign matrices: Any code
matrix with a dual distance > 4 will preserve the geometry
of V . However, we need the number of samples to be
` = O(k log(k/ε)), which is similar to a subsampled Fourier
or Hadamard matrix. Next, we show that O(k) can be achieved
in the number of samples required for code matrices if the
codes satisfy certain conditions.

We know that code matrices show some properties of
random matrices as the distance of the code increases. So we
can treat code matrices as random sign matrices having certain
probabilistic distributions. Indeed a code with dual distance
above k supports k-wise independent probability measure.
This property of code matrices helps us to use the following
lemma given in [12, Lemma 3.4] which states,

Lemma 4: Given an integer k and ε, δ > 0. If Ω is
ρ(k + log(1/δ))-wise independent with an absolute constant
ρ > 1, then for an orthonormal matrix V ∈ Rn×k and
` = O(k log(1/δ)/ε), with probability at least 1− δ we have

‖V >ΩΩ>V − I‖2 ≤ ε.

Thus, a sampling matrix Ω which is dk + log(1/δ)e-wise
independent preserves the geometry of V with number of
samples (length) ` = O(k/ε). Hence, a code matrix with dual
distance > dk + log(1/δ)e will preserve the geometry of V
with ` = O(k).

Therefore, any code matrix with dual distance > 4 will
preserve the geometry of V with ` = O(k log(k/ε)) and if
the dual distance is > k, then the code matrix can preserve
the geometry of V with ` = O(k/ε).

D. Error Bounds

The following theorem gives the approximation error
bounds when the subsampled code matrix is used as a test
matrix Ω in Theorem 1. The upper and lower bounds for the
singular values obtained are also given.

Theorem 5 (Error bounds for code matrix): Let A be m×n
matrix with singular values σ1 ≥ σ2 ≥ σ3 ≥ . . .. Generate a
subsampled code matrix Ω from a desired coding scheme as
in (3) with r ≥ dlog2(n)e as the dimension of the code. For
any code matrix Ω with dual distance > 4 and length ` =
O(k log(k/ε)/ε2.f(δ)), the approximation error for algorithm
1 satisfies, for ξ ∈ {2, F}

‖A−QQ>A‖ξ ≤ ‖A− Âk‖ξ

√
1 +

(1 + η)n

(1− ε)2`
(9)
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for a small constant η > 0 with probability at least 1−δ and for
any code matrix Ω with dual distance ≥ dk+ log(1/δ)e and
length ` = O(k log(1/δ)/ε), the approximation error satisfies

‖A−QQ>A‖F ≤ ‖A− Âk‖F (1 + ε) (10)

with failure probability δ. The bounds for the singular values
obtained are:

σj ≥ σj(Ak) ≥ σj√
1 +

(
(1+η)n
(1−ε)2`

)(
σk+1

σj

)2 (11)

The proof of the theorem follows from the deterministic
bounds given earlier. For the approximate error bounds given
in (9), we start from equation (7) in Theorem 1. The terms
that depend on the choice of the test matrix Ω are ‖Ω2‖22 and
‖Ω†1‖22. We saw that the code matrix Ω preserves the geometry
of the entire subspace of vectors. This also ensures that the
spectral norm of Ω†1 is under control. From Lemma 3 and
Lemma 3.6 in [33], we have

‖Ω†1‖22 =
1

σ2
k(Ω1)

≤ 1

(1− ε)2
.

We bound the spectral norm of Ω2 as follows ‖Ω2‖22 =
‖V >2 Ω‖22 ≤ ‖V2‖22‖Ω‖22 = ‖Ω‖22 = σ2

1(Ω), since V2 is an
orthonormal matrix. The following two lemmas give the upper
bound for the singular values of Ω. The first lemma shows that
if a code has dual distance ≥ 3, the resulting code matrix Φ
has orthonormal columns.

Lemma 6 (Code matrix with orthonormal columns): A code
matrix Φ generated by a coding scheme which results in codes
that have dual distance ≥ 3, has orthonormal columns.

Proof. If a code has dual distance 3, then the corresponding
code matrix (stacked up codewords as rows) is an orthogonal
array of strength 2 [16]. This means all the tuples of bits, i.e.,
{0, 0}, {0, 1}, {1, 0}, {1, 1}, appear with equal frequencies in
any two columns of the codeword matrix C. As a result, the
Hamming distance between any two columns of C is exactly
2r−1 (half the length of the column). This means after the
BPSK mapping, the inner product between any two codewords
will be zero. It is easy to see that the columns are unit norm
as well.

This fact helps us use Lemma 3.4 from [47] which shows that
randomly sampling the rows of such a code matrix results in
a well-conditioned matrix and gives bounds for the singular
values.

Lemma 7 (Row sampling): Let Φ be a 2r × `
code matrix (with orthonormal columns), and let M =
2r.maxj=1,...,2r ‖e>j Φ‖22. For a positive parameter α, select
the sample size

n ≥ αM log(`).

Draw a random subset T from {1, . . . , 2r} by sampling n
coordinates without replacement. Then√

(1− ν)n

2r
≤ σ`(STΦ) and σ1(STΦ) ≤

√
(1 + η)n

2r
(12)

with failure probability at most

`.

[
e−ν

(1− ν)(1−ν)

]α log(`)

+ `.

[
eη

(1 + η)(1+η)

]α log(`)

,

where ν ∈ [0, 1) and η > 0.
Since n is fixed and M = ` for a code matrix (all the entries
of the matrix are ±2−r/2), we get the condition n ≥ α` log(`).
The parameters α, ν and η are chosen based on the inputs `
and n, and the failure probability accepted. The bounds on the
singular values of the above lemma are proved in [47] using
matrix Chernoff bounds. Since we use the scaling

√
2r

` , the
bounds on the singular values of the subsampled code matrix
Ω will be√

(1− ν)n

`
≤ σ`(Ω) and σ1(Ω) ≤

√
(1 + η)n

`
. (13)

We substitute the above values for ‖Ω2‖2 and ‖Ω†1‖2 in (7) to
get the error bounds in (9) and substitute these values in (8)
of theorem 2 to get the bounds on singular values (11).

Clarkson and Woodruff [12] also give the Frobenius norm
error bound for low rank approximation using k-wise inde-
pendent sampling matrices. The error bound in (10) is straight
from the following lemma which is a modification of theorem
4.2 in [12].

Lemma 8: If Ω ∈ Rn×` is a ρ(k + log(1/δ))-wise inde-
pendent sampling matrix, then for ` = O(k log(1/δ)/ε), with
probability at least 1− δ, we have

‖A−QQ>A‖F ≤ ‖A− Âk‖F (1 + ε). (14)

Proof of this lemma is clear from the proof of theorem 4.2 in
[12]. This completes the proof of theorem 5. The two norm
error bound for the second case (dual distance > k) will be
same as in equation (9).

The upper bounds for the Frobenius and spectral norm errors
(9) obtained for the code matrices are similar to the bounds
obtained for the Gaussian random matrices and structured
random matrices like SRFT/SRHT given in the review article
by Halko et.al [26]. For the structured random matrices, (1+ε)
optimal Frobenius norm error has been derived in [39] and
[10]. We have a similar (1 + ε) optimal Frobenius norm error
obtained for code matrices with dual distance > k in (10).
Importantly, we show that this optimal error bound can be
achieved with number of samples ` = O(k/ε) as opposed to
O(k log k/ε) required for structured random matrices. Details
on how to generate such code matrices with dual distance
> k and length ` = O(k/ε) is given in section VIII. It is an
interesting future work, to further improve the spectral norm
error bounds for both cases (dual distance > 4 and > k)
of code matrices and also improve the Frobenius norm error
bound for the dual distance > 4 case.

a) Differences in the construction: An important differ-
ence between the construction of subsampled code matrices
given in (3) and the construction of SRHT or SRFT given in
[26], [47] is in the way these matrices are subsampled. In the
case of SRHT, a Hadamard matrix of size n × n is applied
to input matrix A and ` out of n columns are sampled at
random (n must be a power of 2). In contrast, in the case
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of subsampled code matrices, a 2r × ` code matrix generated
from an [`, r]-linear coding scheme is considered, and n out
of 2r codewords are chosen. The subsampling will not affect
the k-wise independent property of the code matrix (or the
distinctness of rows) when uniformly subsampled. This need
not be true in the case of SRHT. The importance of the
distinctness of rows is discussed next.

E. Logarithmic factor

A crucial advantage of the code matrices is that they have
very low coherence. Coherence is defined as the maximum
inner product between any two rows. This is in particular
true when the minimum distance of the code is close to half
the length. If the minimum distance of the code is d then
the code matrix generated from an [`, r]-code has coherence
equal to `−2d

2r . For example, if we consider dual BCH code
(see sec. II-B) the coherence is 2(t−1)

√
`+1−1

2r . Low coherence
ensures near orthogonality of rows. This is a desirable property
in many applications such as compressed sensing and sparse
recovery.

For a rank-k approximation using subsampled Fourier or
Hadamard matrices, we need to sample O(k log k) columns.
This logarithmic factor emerges as a necessary condition in
the theoretical proof (given in [47]) that shows that these
matrices approximately preserve the geometry of an entire
subspace of input vectors. The log factor is also necessary
to tackle the worst case input matrices. The discussions in
sec. 11 of [26] and sec. 3.3 of [47] give more details. In the
case of certain subsampled code matrices, the log factor does
not seem necessary to tackle the worst case input matrices. To
see why this is true, let us consider the worst case example
for orthonormal matrix V described in Remark 11.2 of [26].

An infinite family of worst case examples of the matrix V
is as follows. For a fixed integer k, let n = k2. Form an n×k
orthonormal matrix V by regular decimation of the n × n
identity matrix. That is, V is a matrix whose jth row has a
unit entry in column (j − 1)/k when j ≡ 1 (mod k) and is
zero otherwise. This type of matrix is troublesome when DFT
or Hadamard matrices are used for sampling.

Suppose that we apply Ω = DFR> to the matrix V >,
where D is same as in (3), F is an n× n DFT or Hadamard
matrix and R is `×n matrix that samples ` coordinates from n
uniformly at random. We obtain a matrix X = V >Ω = WR>,
which consists of ` random columns sampled from W =
V >DF . Up to scaling and modulation of columns, W consists
of k copies of a k×k DFT or Hadamard matrix concatenated
horizontally. To ensure that X is well conditioned (preserve
geometry), we need σk(X) > 0. That is, we must pick at
least one copy of each of the k distinct columns of W . This is
the coupon collector’s problem [38] in disguise and to obtain
a complete set of k columns with non-negligible probability,
we must draw at least k log(k) columns.

In the case of code matrices, we apply a subsampled code
matrix Ω = DSΦ to the matrix V >. We obtain X = V >Ω =
V >DSΦ, which consists of k randomly selected rows of the
code matrix Φ. That is, X consists of k distinct codewords
of length `. The code matrix has low coherence and all rows

are distinct. If we use a code matrix with dual distance > k,
then X contains k rows which are k-wise independent (near
orthonormal) and σk(X) > 0; as a result the geometry of V
is preserved and the log factor is not necessary. Thus, for the
worst case scenarios we have an O(log k) factor improvement
over other structured matrices. More importantly, this shows
that the order optimal can be achieved with the immediate
lower bound of O(k) in the number of samples required with
deterministic matrices.

VII. LEAST SQUARES REGRESSION PROBLEM

In this section, we extend the framework to solve the
least squares (`2) regression problem. As discussed in the
introduction, the idea of randomized approximations is to
reduce the dimensions of A ∈ Rn×d and b ∈ Rn with n� d,
by pre-multiplying them by a sampling matrix Ω ∈ Rn×`, and
then to solve the smaller problem quickly,

min
x
‖Ω>Ax− Ω>b‖2. (15)

Let the optimal solution be x′ = (Ω>A)†Ω>b. Here we
analyze the performance of code matrices as the sampling
matrix Ω. We again use the relation between code matrices
and the two existing results, i.e., JLT and random sign matrices
and use the results developed by Sarlos [45], and Clarkson and
Woodruff [12] for our analysis.

We know that, any code matrix with dual distance > 4
satisfies JLT. Sarlos in [45] has derived the performance of
JLT matrices as sampling matrices in the `2 regression problem
(15). The following theorem is a modification of theorem 12
in [45].

Theorem 9: Suppose A ∈ Rn×d, b ∈ Rn. Let Z =
minx ‖Ax − b‖2 = ‖Ax̂ − b‖2, where x̂ = A†b is the
minimizer. Let 0 < ε, δ < 1 and Ω ∈ Rn×` be a JLT
and Z̃ = minx ‖Ω>(Ax − b)‖2 = ‖Ω>(Ax′ − b)‖2, where
x′ = (Ω>A)†Ω>b. Then, with probability at least 1 − δ, we
have
• If ` = O(log(1/δ)/ε2),

Z̃ ≤ (1 + ε)Z. (16)

• If ` = O(d log d. log(1/δ)/ε),

‖Ax′ − b‖2 ≤ (1 + ε)Z. (17)

• If ` = O(d log d. log(1/δ)/ε2),

‖x̂− x′‖2 ≤
ε

σmin(A)
Z. (18)

The proof for this theorem can be seen in [45].
If
√
‖b‖22 −Z2 ≥ γ‖b‖2 for some 0 < γ ≤ 1, then we can

replace the last equation (18) by

‖x̂− x′‖2 ≤ ε
(
κ(A)

√
γ−2 − 1

)
‖x̂‖2, (19)

where κ(A) is the 2 norm condition number of A. (This
equation is given to be consistent with the results given in the
related literature [20], [21], [51].) Thus, any code matrix with
dual distance > 4 can be used as the sampling matrix in the
least squares regression problem. Again, the performance of
such code matrices is very similar to that of structured random
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matrices (SRHT) given in [21], [10]. Fast multiplication can
be used to sample dense input matrix A.

Similar to the earlier analysis, we can expect improved
performance of code matrices when we treat code matrices
as random sign matrices and use the k-wise independence
property of codes. For this, we use the bounds derived by
Clarkson and Woodruff [12] for random sign matrices. The
following theorem which is a modification of Theorem 3.1 in
[12] gives the upper bound for the regression problem in this
case.

Theorem 10: Given ε, δ > 0, suppose A ∈ Rn×d, b ∈ Rn
and A has rank at most k. If Ω is a ρ(k + log(1/δ))-wise
independent with an absolute constant ρ > 1, and x′ and x̂
are solutions as defined before, then for ` = O(k log(1/δ)/ε),
with probability at least 1− δ, we have

‖Ax′ − b‖2 ≤ (1 + ε)‖Ax̂− b‖2.

This theorem shows that, if the code matrix is dk+log(1/δ)e-
wise independent (i.e., dual distance > dk + log(1/δ)e), we
can get ε−approximate solution for the regression problem
with ` = O(k log(1/δ)/ε) samples. Thus, here too, we have
the log k factor gain in the number of samples over other
structured random matrices (SRHT) given in [21], [10].

Typically, A is full rank. So in this case, we will need a
code matrix with dual distance > d and length of the code ` =
O(d log(1/δ)/ε). Article [51] discusses the applications where
such overdetermined system of equations are encountered. In
typical applications, n will be in the range of 106−109 and d in
the range of 102−103 (details in [51]). In the next section, we
discuss how we can generate code matrices with dual distance
> d and minimum length `, and discuss the choice of the
error correcting codes for different type of input matrices and
computational environments.

VIII. CHOICE OF ERROR CORRECTING CODES

A. Codes with dual-distance at least k + 1

The requirement of k-wise independence of codewords
translates to the dual distance of the code being greater than k.
Since a smaller code (less number of codewords, i.e., smaller
r) leads to less randomness in sampling, we would like to use
the smallest code with dual distance greater than k.

One of the choices of the code can be the family of dual
BCH codes. As mentioned earlier, this family has length `,
dimension t log(` + 1) and dual distance at least 2t + 1.
Hence, to guarantee dual distance at least k, the size of
the code must be 2

k log(`+1)
2 = (` + 1)k/2. We can choose

n vectors of length k log(`+1)
2 and form the codewords by

simply multiplying these with the generator matrix (over F2)
to form the subsampled code matrix. Therefore, forming these
code matrices will be much faster than generating n× ` i.i.d
Gaussian random matrices or random sign matrices which have
k-wise independent rows.

In general, from the Gilbert-Varshamov bound of coding
theory [34], it is known that linear codes of size ∼

∑k
i=0

(
`
i

)
exist that have length ` and dual distance greater than k.
The construction of these code families are still randomized.
However, when k = O(`), or the dual distance is linearly

growing with the code length, the above construction of dual
BCH code does not hold in general. Infinite families of codes
that have distance proportional to the length are called asymp-
totically good codes. The Gilbert-Varshamov bound implies
that asymptotically good linear codes of size ∼ 2`h(

k
` ) exist2,

that have length ` and dual distance greater than k.

B. Choice of the code matrices

Depending on the types of input matrices and the compu-
tational environments, we can choose different types of code
matrices that best suit the applications. If the input matrix
is a general dense matrix which can be stored in the fast
memory (RAM), we can choose any structured code matrix
with dual distance > 4, r = dlog2 ne (or choose message
vectors to be 1 to 2dlog2 ne) and ` = O(k log k) (eg., dual
BCH codes), so that the fast multiplication technique can be
exploited (the log factor will not be an issue). This will be
similar to using any other structured random matrices like
SRFT or SRHT. In fact, Hadamard matrices are also a class of
linear codes, with variants known as Hadamard codes, Simplex
codes or 1st-order Reed-Muller codes. The dual distance of
Hadamard code is 3. However, with code matrices (say dual
BCH codes), subsampling of columns is not required, thus
reducing randomness and cost significantly.

If the input matrix is sparse and/or is distributively stored,
and for parallel implementation, we can choose a code matrix
with dual distance > k and generate them as mentioned
earlier and as in section III. These code matrices are not
structured and we can treat them as dense transforms (any
random matrices). This will help us overcome the issues
with SRFT/SRHT for sparse input matrices and in parallel
and distributed applications. These code matrices are easy
to generate (than i.i.d Gaussian random matrices), the log
factor in the number of samples is not necessary, and so using
code matrices in these applications will reduce randomness
and cost significantly. If the log factor is not an issue (for
smaller k), then we can choose any code matrix with dual
distance > 4 and r = dlog2 ne, and form Y = AΩ as a dense
transform. These code matrices are almost deterministic and
unlike SRFT/SRHT, subsampling of columns is not required.

In practice, code matrices generated by any linear coding
scheme can be used in place of Gaussian random matrices. As
there are many available classes of algebraic and combinatorial
codes, we have a large pool of candidate matrices. In this paper
we chose dual BCH codes for our numerical experiments as
they particularly have low coherence, and turn out to perform
quite well in practice.

IX. NUMERICAL EXPERIMENTS

The following experiments will illustrate the performance of
subsampled code matrices as sampling matrices in algorithm
1. We compare the performance of dual BCH code matrices
against the performance of random Gaussian matrices and
subsampled Fourier transform (SRFT) matrices for different
input matrices from various applications.

2h(x) ≡ −x log2 x− (1− x) log2(1− x) is the binary entropy function
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Fig. 1. (A) The theoretical minimum σ`+1 and approximate error as a function of the number of random samples ` using dual BCH code, Gaussian, SRFT
and SRHT matrices as sampling matrix in algorithm 1 for input matrix Kohonen. (B) Estimates for top 255 singular values computed by algorithm 1 using
dual BCH code, Gaussian, SRFT and SRHT matrices and the exact singular values by svds function.

Our first experiment is with a 4770 × 4770 matrix named
Kohonen from the Pajek network (a directed graph’s matrix
representation), available from the UFL Sparse Matrix Col-
lection [15]. Such graph Laplacian matrices are commonly
encountered in machine learning and image processing ap-
plications. The performance of the dual BCH code matrix,
Gaussian matrix, subsampled Fourier transform (SRFT) and
Hadamard (SRHT) matrices are compared as sampling matri-
ces Ω in algorithm 1. For SRHT, we have to subsample the
rows as well (similar to code matrices) since the input size is
not a power of 2. All experiments were implemented in matlab
v8.1.

Figure 1(A) gives the actual error e` = ‖A−Q(`)(Q(`))>A‖
for each ` number of samples when a subsampled dual BCH
code matrix, a Gaussian matrix, SRFT and SRHT matrices
are used as sampling matrices in algorithm 1, respectively.
The best rank-` approximation error σ`+1 is also given. Figure
1(B) plots the singular values obtained from algorithm 1, for
` = 255 and different sampling matrices Ω used. The top
255 exact singular values of the matrix (available in the UFL
database) are also plotted. We observe that, in practice, the
performance of all four sampling matrices are similar.

Table I compares the errors e` for ` number of samples,
obtained for a variety of input matrices from different ap-
plications when subsampled dual BCH code, Gaussian and
SRFT matrices were used. All matrices were obtained from
the UFL database [15]. Matrices lpi ceria3d (4400×3576) and
deter3 (21777×7647) are from linear programming problems.
S80PI n1 (4028×4028) is from an eigenvalue/model reduction
problem. Delaunay (4096 × 4096), EPA (4772 × 4772) and
Kohonen are graph Laplacian matrices. We observe that, for
small `, in the first five examples the error performance of code
matrices is slightly better than that of Gaussian matrices. For
higher `, the error remains similar to the error for Gaussian
matrices. Therefore, in practice, we can use code matrices
in place of fully random (Gaussian) matrices or structured
random matrices due to the advantages of code matrices over
the other sampling matrices, as discussed in the previous
sections. Next, we illustrate the performance of algorithm 1
with different sampling matrices in a practical application.

Eigenfaces: Eigenfaces is a popular method for face recog-

TABLE I
COMPARISON OF ERRORS

MATRIX ` DUAL BCH GAUSSIAN SRFT
LPICERIA3D 31 21.8779 23.7234 23.3688
S80PI 63 3.8148 3.8492 3.7975
DELAUNAY 63 6.3864 6.3988 6.3829
LPICERIA3D 63 15.4865 18.3882 16.3619
DETER3 127 9.2602 9.2658 9.2984
EPA 255 5.5518 5.5872 5.4096
KOHONEN 511 4.2977 4.2934 4.2610

TABLE II
COMPARISON OF THE NUMBER OF INCORRECT MATCHES

RANK DUAL BCH
p

GAUSSIAN
p

SRFT
p

T-SVD

k 10 20 10 20 10 20
10 18 13 19 15 21 18 26
20 14 11 14 12 16 12 13
30 10 08 13 08 12 09 10
40 09 08 08 07 08 10 06

nition that is based on Principal Component Analysis (PCA)
[48], [46]. In this experiment (chosen as a verifiable compar-
ison with results in [25]), we demonstrate the performance
of randomized algorithm with different sampling matrices on
face recognition. The face dataset is obtained from the AT&T
Labs Cambridge database of faces [44]. There are ten different
images of each of 40 distinct subjects. The size of each image
is 92×112 pixels, with 256 gray levels per pixel. 200 of these
faces, 5 from each individual are used as training images and
the remaining 200 as test images to classify.

In the first step, we compute the principal components
(dimensionality reduction) of mean shifted training image
dataset using algorithm 1, with different sampling matrix Ω
and different p values. Next, we project the mean-shifted
images into the singular vector space using the singular vectors
obtained from the first step. The projections are called feature
vectors and are used to train the classifier. To classify a
new face, we mean-shift the image and project it onto the
singular vector space obtained in the first step, obtaining
a new feature vector. The new feature vector is classified
using a classifier which is trained on the feature vectors from
the training images. We used the in-built MATLAB function
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classify for feature training and classification. We compare
the performance of the dual BCH code matrix, Gaussian
matrix and SRFT matrix against exact truncated SVD (T-
SVD). The results are summarized in Table II. For p = 10
dual BCH code matrices give results that are similar to those
of truncated SVD, and for rank k < 40, p = 20 our results
are superior.

X. CONCLUSION

This paper advocated the use of matrices generated by
error correcting codes as an alternative to random Gaussian
or subsampled Fourier/Hadamard matrices for computing low
rank matrix approximations. Among the attractive properties
of the proposed approach are the numerous choices of pa-
rameters available, ease of generation, reduced randomness
and cost, and the near-orthogonality of rows. We showed
that any code matrix with dual distance > 4 preserves the
geometry of an entire subspace of vectors. Indeed if the dual
distance of the code matrix is > k, then the length of the
code (sampling complexity) required is in O(k), thus leading
to an order optimal in the worst-case guaranteed sampling
complexity, an improvement by a factor of O(log k) over
other known deterministic matrices. We saw that fast mul-
tiplication is possible with structured code matrices, resulting
in fast approximations for general dense input matrices. The
implementation issues of FFT-like structured random matrices
in the parallel and distributed environments can be overcome
by using code matrices as sampling matrices.

It is known that Gaussian matrices perform much better
in practice compared to their theoretical analysis [26]. Our
code matrices (a) are almost deterministic, and (b) have ±1
entries. Still, they perform equally well (as illustrated by
experiments) compared to random real Gaussian matrices
and complex Fourier matrices. Because of the availability of
different families of classical codes in the rich literature of
coding theory, many possible choices of code matrices are at
hand. One of the contributions of this paper is to open up these
options for use as structured sampling operators in low-rank
approximations and least squares regression problem.

Interesting future works include improving the approxima-
tion error bounds obtained in this paper, and extending the
framework of code matrices to other similar applications. The
connections between code matrices and JLT and random sign
matrices might lead to improved analysis in other applications
of codes such as sparse recovery [4].
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