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Abstract—An encoding of data for digital storage is called
smooth, if, for any small change in the raw data, only a
proportionately small change has to be made in the encoded
data. In this paper, we consider the problem of smooth encoding
for ordinal data, i.e., ranking of objects. It is shown that, simple
efficient smooth encoding for storage (as well as compression) of
rankings is possible with respect to the well-known Kendall τ
metric on permutations.

I. INTRODUCTION

Ordinal data conveys information about the relational prop-
erties of data instead of their absolute numerical values. In
various applications, such as in social sciences or economics,
the true value of data is frequently missing, erroneous or
misleading, while on the other hand relative ordering or
ranking of data is easily computable.

Ranking of data is represented usually by a permutation.
However digital storage in databases with conventional media
is done by writing integers from a discrete alphabet (most
frequently, binary) in the memory. Hence, for storage pur-
poses, ordinal datasets, namely rankings, are mapped to binary
vectors. This encoding is straight-forward in most of the cases,
and it is well-known that to store a permutation of n elements,
one needs about n log2 n bits of storage.

In many cases, the complete ranking is too big to store,
and only some partial information might be of interest. For
example, in a recommendation system for restaurants (such
as YELP.com), the ranking at the top matters more than the
intricacies at the bottom of the list. For these reasons, a ranking
may be compressed allowing some distortion in recovery. In
such cases, the amount of storage needed, and the error in
recovery allowed, naturally present a rate-distortion theory of
permutations [1].

Most of the ordinal data, generated from recommender
systems and search engines and/or stored in distributed storage
systems (such as, cloud storage), undergoes small, but frequent
changes which have to be accounted for in the representa-
tion/compressed format. Smooth representation techniques sat-
isfy the need for fast processing of such volatile data. Updating
stored digital data requires access and time, and therefore
bandwidth and energy. If the changes in ordinal data are large,
then it may be inevitable to update a large number of stored
symbols. Nevertheless, it is desirable to have sublinear (in
storage amount) updates in encoded data for comparably small

changes in the original ordinal data, especially in BigData
applications. This problem, under the name of update-efficient
error-correcting codes, was recently addressed in [2] in the
context of binary data and channel coding. For compression of
standard binary data, the smoothness of lossless compression
was studied in [3].

It is not clear in advance if smooth compression is plausible
for ordinal data, given that near-optimal sorting and compres-
sion algorithms map points in Sn to points {0, 1}n that obey
a near-uniform distribution and may lie at a large average
Hamming distance from each other. In this paper, we show
that such smooth representation and compression is possible
for permutations with respect to the very popular and useful
Kendall τ distance and its generalizations. In the following
section, we present some preliminaries regarding the space of
permutations. In Sections III and IV, we, respectively for the
lossless and the lossy cases, show the smoothness property of
a storage algorithm.

II. PRELIMINARIES

A permutation is a bijection σ : [n] → [n], that is,
for any i, j P [n], i ‰ j, one has σ(i) ‰ σ(j). We let Sn
denote the set of all permutations of the set [n], i.e., the
symmetric group of order n!. For any σ P Sn, we write
σ = (σ(1), σ(2), ¨ ¨ ¨ , σ(n)), the vector representation of a
permutation, where σ(i) is the image of i P [n] under the
permutation σ. The inverse σ−1 of a permutation σ is a
permutation in which an element and the position that it
occupies are exchanged.

To store a permutation on n elements, one needs log2(n!) «
n log2(n{e) bits. However, to directly store the vector repre-
sentation naively, one ends up using n log2 n bits. To get rid
of this extra O(n) bits, we may encode the permutation to its
Lehmer code first.

A permutation σ P Sn may be uniquely encoded to its
Lehmer code (also called the inversion vector), xσ P Hn fi

[0, 1] ˆ [0, 2] ˆ ¨ ¨ ¨ ˆ [0, n − 1], where xσ(i) = |{j P [n] :
j ă i+ 1, σ−1(j) ą σ−1(i+ 1)}|, i = 1, . . . , n− 1. In words,
xσ(i), i = 1, . . . , n− 1 is the number of inversions (pairs out
of order) in the permutation σ for which i + 1 is the first
element. For instance, we have



σ xσ
2 1 6 4 3 7 5 9 8 1 0 1 0 3 1 0 1

It is well known that the Lehmer code is bijective, and simple
reconstruction algorithms are known [4]. They are of particular
interest for compression, given that they perform a zero-
distortion transform from the domain of ordinals to the domain
of quantitative data.

Now, the ith coordinate of a Lehmer code can be stored
using rlog2(i + 1)s bits without any loss. Hence, a total of
řn−1
i=1 rlog2(i+ 1)s « log2(n!) bits are used for storage.
An representation f : Sn → {0, 1}m is termed as a source

code here. When m ě log2(n!) the representation is lossless,
and otherwise the representation is a lossy compression.

Definition 1: A source code f : Sn → {0, 1}m is said to
be (u, t)-smooth with respect to a distortion measure d :
SnˆSn → R+Y {0}, if for any π, σ P Sn, d(π, σ) ď u implies
dH(f(π), f(σ)) ď t, where dH(¨, ¨) denotes the Hamming
distance.

The metric on permutation that is of interest to us in
this paper is the Kendall τ metric. Kendall τ distance is a
natural metric on permutations, that was introduced in [5] for
application in statistics, and then adapted as a suitable measure
for various application in computer science and bioinformatics
(e.g., [6], [7]) and most recently in error-correcting codes [8],
[9].

Definition 2: The Kendall τ distance dτ(¨, ¨) between any
two permutations is the minimum number of pairwise adjacent
swaps needed to convert one to other. Formally, let I(σ) denote
the number of inversions in σ P Sn. For any two permutations
σ, π,

dτ(σ, π) = I(σπ−1)

= |{(i, j) P [n]2 : π−1(i) ą π−1(j), σ−1(i) ă σ−1(j)}|.

In what follows, we consider a (u, t)-smooth codes in the
context of Kendall metric. A practical generalization of dτ,
called weighted Kendall metric has recently been proposed in
[10], [11]. The generalization of the result presented in this
paper to weighted Kendall metric will appear in the full version
of this paper.

Finally, other interesting and practical distances on permu-
tations, such as the Ulam metric [12], may be considered to
construct smooth codes 1.

III. LOSSLESS REPRESENTATION

In this section, we exhibit a smooth mapping for the
Kendall τ distance which illustrates the approach to be pursued
for more general distance measures. The ideas behind the
techniques were used in the context of constructing error-
correcting codes in [14].

1Another popular metric, called the Spearman’s footrule, does not lead to
any interesting question beyond the case for Kendall τ metric, because of
their equivalence within a constant factor [13].

Define the `1 distance function on Hn as

d1(x,y) =
n−1
ÿ

i=1

|x(i) − y(i)|, (x,y P Hn) (1)

with the computations performed over the set of integers. For
instance, if σ1 = (2, 1, 4, 3) and σ2 = (2, 3, 4, 1), then the
Lehmer codes of σ1 and σ2 equal xσ1

= (1, 0, 1) and xσ2
=

(1, 1, 1). To compute the distance dτ(σ1, σ2), we note that
σ−11 = σ1 and so I(σ2σ−11 ) = I((1, 4, 3, 2)) = 3. Observe that
the mapping σ→ xσ is a weight-preserving bijection between
Sn and Hn, although it is not distance preserving. Indeed,
dτ(σ1, σ2) = 3 while d1(xσ1

, xσ2
) = 1. It can actually be

shown [8] that dτ(σ1, σ2) ě d1(xσ1
, xσ2

).
We make use of the binary Gray code, which is a mapping

φs from the ordered set of integers [0, 2s − 1] to {0, 1}s,
with the property that the images of two successive inte-
gers differ in exactly one bit. Suppose that bs−1bs−2 . . . b0,
bi P {0, 1}, 0 ď i ă s, is the binary representation of an
integer u P [0, 2s−1]. By definition, set bs = 0 and construct
φs(u) = (gs−1, gs−2, . . . , g0), where

gj = (bj + bj+1) (mod 2), j = 0, 1, . . . s− 1. (2)

The Gray map for the first 10 integers looks as follows:

0|
1|
2|
3|
4|
5|
6|
7|
8|
9|
...

−→

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 1

...

Note the “reflective” nature of the map: the last 2 bits of the
second block of four are a reflection of the last 2 digits of the
first block with respect to the horizontal line; the last 3 bits
of the second block of eight follow a similar rule, and so on.

It is straightforward to see that |i − j| ě dH(φs(i), φs(j))
for any two i, j P {0, 1, . . . , 2s − 1}.

Let us now describe the representation mapping for per-
mutations as follow. Assume that one is given σ P Sn,
with Lehmer code xσ = (xσ(1), . . . , xσ(n − 1)). Let the
representation map f : Sn → {0, 1}m be of the form

f(σ) = (φm1
(xσ(1)), . . . , φmn−1

(xσ(n− 1))),

where mi ” rlog2 is and m =
řn−1
i=1 mi ă log2(n!)+n. The

underlying mapping is (u, u)-smooth for any integer u. In
addition, the overhead of the method compared to the optimal
(not necessarily smooth) compression scheme is at most n
bits.

The above analysis works when u = o(n logn). But, the
largest possible value of the Kendall distance is

(
n
2

)
. Indeed,

this maximum occurs when two permutations are exactly in
the reverse order in the vector notation (e.g., (1, 2, . . . , n) and
(n, n-1, . . . , 1)). Hence a small change in ranking may mean
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Fig. 1. The table of Gray map showing that the difference between two
integer is 2`−1+ 1 where ` is the location (indexed from right) of the second
left-most coordinate where the Gray codes differ.

an update with Kendall τ distance u = O(n3{2). However,
because m ă n log2 n, this will mean that almost all bits
needs to be changed in the digital representation, and we end
up being far from smooth. In the following we will show that,
this is not the case. The mapping remains (u, t)-smooth even
when u = Ω(n logn), with a t much less than m.

To show this we need to use the “reflective” property [14]
of the Gray map.

Lemma 1: If |i − j| ď w, then dH(φs(i), φs(j)) ď

rlog2ws+ 1, for all integer w ě 1.
Proof: Suppose, dH(φs(i), φs(j)) = t. Let i0 ă i1 ă

¨ ¨ ¨ ă it−1 are the coordinates where φs(i) and φs(j) differ
(the coordinates start with 0 and ends at s − 1). From the
reflective property of the Gray map (see, Fig. 1) the difference
between i and j is at least 2it−2 +1. Now, the minimum value
of it−2 is t− 2. Hence, whenever, dH(φs(i), φs(j)) ě t, we
must have |i− j| ě 2t−2 + 1.

Let us now substitute for t = rlog2ws + 2 above. Hence,
dH(φs(i), φs(j)) ą rlog2ws + 1 implies |i − j| ě 2rlog2ws +
1 ě w + 1. Therefore, whenever, |i − j| ď w, we must have,
dH(φs(i), φs(j)) ď rlog2ws+ 1.

The next theorem shows how this lemma translate to the
smoothness of entire representation of permutation.

Theorem 2: Suppose, for π, σ P Sn, dτ(π, σ) = w. Then,

dH(f(σ), f(π)) ď (n− 1)
(

log2
w

n− 1
+ 2

)
(3)

Proof: Assume, for σ and π the corresponding two
inversion vectors are xσ = (xσ(1), . . . , xσ(n − 1)) and
xπ = (xπ(1), . . . , xπ(n− 1)). Now,

d1(xσ, xπ) ď w,

and
d1(xσ(i), xπ(i)) = wi, i = 1, . . . , n− 1.

Clearly,
řn−1
i=1 wi ď w, and from Lemma 1,

dH(φmi
(xσ(i)), φmi

(xπ(i))) ď rlog2wis+ 1,

whenever wi ě 1. Hence, assuming total number of nonzero
wis to be N,

dH(f(σ), f(π)) ď
ÿ

i=1 to n−1:wi‰0

(rlog2wis+ 1)

ď
ÿ

i=1 to n−1:wi‰0

log2wi + 2N

ď N log2

řn−1
i=1 wi

N
+ 2N

ď (n− 1)
(

log2
w

n− 1
+ 2

)
,

where we have used the concavity of the log function and
Jensen’s inequality.

From the above, we claim that the representation of per-
mutations by f defined above is smooth everywhere. First of
all, the mapping is (u, t)-smooth, with t = min

{
u, (n −

1)
(

log2
u
n−1 + 2

)}
. In particular, when u = O(n), t = u.

But, recall, Kendall distance can be as large as
(
n
2

)
= Ω(n2).

The above theorem tells us when u = Ω(n1+δ), t =
δn log2 n+O(n) = δm+ o(m), for any δ ą 0.

In the next section we show that, not only the lossless
representation, but a the scalar quantization lossy source
coding algorithm [1, Sec. V] for compression of rankings, is
also smooth.

IV. LOSSY COMPRESSION

Assume, we want to construct a (u, t)-smooth code that
compresses the permutations with a worst-case distortion
guarantee D. In the lossy compression, a source code C P Sn is
a set of permutation such that, given any σ P Sn, there exists
an π P C such that dτ(σ, π) ď D. The elements of C are
then represented and stored in binary. A lossy compression
algorithm, a simple scalar quantization, is presented in [1,
Sec. V].

The algorithm is a generalization of the lossless represen-
tation above. Given any permutation σ, in the first step of the
algorithm, its Lehmer code xσ is found. Then each coordinate
of xσ is independently quantized with uniform quantization
levels. For example, the ith coordinate may take value in
0, 1, . . . , i. We divide this coordinate in `i different levels with
any two levels uniformly separated by 2Di. We must have,
Di = 2(i+1)D

(n+1)(n−2) , so that,
řn−1
i=1 Di = D. For details, we

refer the reader to [1] 2.
Suppose this compression algorithm is (u, t)-smooth. We

will find the values of t given u next. Suppose, ui is the
absolute difference in each coordinate of the Lehmer code
from a permutation σ and its updated version σ 1 (that is,
|xσ(i) − xσ 1(i)| = ui). Clearly,

řn−1
i=1 ui = d1(xσ, xσ 1) ď

2The distortion here is measured as the `1 distance of Lehmer code, and
not the Kendall τ distance. However, it was shown in [15] recently that this
distance is very close to Kendall τ distance and the average case rate-distortion
properties are same for these two distances.



dτ(σ, σ 1) = u. Now if q is the quantizer function in the ith
coordinate, then clearly, |q(xσ(i))−q(xσ 1(i))| ď ui+2Di, or
difference in each coordinate is upper bounded by ui + 2Di.

But from Lemma 1,

t ď
ÿ

i=1 to n−1:ui+2Di‰0

rlog2(ui + 2Di)s+ 1

ď
ÿ

i=1 to n−1:ui+2Di‰0

log2(ui + 2Di) + 2(n− 1)

ď (n− 1) log2

řn−1
i=1 (ui + 2Di)

n− 1
+ 2(n− 1)

ď (n− 1)
(

log2
u+ 2D

n− 1
+ 2

)
.

And, hence, conclusions similar to the previous section can be
drawn. In particular, when u = O(n1+δ) for some 0 ă δ ď 1,
and u ą D, then the amount of update is only δn log2 n +
O(n).
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