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1. MOTIVATION 

Predictive Learning

VC Learning Theory 

2. MODEL SELECTION COMPARISONS

Analytical criteria:


- AIC, BIC and VC-bounds

Comparison methodology

Comparison results:

· Linear estimators

· Nearest-neighbor regression

· Subset selection
3. SUMMARY and DISCUSSION
1.MOTIVATION and BACKGROUND

• The problem of predictive learning:


GIVEN past data + reasonable assumptions


ESTIMATE unknown dependency for future predictions

• Driven by applications (NOT theory):


medicine


biology: genomics


financial engineering (i.e., program trading, hedging)


signal/ image processing


data mining (for marketing)

........

• Math disciplines:


function approximation


pattern recognition 

statistics


optimization   …….

MANY ASPECTS of PREDICTIVE LEARNING

• MATHEMATICAL / STATISTICAL ****

foundations of probability/statistics and function approximation

• PHILOSOPHICAL

• BIOLOGICAL


• COMPUTATIONAL

• METHODOLOGICAL ****

• PRACTICAL APPLICATIONS ****

CURRENT STATE-OF-THE-ART

(in predictive learning)

• Disconnect between theory and practical methods
• Proliferation / Cookbook of learning methods 

(neural networks, soft computing…)
• Terminological confusion 

(reflecting conceptual confusion ?)

• REASONS for the above

· objective (inherent problem complexity)

· historical: 
existing data-analytical tools developed for classical formulations 


-   subjective (fragmentation in science & engineering)

WHY VC-THEORY?

• TRUE (=PRACTICAL) THEORY

· developed in 1970’s

· constructive methodology (SVM) in mid 90’s
· wide acceptance of SVM in late 90’s
· wide misunderstanding of VC-theory 
• TRADITIONAL APPROACH to LEARNING


GIVEN past data + reasonable assumptions


ESTIMATE unknown dependency for future predictions


(a) Develop practical methodology (CART, MLP etc.)
(b) Justify it using theoretical framework (Bayesian, ML,  etc.)

(c) Report results; suggest heuristic improvements

(d) Publish a paper (optional)

• THEORY (by itself) cannot solve practical problems.
VC LEARNING THEORY
•
Statistical theory for finite-sample estimation 

•
Focus on predictive non-parametric formulation 

•
Empirical Risk Minimization approach
•
Methodology for model complexity control (SRM) 

•
VC-theory unknown/misunderstood  in statistics
References on VC-theory:
V. Vapnik, The Nature of Statistical Learning Theory, Springer 1995

V. Vapnik, Statistical Learning Theory, Wiley, 1998

V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory and Methods, Wiley, 1998

………….

CONCEPTUAL CONTRIBUTIONS of VC-THEORY
• Clear separation between


problem statement


solution approach (i.e. inductive principle)


constructive implementation (i.e. learning algorithm)


- all 3 are usually mixed up in application studies.

• Main principle for solving finite-sample problems

Do not solve a given problem by indirectly solving a more general (harder) problem as an intermediate step

· usually not followed in statistics, neural networks and applications.

Example: maximum likelihood methods 

• Worst-case analysis for learning problems 

Theoretical analysis of learning should be based on the worst-case scenario (rather than average-case).

STATISTICAL vs VC-THEORY APPROACH

GENERIC ISSUES in DATA MINING:

• Problem Formulation


Statistics: density estimation


VC-theory: application-dependent

• Possible/ admissible models


Statistics: linear expansion of basis functions


VC-theory: structure, i.e. SVM parameterization

• Model selection (complexity control)


Statistics: resampling, analytical (AIC, BIC etc)


VC-theory: resampling, analytical (VC-bounds)

2. MODEL SELECTION for REGRESSION

MOTIVATION

• COMMON OPINION


VC-bounds are not useful for practical model selection

References: 

C. Bishop, Neural Networks for Pattern Recognition.

B. D. Ripley, Pattern Recognition and Neural Networks
T. Hastie et al, The Elements of Statistical Learning

• SECOND OPINION

VC-bounds work well for practical model selections when they can be rigorously applied.

References:


V. Cherkassky and F. Mulier, Learning from Data

V. Vapnik, Statistical Learning Theory
V. Cherkassky et al.(1999), Model selection for regression using VC generalization bounds, IEEE Trans. Neural Networks 10, 5, 1075-1089

• EXPLANATION (of contradiction)

NEED: understanding of VC theory + common sense

ANALYTICAL MODEL SELECTION for regression

• Standard Regression Formulation
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• STATISTICAL CRITERIA

- Akaike Information Criterion (AIC)
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where d = (effective) DoF

- Bayesian Information Criterion (BIC)
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AIC and BIC require noise estimation (from data):
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• VC-bounds on prediction risk

General form (for regression)




Practical form
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where h is VC-dimension (h = effective DoF in practice)

NOTE: the goal is NOT accurate estimation of RISK

• Common sense application of VC-bounds requires

· minimization of empirical risk

· accurate estimation of VC-dimension
( first, model selection for linear estimators;


second, comparisons for nonlinear estimators.
EMPIRICAL COMPARISONS

• COMPARISON METHODOLOGY

- 
specify an estimator for regression (i.e., polynomials, k-nn, subset selection…)

· generate noisy training data

· select optimal model complexity for this data

· record prediction error as 

MSE (model, true target function)
REPEAT model selection experiments many times for different random realizations of training data

DISPLAY empirical distrib. of prediction error (MSE) using standard box plot notation

• COMPARISONS for linear methods/ low-dimensional

Univariate target functions 
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[image: image7.wmf](b) Piecewise polynomial
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• COMPARISONS for 
sine-squared target function, 








polynomial regression
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(a) small size n=30, 
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(b) large size n=100, 
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• COMPARISONS for 
piecewise polynomial function,






Fourier basis regression
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• COMPARISONS for 
k-nearest neighbors regression


How to estimate VC-dimension/ effective DOF?

- estimate used in [Hastie et al, 2001] DOF=n/k

· better estimate (still heuristic) DOF=n/(1.5k)
• Comparison results for sine-squared target function when DOF=n/k for all methods. 

Training data: n=30, noise level
[image: image16.wmf]s

=0.2
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( SRM performs poorly (underfits)

• Comparison results for sine-squared target function when DOF=n/(1.5k) for all methods. 

Training data: n=30, noise level
[image: image18.wmf]s

=0.2


[image: image19]


( every method’s performance is improved.

SRM now is (second) best.

NOTE: SRM is more sensitive to incorrect estimates of DOF (than AIC or BIC)

• Comparison results for motorcycle impact data: DOF=n/(1.5k) for all methods.
[image: image20.emf]0 10 20 30 40 50 60 70

-150

-100

-50

0

50

100

By AIC

By BIC

By VC


The red dotted line is by VC- method (SRM): k=18
The green dashed line is by BIC method: k=15
        
The blue solid line is by AIC method: k=8
NOTE: BIC model ~ SRM model



AIC model tends to overfit

• COMPARISONS for high-dimensional data sets

NOTE: Data sets taken from/ similar to [Hastie et al, 2001]

Target fct. of 20 variables   
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where input values (
[image: image22.wmf]20

R

Î

x

) uniformly distributed in
[image: image23.wmf]20

]

1

,

0

[

. Training data: n=50 samples, 
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Comparisons using k-nearest neighbor regression:


[image: image25]
( SRM is best overall, but the difference (btwn methods) is small

• EXPLANATION of comparison results for k-nn

· sloppy application of VC-bounds

· inaccurate estimate of VC-dim/ DOF

· CONTRIVED DATA SET in [Hastie et al, 2001]:


[image: image26]
(a) Prediction Risk

[image: image27]
(b) Empirical Risk

• COMPARISONS for nonlinear methods/ high-dim.

Subset selection linear regression:


DOF/ VC-dim = number of variables selected (is it good?)
5-dimensional target function 
[image: image28.wmf]5

R

Î

x

and
[image: image29.wmf]R

y

Î

:

[image: image30.wmf]ï

ï

î

ï

ï

í

ì

£

>

=

å

å

=

=

3

1

3

1

5

.

1

0

5

.

1

1

)

(

j

j

j

j

x

if

x

if

g

x


random 
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comparisons for n=30 samples ,
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• INTERPRETATION of results for subset selection:   contrived data set (no overfitting possible)
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(a) Prediction Risk


[image: image36]
(b) Empirical Risk

• ANOTHER EXAMPLE for linear subset selection 

5-dimensional target function 
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Training data: n=30 noisy samples


[image: image40]
Comparisons for n=30, 
[image: image41.wmf]s

=0.2

( SRM is best for this data

3. SUMMARY and DISCUSSION
•
PRACTICAL APPLICATION of VC-THEORY

(a) technical results

(b) conceptual understanding (often missing)
(c) common sense

NOTE: successful application of (a) requires (b) and (c)

•
PITFALLS of EMPIRICAL COMPARISONS

(a) inaccurate estimation of complexity

(b) contrived data sets

(c) limited number of data sets

(d) inappropriate form of VC-bounds

•
VC-BOUNDS for MODEL SELECTION work well for

(a) linear estimators

(b) penalized linear estimators

(c) nonlinear orthogonal estimators (wavelets)

•
FUTURE RESEARCH
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(a) Sine squared function 
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(b) Piecewise polynomial 
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