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Security in Locally Repairable Storage
Abhishek Agarwal and Arya Mazumdar

Abstract—In this paper we extend the notion of locally
repairable codes to secret sharing schemes. The main problem
we consider is to find the optimal ways to distribute shares of
a secret among a set of storage-nodes (participants) such that
the content of each node (share) can be recovered by using
contents of only few other nodes, and at the same time the
secret can be reconstructed by only some allowable subsets
of nodes. As a special case, an eavesdropper observing some
set of a specified nodes (such as less than certain number
of nodes) does not get any information. In other words,
we propose to study a locally repairable distributed storage
system that is secure against a passive eavesdropper that can
observe some subsets of nodes.

We provide a number of results related to such systems
including upper-bounds and achievability results on the
number of bits that can be securely stored with these
constraints.

I. INTRODUCTION

We start with a bit of notation. Suppose [n] ≡
{1, 2, . . . ,n}. For any set A, 2A denotes the power set of
A. For any vector x ∈ Fnq and I ⊆ [n], xI denotes the
projection of x onto the coordinates I. For singleton sets
we write xi ≡ x{i}. a|b denotes a divides b. The unit
of entropy in this paper is q-ary. An (n,k)-MDS code
represents a maximum distance separable (MDS) code
with length n and dimension k over some finite field.

Secret sharing schemes were proposed by Shamir and
Blakley [2], [17] to provide security against an eaves-
dropper with infinite computational capacity. Consider
the secret as a realization of a uniform random vari-
able (rv) s. Suppose that shares of the secret are to be
distributed among n participants (storage nodes) such
that a set of shares belonging to As ⊂ 2[n], is able to
determine the secret. As is called the access structure
of the secret sharing scheme. Denote the share of a
participant (or node) i∈ [n] by ci and let c= (c1c2 . . . cn).
A secure scheme has the property that a subset of
shares in the block-list Bs ⊂ 2[n] are unable to determine
anything about the secret. Thus, H(s|cB) = H(s) for any
B ∈ Bs and H(s|cA) = 0 for any A ∈ As, where H(·)
denotes the entropy. For a standard monotone secret
sharing scheme the classes As and Bs must have the
following properties, A′ ⊃ A,A ∈ As =⇒ A′ ∈ As;B

′ ⊂
B,B ∈ Bs =⇒ B′ ∈ Bs; and Bs ⊂ 2[n] \ As. For a perfect
secret sharing scheme we have the above monotone
property and Bs = 2

[n] \ As. Perfect schemes for access
structures of the form As = {A ⊂ [n] : |A| ≥m} are called
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threshold secret sharing schemes. We refer to [1] for a
comprehensive survey of secret sharing schemes.

A convenient property of schemes that need to store
data in a distributed storage system is local repairability
[6] i.e. any storage node can be repaired by accessing
a small subset of other nodes, much smaller than is re-
quired for decoding the complete data. Error-correcting
codes with the local repair property – locally repairable
codes (LRC) – have been the center of a lot of research
activities lately [3], [6], [11], [18]. Consider an n length
code over a q-ary alphabet, C ⊂ Fnq of size |C| = qk. The
code is said to have locality r, if for every i, 1 ≤ i ≤ n,
there exists a set Ri ⊂ [n] \ {i} with |Ri| ≤ r such that
for any two codewords c,c′ satisfying ci 6= c′i, we have
cRi
6= c′Ri

. In a code with locality r, any symbol of a
codeword can be deduced by reading only at most r
other symbols of the codeword. Usually for the applica-
tions to distributed storage, the code is further required
to have a minimum distance d. It is known that [6] for
such a code,

d ≤ n− k− dk/re+ 2, (1)

which is also achievable [11], [18]. A q-ary code of length
n, size qk and locality r will be called an (n,k, r)q code
if it’s minimum distance satisfies (1) with equality.

Security in distributed storage has recently been con-
sidered in a number of papers, for example [7], [12],
[15], [19] and references therein. In these papers the main
objective is to secure stored data or repair data against
an adversary. Threshold secret sharing protocols over
a network under some communication constraint has
been considered in [16]. Problems most closely related
to this paper perhaps appear in [13] where a version
of threshold secret sharing scheme with locality has
been studied. Motivated by the above applications in
distributed storage, we analyze secret sharing schemes
with arbitrary access structures such that shares of each
participant/node can be repaired with locality r.

A. Result and organization
In section II, we provide bounds and achievability

results for a locally repairable secret sharing scheme that
is most relevant to today’s distributed storage systems.
The particular access structure and block-list we consider
are As = {A⊂ [n] : |A| ≥m} and Bs = {B⊂ [n] : |B| ≤ `} re-
spectively. We assume the shares of the secrets are locally
recoverable and at the same time an adversary observing
up to a number of shares do not get any information.
This section also addresses the conditions under which
a locally reparable code can be converted into a secret
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sharing scheme. We then extend the notion of security to
co-operative repair where a Distributed Storage System
(DSS) can deal with simultaneous multiple node failures.
A different, more practical generalization for secret shar-
ing scheme is made in which the DSS is represented
by a graph G such that a node can only connect to its
neighbors in G for repair. We provide upper-bounds on
the secrecy capacity and construct achievable schemes in
these scenario in sections III and IV.

We also consider perfect secret sharing schemes over
general access structures under locality constraints.
While we show that for threshold secret sharing
schemes, there cannot exist any non-trivial locally re-
pairability, we also give an example of a perfect secret
sharing scheme with small locality. We show how local-
ity effects the sizes of shares in a perfect scheme as they
relate to the size of the secret. These results are presented
in section V.

II. AN IMPERFECT SCHEME FOR SECURE STORAGE

We start this section by formally defining a particular
example of common access structure.

Definition 1. An (n,k, `,m, r)q-secret sharing scheme con-
sists of a randomized encoder f that maps a uniform secret
s ∈ Fkq, to c = f(s) ∈ Fnq , and must have the following three
properties.

1) (Recovery) Given any m symbols of c, the secret s is
completely determined. This guarantees that the secret is
recoverable even with the loss of any n−m shares.

H(s|cI) = 0, ∀I ⊂ [n], |I| =m (2)

2) (Security) Any set of ` shares of c does not reveal
anything about the secret.

H(s|cJ) = H(s), ∀J ⊂ [n], |J| = ` (3)

A scheme satisfying this condition is called `-secure.
3) (Locality) For any share, there exist at most r other shares

that completely determine this. For all i, there exists Ri ⊂
[n] \ {i} : |Ri| ≤ r, such that

H(ci|cRi
) = 0 (4)

Ri is called the recovery set of share i.

The maximum amount of secret that can be stored as
a function of n, `,m and r is called the capacity of the
secret sharing scheme and in the following we provide
exact characterization of this quantity. We can define the
security condition above in a modified way where the
eavesdropper is allowed to see any set J ⊂ [n] of shares
and we calculate the amount of information revealed,
i.e. I(s;cJ), in terms of n,k, |J|,m and r in an optimal
scheme. This extension is evident from our result and
somewhat summarized in corollary 2.

Note that, for locally repairable schemes with no se-
curity requirement i.e. ` = 0 the following lower-bound
on m is apparent from (1),

m ≥ k+ dk/re− 1, (5)

This lower bound follows from the definition of the
minimum distance of a code d= n−m+ 1. In the subse-
quent, we provide a fundamental limit and constructions
achieving that limit.

A. Bounds
The converse result that can be obtained for the afore-

mentioned access structure is following.

Theorem 1. Any (n,k, `,m, r)q-secret sharing scheme must
satisfy,

k+ ` ≤m−

⌊
m

r+ 1

⌋
. (6)

To prove (6), using eq. (1) as a black-box will not work.
Instead we can follow its proof method [3], [6]. The
upper-bound in eq. (6) can also be obtained from [13,
Thm. 33] where the authors use a different method. We
omit the proof here. Indeed, we can show the following,

Corollary 2. There exist sets J ⊂ [n] with ` ≤ |J| ≤ m −⌊
m
r+1

⌋
such that,

H(s|cJ) ≤m−

⌊
m

r+ 1

⌋
− |J|. (7)

Equation (7) gives an upper-bound on the maximum
ambiguity of the secret of an (n,k, `,m, r)-scheme when
the eavesdropper has access to more than ` shares.

B. Constructions
It is possible to show matching achievability results to

Theorem 1 by a number of different methods.

Theorem 3. There exists a (n,k, `,m, r)-secret sharing
scheme such that eq. (6) is satisfied with equality.

In particular this theorem can be proved by construct-
ing a random linear network code. The proof will appear
in the full version of this paper.

The achievability result also follows from [13], that
gives a construction for optimal secure LRC employing
Gabidulin codes to satisfy the security constraint. In the
subsequent we outline their method that we adapt later
for more general secret sharing schemes.

An intuitive construction of secure LRC codes comes
by replacing some inputs to the LRC with uniform rv(s).
Formally, consider a linear code C with code-length n
and input size (k+ `). Let Gn×(k+`) = [G1n×` G

2
n×k] be

the generator matrix of this code and a ∈ Fk+`q be the
input to C. Denote by s ∈ Fkq the input we want to store
securely. We construct an ` secure secret sharing scheme
using C by taking,

a = [r s] (8)

where r ∈ F`q is a uniformly distributed random vector.
This scheme is `-secure iff for any ` linearly independent
(LI) rows of G the corresponding rows of G1 are LI.

Lemma 4. Let gi = [gi1gi2 . . . gi(k+`)], i ∈ [`] be any `
LI rows of G. The secret sharing scheme constructed in
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eq. (8) is `-secure iff the corresponding row vectors of G1,
g1i = [gi1gi2 . . . gi`], i ∈ [`] are LI.

We omit the proof of this lemma. Note that using
lemma 4 we can add the security property to any linear
code; we do not assume any locality property for the
generator matrix G. But, it is clear that if the generator
matrix G has locality r, then so would the scheme
constructed in eq. (8). The construction of an optimal
(n,k, l,m, r)−secret sharing scheme is described below.

Let α1,α2 ∈ Fqm . These points can be represented as
vectors in Fmq . The points α1,α2 are said to be Fq-linearly
independent when the corresponding vectors in Fq are lin-
early independent. A Gabidulin code from Fkqm → Fnqm ,
for input (f1f2 . . . fk), fi ∈ Fqm , is obtained by evaluating
the linearized polynomial Θ(y) =

∑k
i=1 fiy

qi−1 at n Fq-
linearly independent points αi ∈ Fqm , i ∈ [n]. Note that
we need m ≥ n to obtain n Fq-linearly independent
points in Fqm

Consider the generator matrix, Gn×(k+`) = [g1 . . .gn]
T

of a linear (n,k + `, r)q code. Consider a = (s r),s ∈
Fk
qN ,r ∈ F`

qN with N ≥ n, where r is a uniformly dis-
tributed rv and s denotes the secret. First, a is precoded
using a Gabidulin code, Γ : Fk+`

qN → Fk+`
qN which is ob-

tained by evaluating the polynomial,

Ψa(y) =

k+∑̀
i=1

aiy
qi−1 (9)

at the Fq-linearly independent points αi ∈ FqN , i ∈ [k+
`]. Now, representing Γ(a) ∈ Fk+`

qN as a matrix of size
(k + `) × N in Fq each column of the matrix can be
encoded independently using the linear LRC to get
c= (ci)

n
i=1 ∈ FiqN . It is easy to show that this construction

is `-secure. The optimality of the scheme then follows
from the optimality of the initial linear LRC. The proof
of security of this construction is omitted.

C. Constructions with small alphabet size
Note that, the size of the alphabet in the construction

of optimal secure LRC using Gabidulin codes is expo-
nential in the number of nodes. Recently an optimal
construction of locally repairable codes was proposed
in [18] for general values of the parameters n,k, and r
and alphabet size of O(n). We use the construction in
eq. (8) to form a secure scheme from the LRCs in [18]
with a small alphabet and analyze the conditions for that
construction to satisfy lemma 4. We assume that (r+ 1)|n
throughout this subsection.

We will need the following definition of Maximally
Recoverable codes. Recall that, we denote by (n,k, r)q
an optimal LRC with length n, size qk, and locality r.

Definition 2. Consider an (n,k, r)q-LRC. Let Qj : |Qj| =
r+ 1, j ∈ [n/(r+ 1)] denote a partition of [n] such that the
recovery set is,

Ri = Q(i) \ {i} (10)

where Q(i) ∈ {Qj}j is the partition containing node i. Denote
such an LRC by (n,k, r, {Qj}j)q. The (n,k, r, {Qj}j)q-LRC

is called maximally recoverable [5] if the code obtained by
puncturing one symbol from each Qj is MDS.

Note that [6] pointed out that an optimal LRC must
have the recovery structure as in eq. (10).

The main objective of this section is to show that the
immediate construction of (n,k, `,m, r)-secret-sharing
scheme from [18] is effective if and and only if the code
is maximally recoverable.

Denote the linear (n,k, r, {Qj}j)q-LRC proposed in [18]
as [n,k, r]q−TB code. For input a ∈ Fk+`q , the codeword
for [n,k, r]q − TB code is obtained by evaluating the
polynomial fa(x) =

∑k+`−1
i=0 aix

i mod rg(x)bi/rc (where
g(·) of degree r+ 1 is a polynomial that is constant on
each of the partitions Qj) at points of A = {αi}

n
i=1 ⊂ Fq.

Let Gn×(k+`) =
[
α
(j−1) mod r
i g(αi)

b(j−1)/rc
]n,k
i=1,j=1

be the

generator matrix of the code and let G =
[
G1n×` G

2
n×k

]
.

Note that G1 represents the generator matrix for an
[n, `, r]q − TB code with a smaller input size `, but the
same evaluation set A (code length n) and locality r.

Lemma 5. Consider an [n,k+ `, r]q − TB code with a gen-
erator matrix Gn×(k+`). Let S ⊂ [n] : |S| = ` and |S ∩ Qj| ≤
r, j ∈ [n/(r+ 1)]. Then, the rows corresponding to S in G are
linearly independent for any ` ≤ r− 1+ (rbk/(r− 1)c− k)

We omit the proof of this lemma. For ` < r, the
construction (in eq. (8)) using [n,k+ `, r]q−TB code is `-
secure since any ` rows of G1 form an `× ` Vandermonde
matrix. For ` > r, we have the following result, using
definition 2 and lemma 5.

Theorem 6. Let g(x) be a polynomial such that the
[n, `, r]q − TB code constructed using g(x) is maximally re-
coverable. Construct an [n,k+ `, r]q−TB code using the same
polynomial. The secret sharing scheme constructed in eq. (8)
using this [n,k + `, r]q − TB code is `-secure. Conversely,
for a g(x) generating an [n, `, r]q − TB code which is not
maximally recoverable, the construction in eq. (8) is not `-
secure for ` ∈

(
r, r− 1+ (rbk/(r− 1)c− k)

]
.

Proof: Consider ` > r. Let g(x) be such that the
[n, `, r]q − TB code is maximally recoverable. Let G =
[G1n×`G

2
n×k] be the generator matrix for the [n,k+ `, r]q−

TB constructed using the same good polynomial. There-
fore, G1 is the generator matrix for the [n, `, r]q − TB
code. Consider a set D ⊂ [n] of any ` linearly depen-
dent rows of G1. Therefore, Qj ⊂ D for atleast one
j ∈ [n/(r+ 1)]. Hence, the corresponding rows in G must
also be linearly dependent. Thus, from lemma 4 the
secret sharing construction in eq. (8) must be `-secure.

Now, suppose that the [n, `, r]q − TB code is not
maximally recoverable. Thus, there would exist an S ⊂
[n] : |S ∩ Qj| ≤ r,∀j ∈ [n/(r + 1)] such that the rows in
G1 corresponding to S are linearly dependent. Now
from lemma 5 we know that the rows corresponding
to S in G are not linearly dependent for r < ` ≤ r −
1 + (rbk/(r− 1)c− k). Hence, from lemma 4 the secret
sharing scheme cannot be ` secure.

In the next two sections we extend the notions and
results of this section to other generalized repair condi-
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tions related to distributed storage.

III. SECURITY FOR SCHEMES WITH CO-OPERATIVE
REPAIR

Co-operative repair for a locally repairable scheme
addresses simultaneous multiple failures in a distributed
storage system. To this end, we extend the definition in
eq. (4) to a (r, δ) scheme where any δ –instead of just
one– shares can be recovered from r other shares.

Definition 3. A set C ⊂ Fnq is said to be (r, δ)-repairable if
for every ∆ ⊂ [n] : |∆| ≤ δ there exists a set R(∆) ⊂ [n] \∆ :
|R(∆)| ≤ r such that for all c1,c2 ∈ C,

c1∆ 6= c2∆ =⇒ c1R(∆) 6= c2R(∆) (11)

Using definition 3 we can generalize the notion of
an (n,k, `,m, r)q-secret sharing scheme. For simplicity,
in this case, we do not address the possibility of a
catastrophic failure i.e. we take m = n. For this sys-
tem we derive an upperbound on the capacity k given
n, `, r, and δ.

Definition 4. An (n,k, `, (r, δ))q-secret sharing scheme con-
sists of a randomized encoder f(.) that stores the uniformly
distributed file s ∈ Fkq, in n separate shares such that the
scheme is (r, δ)-repairable (definition 3) and `-secure (cf.
eq. (3)).

Such schemes have been considered in [14] for ` = 0
(no security) and the following upper-bound on the rate
of such codes has been proposed,

R =
k

n
≤ r

r+ δ
.

For the case of `-secure codes we give an analogous
upper bound on the rate of a secret sharing scheme in
the following.

Theorem 7. The rate R = k/n of an (n,k, l, (r, δ))q secret
sharing scheme is bounded as,

R ≤ r

r+ δ
−
`

n
. (12)

It is easy to see that Gabidulin precoding (eq. (9))
would give an `-secure construction with alphabet FqN ,
for N ≥ n, from any optimal linear (n,k + `, 0, (r, δ))q
code. Using the constructions of [14], it is therefore
possible to obtain a rate of

k

n
≥ r− δ
r+ δ

−
`

n
.

IV. SECURITY FOR REPAIRABLE CODES ON GRAPHS

Consider a distributed storage system (DSS) as a di-
rected graph G such that a node of the graph represents
a node of the DSS and each node can connect to only its
out-neighbors for repair [8], [9]. We define an `-secure
code in this scenario as follows.

Definition 5. Let G = ([n], E) be a directed graph on n
nodes. An (n,k, `,m,G)q-secret sharing scheme consists of
a randomized encoder that can store a uniform secret s ∈ Fkq
on n shares/nodes, c = f(s),c ∈ Fnq , such that the system is
`-secure (cf. eq. (3)) and the data can be recovered from any
m shares (cf. eq. (2)). In addition the data on any node can
be recovered form its neighbors i.e.

H(ci|cN(i)) = 0

where N(i) denotes the out-neighbours of node i in the graph
G = ([n], E).

A bound on the capacity of such a scheme for ` = 0
(no security) was derived in [10],

m ≥ k+ max
U∈I(G):

|N(U)|≤k−1

|U| (13)

where I(G) denotes the induced acyclic graphs in G,
N(U) the neighbours of U, and d is the minimum
distance for the code. The lower bound on m for an `-
secure scheme on a graph G is given in the following.

Theorem 8. For any (n,k, `,m,G)q-secret sharing scheme
on a graph G, m satisfies the following lower bound,

m ≥ k+ `+ max
U∈I(G):

|N(U)|≤`+k−1

|U| (14)

where I(G) denotes the set of induced acyclic graphs in G.
We also note the following result.

Theorem 9. Consider an (n,k, `,n,G)q secret sharing
scheme. The secrecy capacity of the scheme satisfies the fol-
lowing upper-bound.

k ≤ n− |U|− |`| (15)

where U is the largest acyclic induced subgraph in G.
The proofs of the theorems are omitted. Constructions

of schemes for secure repairable codes on graphs follows
from the techniques of [10] and will appear at the full
version of this paper.

V. PERFECT SECRET SHARING AND GENERAL ACCESS
STRUCTURES

In this section we provide results regarding existence
of locally repairable of perfect secret sharing schemes
and the relation between sizes of shares and secret in
those schemes.

A. Perfect access structures with locality
To make the (n,k, `,m, r) secret sharing scheme per-

fect, we must have m = `+ 1. This results in a threshold
secret-sharing scheme. Now, from eq. (6) we have,

k ≤ 1−
⌊
`+ 1

r+ 1

⌋
.

Thus, for storing any secret we must have r≥ `+ 1 =m.
Since any secret sharing scheme works when r≥m (local
repair in this case imply full revelation of secret) only
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trivial locally repairable codes are possible for threshold
secret sharing schemes. This imply the following state-
ment.

Proposition 10. A threshold secret sharing scheme is not
locally repairable.

We know that for perfect secret sharing schemes the
size of the secret cannot be more than the size of any
share [1, Lemma 2]. Thus, it seems that for locally
repairable perfect secret sharing the secrecy capacity
should be zero. We show that this is not true for general
access structures. Indeed, the following is true.

Proposition 11. There exists an access structure As, for
which a perfect secret sharing scheme is possible with non-
trivial locality r i.e. r <minA∈As

|A|.
Proof: Let n,κ be such that r|κ and (r+ 1)|n. Con-

sider an (n,κ, r, {Qj}j) maximally recoverable LRC (defi-
nition 2). We know that such codes exist from [5]. Now,
we use the Gabidulin precoding method described above
to construct a (n,k= 1, `= κ− 1,m= κ(1+ 1/r), r) secret
sharing scheme from this code.

Define the access structure to be As = {A ⊂ [n] :∑n/(r+1)
j=1 min{|A ∩ Qj|, r} ≥ κ}. Now given any A ∈ As,

a user accessing the shares corresponding to A can
determine the secret s0 because the set always contains
k shares of a punctured (nr/(r+ 1), κ)-MDS code.

For a perfect secret sharing scheme the block-list is
given by Bs = {B :

∑n/(r+1)
j=1 min{|B ∩ Qj|, r} < κ}. As-

sume that the eavesdropper has access to a set B ∈ Bs.
Construct the following set of size atmost κ− 1 from B,

B′ = ∪n/(r+1)j=1 B′j,B
′ ⊂ B

where B′j ⊂ Bj,Bj = B∩Qj is obtained by removing any
one co-ordinate if |Bj| > r, otherwise B′j = Bj. Note that
|B′| < κ. Since all the shares in B are recoverable from
B′ ⊂ B, an eavesdropper with access to the nodes in B
is equivalent to an eavesdropper with access to B′. And
since |B′| ≤ ` = κ− 1, the eavesdropper does not get any
information about the secret.

B. Size of a share for perfect secret sharing with locality
We know that, for perfect secret sharing schemes, the

size of the secret cannot be larger than the size of a share
[1, Lemma 2]. In [4] the minimum node storage required
for arbitrary monotone access structures is analyzed. It
constructs an access structure for which the sizes of the
shares has to be n/log(n) times the size of the secret
for any perfect scheme. For secret sharing schemes with
local repairability and fixed recovery sets, all monotone
access structures are not feasible. The minimal sets of
the access structure cannot include any recovery set.
Here, we extend the result in [4] to the restricted class
of monotone access structures.

Suppose that a secret file is stored on shares [n] and
the shares have locality r (eq. (4)). Consider a partition
of [n], Qj : Qj, j ∈ [n/(r+ 1)] such that the recovery sets
are given by eq. (10). For a perfect secret sharing scheme

on [n] with monotone access structure As, the minimal
sets of As, A?

s, must satisfy,

A ∈ A?
s =⇒ A 6⊃ Qj . (16)

Denote this class of monotone access structures with As.
We have the following result for the minimum size of
a share for secret sharing schemes with access structure
As ∈ As.

Theorem 12. Consider distribution of shares to n nodes with
locality r, recovery sets as in eq. (10). Then, there is an access
structure As ∈ As (eq. (16)), such that any perfect scheme, if
exists, must contain a share of size at least (r+1)n

r logn times the
size of the secret.

We omit the proof of this theorem.
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