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1. BACKGROUND

Predictive Learning 

VC Learning Theory

VC-based model selection

2. SIGNAL DENOISING as FUNCTION ESTIMATION

Principal Issues for Signal Denoising

VC framework for Signal Denoising

Empirical comparisons: 
synthetic signals

ECG denoising

3.  IMPROVED VC-BASED SIGNAL DENOISING

Estimating VC-dimension implicitly

FMRI Signal Denoising

2D Image Denoising 

4. SUMMARY and DISCUSSION
1. PREDICTIVE LEARNING and VC THEORY

• The problem of predictive learning:


GIVEN past data + reasonable assumptions


ESTIMATE unknown dependency for future predictions

• Driven by applications (NOT theory):


medicine


biology: genomics


financial engineering (i.e., program trading, hedging)


signal/ image processing


data mining (for marketing)

........

• Math disciplines:


function approximation


pattern recognition 

statistics


optimization   …….

MANY ASPECTS of PREDICTIVE LEARNING

• MATHEMATICAL / STATISTICAL

foundations of probability/statistics and function approximation

• PHILOSOPHICAL

• BIOLOGICAL


• COMPUTATIONAL

• PRACTICAL APPLICATIONS

• Many competing methodologies

BUT lack of consensus (even on basic issues)
STANDARD FORMULATION for PREDICTIVE LEARNING 
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• LEARNING as function estimation = choosing the ‘best’ function from a given set of functions [Vapnik, 1998]

• Formal specs:
Generator of random X-samples from unknown probability distribution

System (or teacher) that provides output y for every X-value according to (unknown) conditional distribution P(y/X)

Learning machine that implements a set of approximating functions     f(X, w) chosen a priori where w is a set of parameters 

• The problem of learning/estimation:

Given finite number of samples (Xi, yi), choose from a given set of functions f(X, w) the one that approximates best the true output
Loss function  L(y, f(X,w)) a measure of discrepancy (error)

Expected Loss (Risk)  
R(w) = 
[image: image91.png]Figure 24.1 Schematic ECG with variables of interest. The QT interval is also indicated for comparison




The goal is to find the function f(X, wo) that minimizes R(w) when the distribution P(X,y) is unknown.

Important special cases
(a) Classification (Pattern Recognition)


output y is categorical (class label)


approximating functions  f(X,w) are indicator  functions 


For two-class problems common loss 


L(y, f(X,w)) = 0 
if y = f(X,w)


L(y, f(X,w)) = 1
if y 
[image: image2.wmf]¹

 f(X,w)
 

(b) Function estimation (regression)  

output y and f(X,w) are real-valued functions


Commonly used squared loss measure:


L(y, f(X,w)) = [y - f(X,w)]2

( relevant for signal processing applications (denoising)
WHY VC-THEORY?

• USEFUL THEORY (!?)

· developed in 1970’s

· constructive methodology (SVM) in mid 90’s
· wide acceptance of SVM in late 90’s
· wide misunderstanding of VC-theory 
• TRADITIONAL APPROACH to LEARNING


GIVEN past data + reasonable assumptions


ESTIMATE unknown dependency for future predictions


(a) Develop practical methodology (CART, MLP etc.)
(b) Justify it using theoretical framework (Bayesian, ML,  etc.)

(c) Report results; suggest heuristic improvements

(d) Publish paper (optional)

VC LEARNING THEORY
•
Statistical theory for finite-sample estimation 

•
Focus on predictive non-parametric formulation 

•
Empirical Risk Minimization approach
•
Methodology for model complexity control (SRM) 

•
VC-theory unknown/misunderstood  in statistics
References on VC-theory:
V. Vapnik, The Nature of Statistical Learning Theory, Springer 1995

V. Vapnik, Statistical Learning Theory, Wiley, 1998

V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory and Methods, Wiley, 1998

CONCEPTUAL CONTRIBUTIONS of VC-THEORY
• Clear separation between


problem statement


solution approach (i.e. inductive principle)


constructive implementation (i.e. learning algorithm)


- all 3 are usually mixed up in application studies.

• Main principle for solving finite-sample problems

Do not solve a given problem by indirectly solving a more general (harder) problem as an intermediate step

· usually not followed in statistics, neural networks and applications.

Example: maximum likelihood methods 

• Worst-case analysis for learning problems 

Theoretical analysis of learning should be based on the worst-case scenario (rather than average-case).

STATISTICAL vs VC-THEORY APPROACH

GENERIC ISSUES in Predictive Learning:

• Problem Formulation


Statistics: density estimation


VC-theory: application-dependent

Signal Denoising ~ real-valued function estimation

• Possible/ admissible models


Statistics: linear expansion of basis functions


VC-theory: structure

Signal Denoising ~ orthogonal bases

• Model selection (complexity control)


Statistics: resampling, analytical (AIC, BIC etc)


VC-theory: resampling, analytical (VC-bounds)

Signal Denoising ~ thresholding using statistical models

Structural Risk Minimization (SRM) [Vapnik, 1982]
• SRM Methodology (for model selection)
GIVEN training data and a set of possible models (aka approximating functions)

(a) introduce nested structure on approximating functions 

Note: elements Sk are ordered according to increasing complexity

So
[image: image3.wmf]Ì
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Examples (of structures): 


· basis function expansion (i.e., algebraic polynomials)

· penalized structure (penalized polynomial)

· feature selection (sparse polynomials)

(b) minimize Remp on each element Sk (k=1,2...)  producing increasingly complex solutions (models). 

(c) Select optimal model (using VC-bounds on prediction risk), where optimal model complexity ~ minimum of VC upper bound.
MODEL SELECTION for REGRESSION
• COMMON OPINION


VC-bounds are not useful for practical model selection

References: 

C. Bishop, Neural Networks for Pattern Recognition.

B. D. Ripley, Pattern Recognition and Neural Networks
T. Hastie et al, The Elements of Statistical Learning

• SECOND OPINION

VC-bounds work well for practical model selections when they can be rigorously applied.

References:


V. Cherkassky and F. Mulier, Learning from Data

V. Vapnik, Statistical Learning Theory
V. Cherkassky et al.(1999), Model selection for regression using VC generalization bounds, IEEE Trans. Neural Networks 10, 5, 1075-1089

• EXPLANATION (of contradiction)

NEED: understanding of VC theory + common sense

ANALYTICAL MODEL SELECTION for regression

• Standard Regression Formulation
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• STATISTICAL CRITERIA

- Akaike Information Criterion (AIC)
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where d = (effective) DoF

- Bayesian Information Criterion (BIC)
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AIC and BIC require noise estimation (from data):
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• VC-bound on prediction risk

General form (for regression)




Practical form
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where h is VC-dimension (h = effective DoF in practice)

NOTE: the goal is NOT accurate estimation of RISK

• Common sense application of VC-bounds requires

· minimization of empirical risk

· accurate estimation of VC-dimension
( first, model selection for linear estimators;


second, comparisons for nonlinear estimators.
EMPIRICAL COMPARISON

• COMPARISON METHODOLOGY

- 
specify an estimator for regression (i.e., polynomials, k-nn, subset selection…)

· generate noisy training data

· select optimal model complexity for this data

· record prediction error as 

MSE (model, true target function)
REPEAT model selection experiments many times for different random realizations of training data
DISPLAY empirical distrib. of prediction error (MSE) using standard box plot notation

NOTE: this methodology works only with synthetic data
• COMPARISONS for linear methods/ low-dimensional

Univariate target functions 
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[image: image13.wmf](b) Piecewise polynomial
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• COMPARISONS for 
sine-squared target function, 








polynomial regression
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[image: image14]
(a) small size n=30, 
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[image: image16]
(b) large size n=100, 
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• COMPARISONS for 
piecewise polynomial function,






Fourier basis regression

(a) n=30, 
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[image: image19]
(b) n=30, 
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2. SIGNAL DENOISING as FUNCTION ESTIMATION
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SIGNAL DENOISING PROBLEM STATEMENT

• REGRESSION FORMULATION


Real-valued function estimation (with squared loss)

Signal Representation:
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linear combination of orthogonal basis functions

• DIFFERENCES (from standard formulation)

· fixed sampling rate (no randomness in X-space)
· training data X-values = test data X-values

• SPECIFICS of this formulation 

( computationally efficient orthogonal estimators, i.e.

· Discrete Fourier Transform (DFT)

· Discrete Wavelet Transform (DWT)

ISSUES FOR SIGNAL DENOISING

• MAIN FACTORS for SIGNAL DENOISING

· Representation (choice of basis functions)
· Ordering (of basis functions)
· Thresholding (model selection, complexity control)
Ref: V. Cherkassky and X. Shao (2001), Signal estimation and denoising using VC-theory, Neural Networks, 14, 37-52

• 
For finite-sample settings:
Thresholding and ordering are most important

• 
For large-sample settings:

representation is most important

• 
CONCEPTUAL SIGNIFICANCE


- wavelet thresholding = sparse feature selection 


- nonlinear estimator suitable for ERM 

VC FRAMEWORK for SIGNAL DENOISING
• ORDERING of (wavelet ) coefficients =

= STRUCTURE on orthogonal basis functions in 
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Traditional ordering 
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Better ordering 
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Issues: other (good) orderings, i.e. for 2D signals

• VC THRESHOLDING (MODEL SELECTION) 

optimal number of basis functions ~ minimum of VC-bound 
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where h is VC-dimension (h = effective DoF in practice)


usually h = m (the number of chosen wavelets or DoF)

Issues: estimating VC-dimension as a function of DoF

WAVELET REPRESENTATION

• Wavelet basis functions : symmlet wavelet




In decomposition 
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basis functions are  









where s is a scale parameter and c is a translation parameter.




Commonly use wavelets with fixed scale and translation parameters:

sj = 2-j, where  j = 0, 1, 2, …, J-1

1 set equ_ "" 
1
ck(j) = k2j, where  k = 0, 1, 2, …, 2j-1

So the basis function representation has the form:







DISCRETE WAVELET TRANSFORM

· Given n = 2J samples (xi, yi) on [0,1] interval

· Calculate n wavelet coefficients in
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· Specify ordering of coefficients {wi}, so that an estimate 
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Empirical risk (fitting error) for this estimate:
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· Determine optimal element 
[image: image32.wmf]opt
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 (model complexity)

· Obtain denoised signal from 
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 coefficients via inverse DWT.

Example: Hard and Soft Wavelet Thresholding

Wavelet Thresholding Procedure:

1) Given noisy signal obtain its wavelet coefficients wi.

2) Order coefficients according to magnitude 
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3) Perform thresholding on coefficients wi to obtain 
[image: image35.wmf]i
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4) Obtain denoised signal from 
[image: image36.wmf]i

w

ˆ

 using inverse transform

Details of Thresholding:

· For Hard Thresholding:
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· For Soft Thresholding:
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Threshold value t is taken as:
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(a.k.a. VISU method)
where (  is estimated noise variance.

Another method for selecting threshold is SURE.

EMPIRICAL COMPARISONS for denoising


• SYNTHETIC SIGNALS


true (target) signal is known


easy to make comparisons between methods


 EMBED Word.Picture.8  


•  REAL – LIFE APPLICATIONS


true signal is unknown


methods’ comparison becomes tricky

COMPARISONS for Blocks and Heavisine signals

•  Experimental setup

Data set: 128 noisy samples with SNR = 2.5

Prediction accuracy: NRMS error (truth, estimate) 

Estimation methods: 

VISU(soft thresh), SURE(hard thresh) and SRM

Note: SRM = VC Thresholding = Vapnik's Method (VM)


All methods use symmlet wavelets.


 EMBED Word.Picture.8  



Symmlet 'mother' wavelet

•  Comparison results 
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(a)
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(b)
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(c)
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(d)

[image: image40.wmf]
VISU method

[image: image41.wmf]
SURE method

1 set fig_denoise_h_sure "" 
1

[image: image42.wmf]
2 set fig_denoise_h_vm "" 
2
 VC-based denoising

ELECTRO-CARDIOGRAM (ECG) DENOISING

Ref: V. Cherkassky and S. Kilts (2001), Myopotential denoising of ECG signals using wavelet thresholding methods, Neural Networks, 14, 1129-1137

Observed ECG = ECG + myopotential_noise


CLEAN PORTION of ECG:



NOISY PORTION of ECG



RESULT of VC-BASED WAVELET DENOISING

Sample size 1024, chosen DOF = 76,  MSE = 1.78e5

Reduced noise, better identification of P, R, and T waves 

vs SOFT THRESHOLDING (best wavelet method)

DOF = 325,  MSE = 1.79e5

NOTE: MSE values refer to the noisy section only 

4.  IMPROVED VC-BASED SIGNAL DENOISING

Need correct VC-dim when using VC-bounds

· VC-dimension for nonlinear estimators

· VC-dimension = DoF only hold true for linear estimator

· Wavelet thresholding = nonlinear estimator

· Estimate ‘correct’ VC-dimension as:
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· How to find good δ value ?

Standard VC-denoising: VC-dimension = DoF  (h = m)

Improved VC-denoising: using ‘good’ δ value for estimating VC-dimension in VC-bounds

EMPIRICAL APPROACH for ESTIMATING VC-DIM.

· An IDEA: use known form of VC-bound to estimate optimal dependency δopt (m,n) for several synthetic signals.

· HYPOTHESIS: if VC-bounds are good, then using estimated dependency δopt (m,n) will provide good denoising accuracy for all other signals as well.

· IMPLEMENTATION: For a given known noisy signal
· using specific δ in VC-bound yields DoF value m*(δ);

· we can find opt. DoF value mopt (since the target is known)

· then opt. δ can be found from equality mopt ~ m*(δ)

· the problem is dependence on random noisy signal.

· STABLE DEPENDENCY between δopt and mopt
· stable relation exists independent of noisy signal
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· If mopt/n is less than 0.2, the relation is linear:
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EMPIRICAL RESULTS

· Estimation of the relation between δopt and mopt.

Target Signals Used
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(a) doppler
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(b) heavisine
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(c) spires
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(d) dbsin

· Samples Size: 512 pts and 2048 pts

· SNR Range: 2-20dB (for 512pts), 2-40dB (for 2048 pts)

·  Linear Approximation
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(a) n = 512
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(b) n = 2048

VC-dimension Estimation

VC-dimension as a function of DoF(m) for ordering:
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for n = 2048 samples
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NOTE: when m/n is small (< 5%) then h ( m.
PROCEDURE for ESTIMATING δopt
· For a given noisy signal, find an intersection between

· stable dependency and 

· signal-dependent curve
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COMPARISON RESULTS
Comparisons between IVCD, SVCD, HardTh, SoftTh.

NOTE: for HardTh, SoftTh the value of threshold is taken as:
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Target function used:
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

Sample Size = 512pts, High Noise (SNR = 3dB)
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

· Sample Size = 512pts, Low Noise (SNR = 20dB)
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(a) spires
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(b) blocks
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(c) winsin
[image: image67.emf]IVCD(0.5) SVCD HardTh SoftTh

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

prediction risk

risk


(d) mishmash

· Sample Size = 2048pts, High Noise (SNR = 3dB)
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

· Sample Size = 2048pts, Low Noise (SNR = 20dB)
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

FMRI SIGNAL DENOISING

·  MOTIVATION: understanding brain function

·  APPROACH: functional MRI

·  DATA SET: provided by CMRR at University of Minnesota

· single-trial experiments

· signals (waveforms) recorded at a certain brain location show response to external stimulus applied 32 times

· Data Set 1 ~ signals at the visual cortex in response to visual input light blinking 32 times

· Data Set 2 ~ signals at the motor cortex recorded when the subject moves his finger 32 times
FMRI denoising = obtaining a better version of noisy signal

[image: image76.emf] 


· Denoising comparisons:

Visual Cortex Data
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Motor Cortex Data
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IMAGE DENOISING
•  Same Denoising Procedure:

· Perform DWT for a given noisy image

· Order (wavelet) coefficients

· Perform thresholding (using VC-bound)

· Obtain denoised image

•  Main issue: what is a good ordering (structure) ?

· Ordering 1 ('Global' Thresholding)
Coefficients are ordered by their magnitude:
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· Ordering 2 (same as for 1D signals in VC-denoising)

Coefficients are ordered by magnitude penalized by scale S:
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· Ordering 3 ('level-dependent' thresholding):
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· Ordering 4 (tree-based): see references
J. M. Shapiro, Embedded Image Coding using Zerotrees of Wavelet coefficients, IEEE Trans. Signal Processing, vol. 41, pp. 3445-3462, Dec. 1993

Zhong & Cherkassky, Image denoising using wavelet thresholding and model selection, Proc. ICIP, Vancouver BC, 2000

Example of Artificial Image

Image Size: 256(256, SNR(Noisy Image) = 3dB

[image: image82.emf]
Original Image
[image: image83.emf]
Noisy Image

[image: image84.emf]
Denoised by HardTh 
(DoF = 241, MSE = 0.01858)
[image: image85.emf]
Denoised by VC method
(DoF = 104, MSE = 0.02058)

VC-based Model Selection
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4. SUMMARY and DISCUSSION
•  Application of VC-theory to signal denoising

•  Using VC-bounds for nonlinear estimators

•  Using VC-bounds for sparse feature selection

•  Extensions and future work:

· image denoising;

· other orthogonal estimators;
· SVM
•  Importance of VC methodology: structure, VC-dimension

•  QUESTIONS
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