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Abstract—We consider a generalization of the well-known
nonadaptive group testing problem. In our generalization, tests
or measurements are performed in the presence of a number of
unknown but fixed pretenders, that will, with certain probability
be active (pretend as being defective) during any test. We show
some simple extensions of the achievability results of group
testing tailored for this case.

I. INTRODUCTION

This note is a companion paper of an invited presentation by
the first author in the Allerton conference, and demonstrates
the power of simple random choice in the group testing
problem.

Combinatorial group testing is an old and well-studied
problem. There is a set of n elements among which at most
t are defective. The smallest number of yes/no tests, that
identify the defective items is log

∑t
i=0

(
n
i

)
≈ t logn. The

main objective of a search problem is to identify the defective
configuration using the number of tests that is as close to this
minimum as possible.

In the group testing problem, a group of elements are tested
together, and if this particular group contains any defective
element, the test result is positive. Based on the test results
of this kind one identifies (with an efficient algorithm) the
defective configuration using the smallest possible number of
tests. The collection of tests is called a group testing scheme.
Group testing schemes can be adaptive (see, e.g., [4]), where
the design of one test may depend on the results of preceding
tests, or non-adaptive, the interest of this paper, where all the
tests are designed together. If the number of designed tests is
m, then a non-adaptive group testing scheme is equivalent to
the design of a binary test matrix of size m × n where the
(i, j)th entry is 1 if the ith test includes the jth element; it is
0 otherwise. As the test results, we see the Boolean OR of the
columns corresponding to the defective entries. It is known
that the matrix must have disjunct property (defined later) to
be a good group testing matrix. The best known lower bound
on the number of required tests in terms of the number of
elements n and the maximum number of defective elements
t is given by [6], m = Ω

(
t2

log t logn
)
. The existence of non-

adaptive group testing schemes with m = O(t2 logn) is also
known for some time [4], [9], [14].

Generally, constructing groups testing schemes is a difficult
problem. As one of the ways of attacking it, it has been
suggested to construct schemes that permit a small probability
of error (either missing defectives, or allowing false positives).

Such schemes were considered under the name of weakly
separated designs in [11], [12], [15]. With this relaxation it is
be possible to reduce the number of tests to be proportional
to t logn [15]. Related notions and constructions are explored
in [3], [8], [13].

A. Problem Statement

In this paper we study a generalization of the nonadaptive
group testing problem: finding a sparse set of (at most) t
defective items in a large population of size n with small
number of tests, when there are fixed but unknown pretenders
in the system. A pretender item is in fact non-defective, but
sometimes it happens to pretend like a defective item. We
denote the role of a pretender i to be active (pretend like a
defective) or passive (act as a healthy item) in the j-th test
by Xji, and assume Xji’s are independent across the pretenders
and across the tests, and they all distributed as p = P[Xji = 1].

More precisely we have a set of n items indexed by an
integer in [n], which includes a set of |T | ≤ t defectives.
There is another set S ⊂ [n], with |S| = τ and S ∩ T = ∅,
includes defective items. Each test j corresponds to picking a
subset Aj ⊂ [n] and ask whether Aj includes any defectives.
The answer to this question is given by

Yj =


1 if |Aj ∩ T | ≥ 1,
1 if |Aj ∩ S| ≥ 1 and ∃i ∈ Aj ∩ S : Xji = 1
0 otherwise.

(1)

In detection phase, we have to find T̃ , the set of detected
defectives, based on the observations:

T̃ = g(Y1, Y2, . . . , Ym),

where m is the number of tests.
It is clear that the behavior of the system is random due

to the stochastic behavior of the pretenders. Therefore, any
desired results would be a stochastic statement. Under the
model explained above, we are interested in the following two
problems:

(i) Perfect recovery: For a given δ > 0, how many
measurements do we need to be able to guarantee that

P[T̃ 6= T ] < δ,

i.e., to be able to find the set of defective items with
probability at least 1− δ?

(ii) Majority recovery: For a given δ > 0 and ε > 0, how
many measurements do we need to guarantee the total



number of false positives and false negatives does not
exceed 2ε fraction of the size of defective items:

P[|T̃ \ T |+ |T \ T̃ | ≤ 2ε|T |] ≥ 1− δ.

The following notations have been adopted in this paper

n total number of elements
m number of tests
A the m× n test matrix
t maximum number of defectives
τ number of unreliable elements or pre-

tenders
p pretend probability or probability of any

pretender being active
[n] set integers {1, 2, . . . , n}

Remark 1 (Difference with noisy group testing). The
generalization that we consider above is different from the
usual noisy group testing where the output of the test travels
through a noisy channel (such as binary symmetric channel
or Z-channel) before they are seen [1], [2], [5], [10].

II. ACHIEVABILITY VIA RANDOM SAMPLING

We have the following result for majority recovery.

Theorem 1. Suppose there exist at most t defective items
among a total n items. There exists an m× n test-matrix A,
such that even in the presence of an unreliable set with size τ
and pretend probability p, 1 − ε proportion of all defectives
item can be identified with probability 1 − o(1), ε > 0, as
long as,

m ≥ 3t lnn

1− e−
tε
t+pτ

. (2)

In particular, when pτ � t, a sufficient condition is m ≥
3
ε
(t+ pτ) logn.

We will need the following simple lemma.

Lemma 2.
∑t
i=0

(
n
i

)
≤ (ne)t

tt−1
.

Proof of Thm. 1: Suppose, T ⊂ [n] is the set of
defectives. The recovery will be successful as long as we return
a set T ′ such that r ≡ |T ∩ T ′| ≥ (1− ε)|T |.

Our object of interest is the probability of error Pe, the
probability of existence of a pair T and T ′, |T |, |T ′| ≤ t that
A fails to distinguish between, where r < (1− ε)|T |.

We assume the matrix A is chosen randomly from the
ensemble of all m×n matrix in the following way. Each entry
of A is 1 with probability q ≡ 1

t+pτ , and it is zero with the
remaining probability. In other words, in each test we include
an item with probability q. We will show that the probability
of error Pe in this case is o(1) which will imply existence
of a matrix A that achieves probability of error o(1) (similar
argument appears in random coding, c.f. [7, Sec. 5.5]).

Assume the unknown set of unreliable elements is S ∈ [n],
with |S| = τ. Recall that, in our setting S ∩ (T ∪ T ′) = ∅. A
given test will be able to distinguish between T and T ′ if in
that test one of the following two events occur:

• No item from the set S that is active is included and no
item from set T is included and at least one item from
the set T ′ \ T is included.

• No item from the set S that is active is included and no
item from set T ′ is included and at least one item from
the set T \ T ′ is included.

The probability that any one test will be successful to
distinguish between T and T ′ is therefore (here we are taking
the sizes of T and T ′ exactly equal to t and not less than equal
to, which is permissible without much loss of generality),

2(1− pq)τ(1− q)t(1− (1− q)t−r)

= 2
(
1−

p

t+ pτ

)τ(
1−

1

t+ pτ

)t(
1−

(
1−

1

t+ pτ

)t−r)
≥ 2 · 3−

pτ
t+pτ 3−

t
t+pτ

(
1− e−

t−r
t+pτ

)
≥ 2
3

(
1− e−

εt
t+pτ

)
,

where in the second line we have used inequalities 1−x ≤ e−x
for all x and 1− x ≥ 3−x for any x ≤ 0.17 (which is true for
any t ≥ 6). We have also used the fact that r < (1− ε)|T | ≤
(1− ε)t.

Hence the probability that A fails to distinguish between T
and T ′ is (

1−
2

3

(
1− e−

εt
t+pτ

))m
.

Therefore, for this ensemble, if m is given by Eqn. (2),

Pe ≤
( t∑
i=0

(
n

i

))2(
1−

2

3

(
1− e−

εt
t+pτ

))m
≤

( (ne)t
tt−1

)2
e
− 2m
3

(
1−e

− εt
t+pτ

)
≤

( et

tt−1

)2 → 0,

as t grows. This proves the theorem. Notice that, for x very
small e−x ∼ 1 − x. Hence for pτ � t, we have m ≥ 3

ε
(t +

pτ) lnn.
The above result can be modified slightly to cover the case

of perfect recovery, albeit with a price.

Theorem 3. There exists an m × n test-matrix A that, even
in the presence of τ pretender items with pretend probability
p, can identify the exact set of defective items with an
overwhelming probability, provided that

m ≥ 3t(t+ pτ) lnn. (3)

Proof: As before, let the test matrix A be an m × n
binary matrix with i.i.d. entries, where each entry is 1 with
probability q ≡ 1

t+pτ .
Let S be the set of pretenders, T be the true set of defectives,

and T ′ be an alternative set of size T . Define r ≡ |T ∩ T ′|. A
test (a single row of the measurement matrix) can distinguish
between T and T ′ iff Y = 0 for one and Y = 1 for the other
one. That happens only if



• Every elements for S in the pool is negative, and pool
does not include any item from T , but at least one item
from T ′ \ T ; or

• Every elements for S in the pool is negative, and pool
does not include any item from T ′, but at least one item
from T \ T ′;

Therefore, the probability for a test to be able to distinguish
between T and T ′ is given by

2(1− pq)τ(1− q)τ(1− (1− q)t−r)

= 2
(
1−

p

t+ pτ

)τ(
1−

1

t+ pτ

)t(
1−

(
1−

1

t+ pτ

)t−r)
≥ 2 · 3−

pτ
t+pτ 3−

t
t+pτ

(
1−

(
1−

1

t+ pτ

)t−(t−1))
≥ 2

3(t+ pτ)
,

where we have used r ≤ t − 1. Assuming the measurement
matrix has m independent rows, the probability of failure in
distinguishing between T and T ′ will be bounded by(

1−
2

3(t+ pτ)

))m
≤ e−

2m
3(t+pτ) .

Taking union bound over all choices of T, T ′ we have the
probability of error bounded by,( (ne)t

tt−1

)2
e
− 2m
3(t+pτ) ≤

( (e)t

tt−1

)2
e
− 2m
3(t+pτ)

+2t lnn → 0,

where we have substituted the value of m from Eqn. (3).
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