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Abstract:  

 

This paper presents new constructive learning methodology for multiple model estimation. Under 

multiple model formulation, training data are generated by several (unknown) statistical models, 

so existing learning methods (for classification or regression) based on a single model 

formulation are no longer applicable. We describe general framework for multiple model 

estimation using SVM methodology. The proposed constructive methodology is analyzed in 

detail for regression formulation. We also present several empirical examples for multiple-model 

regression formulation. These empirical results illustrate advantages of the proposed multiple 

model estimation approach. 

 

1. Introduction 

This paper describes constructive learning methods for multiple model regression formulation 

proposed in [Cherkassky and Ma, 2002]. Under this formulation, available (training) data 

niyii ,...,2,1),,( =x  are generated by several (unknown) regression models, so the goal of 
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learning is two-fold, i.e., partitioning of available data into several subsets and estimating 

regression models for each subset of available data. Hence, the problem of multiple model 

estimation is inherently more complex than traditional supervised learning where all training data 

are used to estimate a single model. Conceptually, there are two principal approaches for 

designing constructive learning methods for multiple model estimation: 

- (1) First partition available data into several subsets, then estimate model parameters for 

each subset of data; 

- (2) First estimate a dominant model using all available data, and then partition the data 

into several subsets. 

Under the first approach, the learning starts with a clustering step (unsupervised learning) 

followed by supervised learning on a subset of available data. Practical implementation of this 

approach is described in [Tanaka, 2001] using the framework of mixture density estimation, 

where each (hidden) model is modeled as a component in a mixture. The main practical 

limitations of this approach are as follows: 

- Inherent complexity of density estimation (with finite samples). There is theoretical and 

empirical evidence that density estimation is much harder than supervised learning 

(regression) with finite samples [Vapnik, 1999, Cherkassky and Mulier, 1998]; 

- Moreover, the setting of multiple model estimation leads to clustering/density estimation 

in local regions of the input space. That is, for a given input value, there may be several 

distinctly different output (response) values, corresponding to different models. Hence, 

data partitioning (clustering) should be based on different response values, and this leads 

clustering/density estimation in local regions of the input space. Practical implementation 

of such clustering using a (small) portion of available data becomes very problematic with 

finite samples due to the curse of dimensionality. 
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Under the second approach, we apply robust regression estimator to all available data in 

order to estimate a dominant model (where a dominant model is a model that describes the 

majority of data samples). Clearly, this approach is better than clustering/density estimation 

strategy because: 

- It is based on regression rather than density estimation formulation; 

- It uses all available data (rather than a portion of the data) for model estimation. 

Hence, in this paper we focus on implementation of the second approach. The main practical 

requirement for this approach is availability of robust regression algorithm, where ‘robustness’ 

refers to capability of estimating a single (dominant) model when available data are generated by 

several (hidden) models possibly corrupted by additive noise. This notion of robustness is 

somewhat different from traditional robust estimation techniques. This is because standard robust 

methods are still based on a single-model formulation, where the goal of robust estimation is 

resistance (of estimates) with respect to unknown noise models. Recently, robust statistical 

methods have been applied to computer vision problems that can be described using multiple 

model formulation. In these studies, existence of multiple models (in the data) is referred to as 

‘the presence of structured outliers’ [Chen et al, 2000]. Empirical evidence suggests that 

traditional robust statistical methods usually fail in the presence of structured outliers, especially 

when the model instances are corrupted by significant noise [Chen et al, 2000]. This can be 

explained as follows. When the data are generated by several (hidden) models, each of the data 

subsets (structures) has the same importance, and relative to any one of them the rest of the data 

are ‘outliers’. As a result, the notion of the breakdown point (in robust statistics) which describes 

processing the majority of data points loses its meaning under multiple-model formulation. 

Moreover, traditional robust estimation methods cannot handle more than 30% of outliers in the 
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data [Rousseeuw and Leroy, 1987]. Hence, we need to develop new constructive learning 

methodologies for multiple model estimation.  

This paper describes new learning algorithms for multiple model estimation based on SVM 

methodology. The following simple example illustrates desirable properties of robust algorithms 

for multiple model estimation. Consider a data set comprising two (linear) regression models: 

dominant model M1 (70% of the data) and secondary model M2 (30% of the data) shown in 

Fig.1a. The data are corrupted by additive gaussian noise (with standard deviation 0.1). Results in 

Fig. 1b show the model estimated by (linear) SVM regression with insensitive zone ε =0.084, and 

the model estimated by ordinary least squares (OLS). Both estimation algorithms use all available 

data (generated by both models). OLS method produces rather inaccurate model, whereas SVM 

produces very accurate estimate of the dominant model M1. Further, data set in Fig. 1c shows 

another data set generated using the same dominant model M1 but completely different 

secondary model M2. Application of SVM (with the same ε -value) to this data set yields 

(almost) identical estimate of the dominant model M1, as shown in Fig. 1d. However, application 

of OLS to this data set yields an estimate of M1 (shown in Fig. 1d) that is completely different 

from the estimate in Fig. 1b. Note that the number of (hidden) models is unknown (to an 

estimation method), and we use two models only to simplify presentation. This example shows 

an existence of robust regression algorithm that can be used to accurately estimate a single 

(dominant) model from a data set generated by several models. Here robustness (in the context of 

multiple model estimation) refers to accurate estimation of the dominant model and the stability 

of such estimates in spite of significant potential variability of data generated by secondary 

model(s). Going back to example in Fig. 1: after the dominant mode M1 has been identified by a 

robust regression method, it may be possible to identify and remove data samples generated by 

M1, and then apply robust regression to the remaining data in order to estimate the next model. 
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Hence, we propose general methodology for multiple model estimation based on successive 

application of robust regression algorithm to available data, so that during each (successive) 

iteration, we estimate a single (dominant) model and then partition the data into two subsets.  

This iterative procedure is outlined next: 

 

Table 1: PROCEDURE for MULTIPLE MODEL ESTIMATION 

 

Initialization: Available data = all training samples. 

• Step 1: Estimate dominant model, i.e. apply robust regression to available data, resulting 

in a dominant model M1 (describing the majority of available data). 

• Step 2: Partition available data into two subsets, i.e. samples generated by M1 and 

samples generated by other models (the remaining data). This partitioning is performed by 

analyzing available data samples ordered according to their distance (residuals) to dominant 

model M1. 

•Step 3: Remove subset of data generated by dominant model from available data.   

Iterate: Apply Steps 1-3 to available data until some stopping criterion is met.  

 

It is important to note here that the above procedure relies heavily on the existence of robust 

(regression) estimation algorithm that can reliably identify and estimate a dominant model 

(describing majority of available data) in the presence of (structured) outliers and noise. The 

existence of such robust regression method based on Support Vector Machine (SVM) regression 

has been demonstrated in the example shown in Fig.1. However, results in Fig. 1 are purely 

empirical and require further explanation, since the original SVM methodology has been 

developed for single model formulation. Even though SVM is known for its robustness, its 

application for multiple model estimation is far from being obvious. 
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In the next section we provide conceptual and theoretical justification for using SVM method 

in the context of multiple model estimation, i.e. we explain why SVM regression can be used in 

Step 1 of an iterative procedure outlined above. Section 3 describes details and implementation of 

the partitioning Step 2. In addition, Section 3 provides guidelines on selection of meta-parameters 

for SVM regression, important for practical application of SVM. Section 4 presents empirical 

results for multiple model estimation. These results show successful application of the proposed 

SVM-based multiple model estimation for both linear and nonlinear regression models. Section 5 

presents a clustering algorithm based on multiple model estimation, where the goal (of learning) 

is to partition available (training) data into several subsets, such that each subset is generated by a 

different model. Finally, conclusions are given in Section 6. 

 

2. SVM Regression for robust model estimation 

 

It is well known that Support Vector Machine (SVM) methodology is robust under standard 

single-model estimation setting [Vapnik, 1999]. That is, SVM approach works well for 

estimating indicator function (pattern recognition problem) and for estimating real-valued 

function (regression problem) from noisy sparse training data. In this section, we demonstrate 

SVM robustness under multiple model estimation setting, i.e. we explain why SVM regression 

provides stable and accurate estimates of the dominant model when available (training) data are 

generated by several (hidden) models. 

First, we review standard (linear) SVM regression formulation [Vapnik, 1995]. The goal of 

regression is to select the ‘best’ model from a set of admissible models (aka approximating 

functions) )( ωx,f , where ω  denotes (generalized) set of parameters. The best model provides 
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good prediction accuracy (generalization) for future (test) samples, and its selection is performed 

via minimization of some loss function (aka empirical risk) for available training 

data niyii ,...,2,1),,( =x . The main feature of SVM regression responsible for its attractive 

properties is the notion of ε -insensitive loss function:  
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Here the linear nature of the loss function accounts for SVM robustness whereas the ε -

insensitive zone leads to sparseness of SVM regression models [Vapnik, 1995].  

Let us consider (for simplicity) linear SVM regression:  

bf +>=< xωωx ,),(                                                (2) 

SVM approach to linear regression amounts to (simultaneous) minimization of ε -insensitive loss 

function (1) and minimization of the norm of linear parameters 2|||| ω  [Vapnik, 1995]. This can 

be formally described by introducing (non-negative) slack variables *, ii ξξ  ni ,...1= , to measure 

the deviation of training samples outside ε -insensitive zone. Thus SVM regression can be 

formulated as minimization of the following functional: 
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The constant C determines the trade off between the model complexity (flatness) and the 

degree to which deviations larger than ε  are tolerated in optimization formulation. This 

optimization problem can be transformed into the dual problem [Vapnik, 1995], and its solution 

is given by   
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with coefficient values in the range Ci ≤≤ *0 α , Ci ≤≤ α0 . In representation (4), typically 

only a fraction of training samples appear with non-zero coefficients, and such training samples 

are called support vectors. For most applications, the number of support vectors (SVs) SVn is 

usually smaller than the number of training samples. Thus, with ε -insensitive loss, SVM 

solutions are typically sparse.  

For nonlinear regression problem, SVM approach performs first a mapping from the input 

space onto a high-dimensional feature space and then performs linear regression in the high-

dimensional feature space. The SVM solution is  
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where the ),( xx iK is a kernel function. The choice of the kernel functions and kernel parameters 

is determined by a user and is (usually) application-dependent. In this paper, we use RBF kernels 
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where  p is RBF width parameter.  

Next, we explain why SVM regression is suitable for estimating the dominant model under 

multiple model formulation. We assume, for simplicity, linear SVM formulation (4); however 

similar arguments hold for nonlinear SVM as well. The objective function in (3) can be viewed 

as a primal problem, and its dual form can be obtained by constructing Lagrange function and 

introducing a set of (dual) variables [Vapnik, 1995]. For the dual form, the so called Karush-

Kuhn-Tucker (KKT) conditions hold at the optimal solution, which state that the product between 

dual variables and constraints has to vanish: 



 9

              0),( =+><+−+ by iiii xωξεα   

                                        0),( ** =−><−−+ by iiii xωξεα                                           (7) 

   0)( =− iiC ξα  

   0)( ** =− iiC ξα  

We may further analyze properties of coefficients (*)
iα (dual variables) in the SVM solution 

evident from KKT conditions [Smola and Schölkopf, 1998]. First, only samples with 

corresponding Ci =(*)α  lie outside the ε –insensitive zone. Second, condition 0* =iiαα , implies 

that dual variables iα and *
iα  cannot be simultaneously be nonzero, since nonzero slack cannot 

happen in both directions. Let us analyze contribution of training samples in SVM solution (4). 

As shown in Fig. 2, all data samples can be divided into 3 subsets: data points inside the ε -tube 

(labeled as ‘×’ in Fig.2.), data points on the ε -tube (border) (labeled as ‘○’ in Fig. 2.) and data 

points outside the ε -tube (label as ‘□’in Fig.2.). Note that data samples inside the ε -tube cannot 

be support vectors, whereas data samples on the ε -tube border and outside the ε -tube are the 

support vectors but they have different values of the slack variables (*)
iξ  and dual variables (*)

iα , 

as summarized in Table 2. 

Table 2: Values of Slack Variables and dual variables for different subsets 

 

 Sample Location SV (*)
iξ  (*)

iα  

Subset 1 Inside the ε -tube Not SV (*)
iξ =0 0(*) =iα  

Subset 2 On the ε -tube Is SV (*)
iξ =0 ),0((*) Ci ∈α  

Subset 3 Outside the ε -tube Is SV (*)
iξ >0 Ci =(*)α  

 

Recall that the coefficients ω  in the (linear) SVM solution (4) are calculated as 



 10

iii

n

i
xω )( *

1
αα −= ∑

=

                                                   (8) 

where non-zero contribution is provided only by support vectors, which are the data points in 

subset 2 (on the ε -tube) and subset 3 (outside the ε -tube). Further, the value of coefficientω is 

determined by (*)
iα and x -value of training samples, however for samples in subset 3, the value 

Ci =(*)α (constant) does not depend on the y -values of training samples. Hence, data points 

from subset 3 give the same contribution to SVM solution regardless of their y -values, i.e. 

independent of how far away their y -values are from the ε -tube. This property enables robust 

SVM estimation of the dominant model during multiple model estimation. For example in Fig.2, 

consider two ‘□’ points, labeled as ‘Point 1’ and ‘Point 2’. Although their y -values are quite 

different, their x -values are very close (or equal) and the corresponding Ci =(*)α , so their 

contributions to SVM solution (8) are (approximately) the same. 

Similarly, one can analyze contribution of data samples to the bias term in SVM solution. 

Following [Smola and Schölkopf, 1998] the bias term (b) is given by: 

ε−><−= iiyb xω,  for ),0( Ci ∈α                                       (9) 

                ε+><−= iiyb xω,  for ),0(* Ci ∈α   

where the constraint ),0((*) Ci ∈α corresponds to data points in Subset 2 (on the border of ε -

tube). Hence, the points outside the ε -tube (in subset 3) do not contribute to the bias, i.e. outliers 

(samples outside the ε -tube) have no affect on the value of bias.  

In summary, our analysis of (linear) SVM regression presented above indicates that: 

- SVM regression model depends mainly on SVs on the border of ε -insensitive zone; 
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- SVM regression solution is very robust to ‘outliers’ (i.e. data samples outside ε -

insensitive zone). In particular, SVM solution does not depend on the y-values of such 

outliers. 

These properties make SVM very attractive for its use in an iterative procedure for multiple 

model estimation described in Section 1, where a robust estimator applied to all training data 

needs to provide a reliable estimate of the first dominant model. The main practical issue is 

specifying conditions under which SVM regression would yield an accurate estimate of the 

dominant model, under multiple model setting. To answer this question, recall that an SVM 

model depends mainly on SVs on the border of ε -insensitive zone. Hence, SVM regression 

would provide an accurate estimate of the dominant model only if these SVs are generated by the 

dominant model. This will happen only if all (or most) samples in subset 1 (inside the ε -tube) 

and samples in subset 2 (on the ε -tube) are generated by the dominant model. Since the SVM 

model is estimated using all training data (from several models), the last condition implies that 

the majority of the data (say, over 55%) should be generated by dominant model. The 

requirement that majority of available data should be generated by a dominant model is standard 

in robust statistics [Lawrence and Arthur, 1987]. Here we simply derived this condition for SVM 

algorithm in the context of multiple model estimation.  

 

3. SVM methodology for multiple model estimation 

 

This section describes practical algorithms (based on SVM regression) for multiple model 

estimation. These algorithms are based on the iterative procedure described in Section 1. 

However, practical implementation of this procedure requires addressing the following issues: 

- How to set meta-parameters of SVM regression; 
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- How to partition the data into two subsets (after the dominant model had been estimated). 

 

In order to simplify presentation, all descriptions in this paper assume that training data are 

generated by two models, i.e. model M1 (dominant model) and model M2 (minor model). The 

goal is to accurately estimate the dominant model in the first iteration of an iterative procedure 

given in Section 1. Then the second model M2 is estimated in the second iteration of an 

algorithm. Generalization to data sets with multiple models is straightforward.  

Selection of SVM meta-parameters. Next we discuss proper setting of ε  (insensitive zone) 

and C (regularization parameter) in SVM regression for estimating the dominant model in Step 1 

of an iterative procedure given in Section 1. There are many proposals for setting SVM meta-

parameters for standard single-model estimation [Vapnik, 1995; Cherkassky and Mulier, 1998; 

Schölkopf et al, 1999; Hastie et al, 2001]. However, most theoretical prescriptions for setting 

meta-parameters are based on restrictive assumptions and in practice SVM meta-parameters are 

often selected via resampling [Schölkopf et al, 1999]. In this paper, however, we are interested in 

selecting meta-parameters for multiple model estimation setting. Recently, [Cherkassky and Ma, 

2002] proposed analytical selection of SVM meta-parameters (for standard single-model 

regression formulation), as detailed next. For SVM regression, the values of meta-parameters are: 

|)3||,3max(| yy yyC σσ −+=                              (10) 

where y  is the mean of the training response values, and yσ  is the standard deviation of  the 

training response values; 

 
n

nn ln3),( σσε =                                                  (11) 

where σ  is the standard deviation of additive noise and n is the number of training samples. 
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Further, it can be shown that the value of ε -parameter plays the most important role for SVM 

regression, whereas SVM solutions are rather insensitive to regularization parameter as long as 

this parameter is larger than the value given by (10) [Cherkassky and Ma, 2002]. This 

insensitivity to regularization parameter values is particularly true for linear SVM regression 

formulation (3). In other words, one can use very large value of regularization parameter in (3), 

so that SVM solution depends only on proper setting of ε . So in the remainder of the paper we 

shall be only concerned with selection of ε . In order to apply (11) for multiple model estimation, 

consider (for simplicity) only linear SVM. Then in order to estimate dominant model M1 we 

should know the standard deviation 1σ  of additive noise in the dominant model and the number 

of samples generated by the dominant model M1. Hence, we may consider two possibilities: 

- First, we assume that the noise level for each (hidden) model is available or can be 

somehow estimated (using a priori knowledge). In this case, we simply use (11) for 

selecting the value of ε . 

- Second, the noise level (standard deviation) and the number of samples for each model is 

not known. 

Let us consider the second (more difficult) possibility. In this case, selection of ε  relies on 

the requirement that majority of available is generated by the dominant model (being estimated 

by SVM). Hence, we need to select ε -value such that most of the data (say 55%) lies inside the 

ε -tube. This can be done by trial-and-error approach (i.e., trying different ε -values and 

examining support vectors in SVM estimates) or using a more systematic approach called ν -

SVM [Schölkopf et al, 1998].  This approach effectively implements SVM regression having 

prespecified number of support vectors specified by parameter ν (i.e., a given fraction of the total 

number of samples). In the context of multiple model estimation, the requirement that 55% of the 
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data is inside the insensitive zone is equivalent to specifying ν =0.45, i.e. that 45% of the data is 

outside the ε -tube. 

Remarkably, the ability of SVM to accurately estimate the dominant model is not very 

sensitive to the chosen width of ε -insensitive zone. For example, let us apply (linear) SVM to the 

data set shown in Fig.1, in order to estimate the dominant model M1. Assuming the noise 

standard deviation 1σ =0.1 is known, the value of ε -insensitive zone according to (11) should be 

ε =0.084. This value has been used to generate regression estimates shown in Fig.1. In practice, 

we can only know/use crude estimates of the noise level (and hence crude ε -values). So we try to 

estimate the dominant model for data set in Fig. 1a using SVM regression with three different ε -

values (ε =0.084, 0.042 and 0.126). These values are chosen as a half and one-and-a-half of the 

value ε =0.084 specified by (11). Fig. 3 shows SVM estimates of the dominant model for 

different ε -values; clearly these estimates are almost identical, in spite of significant variations in 

ε -values. Hence, using inaccurate values of 1σ  and 1n  (the number of samples) for estimating 

the value ε  of via (11) should not affect accurate estimation of the dominant model. For example, 

if the total number of samples is 100 (known number), then the (unknown) number of samples in 

the dominant model should be at least 50. According to (11), the difference between 5050ln  

and 100100ln  is about 25%, so using inaccurate values of the number of samples should result 

in 25% variation in ε -values (in the worst case). This variation would not affect the accuracy of 

SVM regression estimates, as indicated by empirical results in Fig.3. 

Data partitioning step. Following estimation of the dominant model, we need to partition 

available data into two subsets, i.e. data generated by dominant model and the remaining data 

(generated by other models). This is done by analyzing the (absolute value of) residuals between 

the training response values iy and SVM estimates provided by dominant model )(ˆ iy x : 
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|)(ˆ| iii yyres x−=   for ni ,...,1=                                       (12) 

Namely, training samples with residual values smaller than certain threshold are generated by 

dominant model, and samples with large absolute values of residuals are generated by other 

model(s). Empirically we found that a good threshold equals twice the standard deviation of 

additive noise in the dominant model M1: 

If σ2<ires  then 1),( Myii ∈x                           (13) 

Here we assume that the noise level σ  is known a priori or can be (accurately) estimated from 

data. In fact, the noise level (its standard deviation) can be readily estimated from data as outlined 

next. Let us plot the histogram of residuals )(ˆ iii yyres x−=  for training data. Since SVM 

provides very accurate estimates of the dominant model (in Step 1) and the majority of the data 

are produced by the dominant model, these samples will form a large cluster (of residuals) 

symmetric around zero, whereas samples generated by other models will produce a few more 

smaller clusters. Then the standard deviation of noise (in the dominant model) can be estimated 

via standard deviation of residuals in a large cluster. Further, empirical results (in Fig.3) indicate 

that overall quality of multiple model estimation procedure is not sensitive to accurate 

knowledge/estimation of the noise level. 

 

4. Empirical results 

 

This section describes empirical results for multiple model estimation procedure using 

synthetic data sets. We only show examples where training samples niyZ ii ,...,2,1),,( == x  are 

generated by two models, i.e. 

- Model M1 generates 1n  samples according to 11 )( δ+= xry     
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- Model M2 generates 2n  samples according to 22 )( δ+= xry , so that nnn =+ 21 . 

Note that the same algorithm can been successfully applied when the data are generated by 

larger number of models (these results are not shown here due to space constraints).  

In all examples the input values of the training data are generated as random samples from a 

uniform distribution. Both hidden models are defined in the same domain in the input space. We 

use additive gaussian noise to generate training data for the examples presented in this section. 

However, the proposed method works well with other types of noise; also the standard deviation 

(of noise) may be different for different models. To simplify the presentation, the standard 

deviation of noise is assumed to be known (to the algorithm); however in practical settings the 

noise level can be estimated from data, as described in section 3. 

The first example assumes that both models are linear, hence we apply linear SVM regression 

method (without kernels). In this example we have 100 training samples generated as follows: 

- Model M1: 11 )( δ+= xry , where 28.0)(1 += xxr , ]1,0[∈x , 601 =n  (major model). 

- Model M2: 22 )( δ+= xry , where 12.0)(2 += xxr , ]1,0[∈x , 402 =n  (minor model). 

We consider two noise levels: 1σ = 2σ =0.1 (small noise) and 1σ = 2σ =0.3 (large noise). The 

training data sets (with small noise and with large noise) are shown in Fig. 4, with samples 

generated by major model labeled as ‘+’, and samples generated by minor model labeled as ‘�’. 

These data are hard to separate visually (by a human eye) in the case of large noise. However, the 

proposed method can accurately estimate both models, and separate the training data, as shown in 

Fig.4. As expected, the model estimation accuracy is better for low noise; however even with 

large noise the model estimates are quite good. 
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In second example, both models are nonlinear. Hence we use nonlinear SVM regression. An 

RBF kernel function (6) with width parameter p=0.2 is used in this example. Available training 

data (total of 100 samples) are generated as follows: 

- Model M1: 11 )( δ+= xry , where )2sin()(1 xxr π= , ]1,0[∈x , 1n =70 

- Model M2: 22 )( δ+= xry , where )2cos()(2 xxr π= , ]1,0[∈x , 302 =n . 

Again, we consider two noise levels: 1σ = 2σ =0.1 (small noise) and 1σ = 2σ =0.3 (large 

noise). The training data sets (with small noise and with large noise) are shown in Fig. 5. Results 

in Fig. 5 indicate that the proposed method provides very accurate model estimates, even in the 

case of large noise. 

Finally, we show an example of multiple model estimation for higher-dimensional data. We 

consider linear models in a 4-dimensional input space, so that available training data are 

generated as follows: 

- Model M1: 11 )( δ+= xry , where 43211 )( xxxxr +++=x , 4]1,0[∈x , 601 =n  (major 

model). 

- Model M2: 22 )( δ+= xry ,where 4322 6)( xxxr −−−=x , 4]1,0[∈x , 402 =n  (minor 

model). 

Training data are corrupted by additive noise with standard deviation 1σ = 2σ =0.1. 

For this data set, we illustrate the data partitioning step in Fig.6. Results in Fig. 6 show the 

distribution of residual values, i.e. the difference between response values and M1 model 

estimates (normalized by standard deviation of noise) calculated according to (12). Residual 

values for the first 60 samples (generated by model M1) are on the left-hand side of Fig. 6, and 

the next 40 samples (generated by model M2) are on the right-hand side of Fig.6. Partitioning of 

data samples is performed using residual values according to (13) using threshold value 2, and 
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this threshold is indicated as a horizontal line in the middle of Fig.6. That is, samples below this 

line are assumed to originate from M1, and samples above this line are assumed to originate from 

M2. As expected, data partitioning is not very accurate, since some samples from M1 are 

classified as samples from M2, and vice versa. This is because the two models actually provide 

the same (or very close) response values in a small region of the input space; so perfectly 

accurate classification is not possible. However, the proposed multiple model estimation 

procedure provides very accurate model estimates for this data set. Namely, the estimates 

obtained for models M1 and M2 are: 

For model M1: 43211 08.108.195.014.101.0)(ˆ xxxxy ++++=x  MSE (for M1) = 0.0277; 

For model M2: 43212 99.093.007.093.5)(ˆ xxxxy −−−−=x        MSE (for M2) = 0.0044. 

Clearly, the above estimates are very close to the target functions used to generate noisy data. 

The MSE measure indicates the mean-squared-error between regression estimates and the true 

target function (for each model) obtained using 500 independently generated test samples. 

 

5. Clustering using multiple model estimation 

In many applications, the goal of data modeling (assuming that data are generated by several 

models) is to cluster/partition available data into several subsets, corresponding to different 

generating models. This goal is concerned mainly with accurate partitioning of the data, rather 

than with accurate estimation of the (hidden) regression models, even though these two 

objectives are highly correlated. Example shown in Fig. 6 illustrates the problem: even though 

data partitioning (implemented by proposed algorithm) is not very accurate, the algorithm 

produces very accurate and robust estimates of regression models. In this section we show how to 

improve the accuracy of data partitioning under multiple model estimation formulation. 
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For example, consider nonlinear data set described in Section 4 and shown in Fig. 5c. For this 

data set, some samples are very difficult to assign to an appropriate model, especially in regions 

of the input space where the models have similar response values. For this data set, the proposed 

multiple model estimation algorithm correctly classifies 90.4% of samples generated by major 

model M1, and 53.5% of samples generated by minor model M2. However, the accuracy of data 

partitioning can be further improved using simple post processing procedure described next. This 

procedure uses regression estimates provided by proposed multiple model estimation algorithm. 

Let us denote regression estimate for major model M1 as )(ˆ )1( xy , and regression estimate for 

minor model M2 as )(ˆ )2( xy . Then each training sample niyii ,...,2,1),,( =x  can be assigned to 

one of the two models based on the (absolute) value of residuals: 

|)(ˆ| )1()1(
iiii yyres x−=  and |)(ˆ| )2()2(

iiii yyres x−=  

That is: 

If )2()1(
ii resres <  then 1),( Myii ∈x  else  2),( Myii ∈x          (14) 

Effectively, such post processing method implements ‘nearest neighbor’ classification using 

(absolute value of) residuals. Applying prescription (14) for partitioning the data set shown in 

Fig. 5c yields classification accuracy 92.6% for samples generated by M1, and classification 

accuracy 80% for samples generated by M2. Hence, data re-partitioning technique (14) gives 

better accuracy than data partitioning produced by the original multiple model estimation 

procedure.  

In conclusion, we comment on applicability and implications of clustering/data partitioning 

approach described in this section. This approach to clustering assumes that training data are 

generated by several models, and the clustering relies heavily of accurate estimates of 

(regression) models obtained by robust SVM-based algorithm. Hence, the problem setting itself 
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combines supervised learning (i.e. estimation of regression models) and unsupervised learning 

(i.e. data partitioning or clustering). We expect this approach to clustering to outperform 

traditional clustering techniques for applications that can be described using multiple model 

formulation. Finally, proposed ‘nearest neighbor’ rule (14) for data partitioning assumes that both 

(hidden) models have the same noise level (or standard deviation), and the same 

‘misclassification’ cost for both models. These assumptions hold true for the data set in Fig. 5c, 

and this explains improved classification accuracy for this example. In many applications, 

however, the noise levels and misclassification costs for different (hidden) models are not the 

same, and one should adjust the rule (14) to account for these differences. 

 

6. Summary and discussion 

This paper presents a new algorithm for multiple model estimation. The proposed method is 

based on SVM learning adapted to multiple model formulation. Empirical results presented in 

this paper demonstrate that SVM-based learning can be successfully applied to multiple model 

regression problems. In addition, we introduced a new clustering/data partitioning method 

suitable for multiple model formulation. 

Future related work may focus on applications of the proposed methodology to real-world 

problems, ranging from computer vision (motion analysis) to financial engineering. As discussed 

in [Cherkassky and Ma, 2002], such applications should be based on a thorough understanding of 

each application domain, necessary for a meaningful specification/parameterization of (hidden) 

models. Additional research may be concerned with better understanding of robustness of SVM 

methodology, and comparing it with traditional robust methods in the context of multiple model 

estimation. 
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Finally, we point out that the proposed learning method assumes that all (hidden) models are 

defined on the same domain (i.e., the same region in the input space). In situations where 

different models are defined in different (disjoint) regions of the input space, the proposed 

algorithm can not be successfully applied. Instead, one should use well-known (tree) partitioning 

algorithms such as CART, mixture of experts and their variants [Hastie et al, 2001]. These 

algorithms effectively partition the input space into several (disjoint) regions and estimate output 

(response) values in each region of the input space. Here it may be interesting to note that tree 

partitioning algorithms are based on a single model formulation, so they tend to enforce 

smoothness at the region boundaries. It may be possible to develop learning algorithms for 

regression in disjoint regions using multiple model formulation, and then compare its accuracy 

with traditional tree partitioning methods.  
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FIGURE CAPTIONS 

Fig. 1: Comparing robust method vs least squares estimation of the dominant model. 

(a) First data set (dominant model 70% of data samples, secondary model 30% of samples),  

(b) Estimates of dominant model M1 by robust method vs. least squares, for data set (a), 

(c) Second data set (dominant model 70% of data samples, secondary model 30% of samples), 

(d) Estimates of dominant model M1 by robust method vs. least squares, for data set (b). 

 

Fig. 2: Location of training data with respect to ε -insensitive tube showing three possible subsets 

of data. 

 

Fig. 3. SVM estimates of dominant model do not depend on accurate selection of ε -values. 

Results show three SVM estimates for data set in Fig. 1(a), using ‘optimal’ε  (for this data set), 

0.5ε , and 1.5ε : 

Solid line --- ‘optimal’ ε =0.084 

Dashed line --- ε =0.042 

Dotted line --- ε =0.126 

 

Fig. 4. Example of multiple model estimation procedure for linear models: 

(a) Training data (with small noise) 

(b) Model estimates for data set (a) obtained using proposed algorithm 

(c) Training data (with large noise) 

(d) Model estimates for data set (b) obtained using proposed algorithm.  

 

Fig. 5. Example of multiple model estimation procedure for nonlinear models: 
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(a) Training data (with small noise) 

(b) Model estimates for data set (a) obtained using proposed algorithm 

(c) Training data (with large noise) 

(d) Model estimates for data set (b) obtained using proposed algorithm. 

 

Fig.6. Illustration of data partitioning Step 2 in the proposed algorithm for high-dimensional data 

set. Horizontal threshold line is used to partition the data into two subsets. 
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Fig.1. Comparing robust method vs least squares estimation of the dominant model. 

(a) First data set (dominant model 70% of data samples, secondary model 30% of samples),  

(b) Estimates of dominant model M1 by robust method vs. least squares, for data set (a), 

(c) Second data set (dominant model 70% of data samples, secondary model 30% of samples), 

(d) Estimates of dominant model M1 by robust method vs. least squares, for data set (b). 
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Fig. 2: Location of training data with respect to ε -insensitive tube showing three possible subsets 

of data. 
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Fig. 3. SVM estimates of dominant model do not depend on accurate selection of ε -values. 

Results show three SVM estimates for data set in Fig. 1(a), using ‘optimal’ε  (for this data set), 

0.5ε , and 1.5ε : 

Solid line --- ‘optimal’ ε =0.084 

Dashed line --- ε =0.042 

Dotted line --- ε =0.126              
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Fig. 4. Example of multiple model estimation procedure for linear models: 

 

(a) Training data (with small noise) 

(b) Model estimates for data set (a) obtained using proposed algorithm 

(c) Training data (with large noise) 

(d) Model estimates for data set (b) obtained using proposed algorithm.  
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Fig. 5. Example of multiple model estimation procedure for nonlinear models: 

(a) Training data (with small noise) 

(b) Model estimates for data set (a) obtained using proposed algorithm 

(c) Training data (with large noise) 

(d) Model estimates for data set (b) obtained using proposed algorithm. 
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Fig.6. Illustration of data partitioning Step 2 in the proposed algorithm for high-dimensional data 

set. Horizontal threshold line is used to partition the data into two subsets. 
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