
Multiple Model Estimation: A New Formulation for Predictive Learning

Vladimir Cherkassky and Yunqian Ma

Department of Electrical and Computer Engineering

University of Minnesota

Minneapolis, MN 55455

{cherkass, myq}@ece.umn.edu

Abstract

This paper presents a new formulation for predictive learning called multiple model estimation.

Existing learning methodologies are based on traditional formulations such as classification or

regression which assume that available (training) data is generated by a single (unknown)

model. The deviations from this model are treated as zero-mean i.i.d. noise. These assumptions

about underlying statistical model for data generation are somewhat relaxed in robust statistics,

where a small number of outliers are allowed in the training data. However, the goal of learning

(under robust statistical formulations) remains the same, i.e., estimating a single model

consistent with the majority of ‘representative’ training data. In many real-life applications it is

natural to assume multiple models underlying an unknown system under investigation. In such

cases, training data is generated by different (unknown) statistical models. Hence, the goal of

learning is to simultaneously solve two problems, i.e. to estimate several statistical models AND

to partition available (training) data into several subsets (one subset for each underlying

model). This paper presents generic mathematical formulation for multiple model estimation.

We also discuss several application settings where proposed multiple model estimation is more

appropriate than traditional single-model formulations.

 2

1 Introduction and Motivation

Various applications in engineering, statistics, computer science, health sciences and social

sciences are concerned with estimating ‘good’ predictive models from available data. In such

problems the goal is to estimate unknown dependency (or model) from historical data (or training

data), in order to use this model for predicting future samples (or test data). The process of

estimating predictive models from data involves two distinct steps [Cherkassky and Mulier,

1998; Dowdy and Wearden, 1991]:

(1) Problem specification, i.e. mapping application requirements onto a standard statistical

formulation. This step mainly reflects common sense and application-domain knowledge, so

it cannot be formalized.

(2) Statistical inference, i.e. applying constructive learning methodologies to estimate a model

specified in (1) from available training data.

Even though most research is focused on theory and constructive methods for statistical

inference (aka learning theory and learning methods), there exists a strong connection between

the problem specification and statistical inference, as explained next. Classical statistical

paradigm is based on (parametric) density estimation; under this approach any data mining

application can be (at least conceptually) reduced to density estimation (from available data).

However, constructive methods based on density estimation formulation do not work well with

finite high-dimensional data. Recent empirical methods developed in statistics and neural

networks effectively implement the idea of minimization of (penalized) empirical risk, rather

than density estimation. A solid theoretical framework for such methods is provided by Vapnik-

Chervonenkis (VC) learning theory [Vapnik, 1995]. Conceptually, VC-theory makes a clear

 3

distinction between the problem specification (formulation) and solution approaches (inductive

principles) – this distinction is often obscured in classical statistics. VC-theory describes 3

distinct formulations for the learning problem, i.e., density estimation, regression (estimation of

continuous-valued function) and classification (estimation of indicator-valued function or class-

decision boundaries). Note that VC-theory makes a strong argument that for finite sample

estimation problems one should always use the most appropriate direct formulation (i.e.

classification or regression) rather than general density estimation formulation [Vapnik, 1995;

Cherkassky and Mulier, 1998]. Moreover, recent success of Support Vector Machine (SVM)

methods (developed in VC-theory) for various data mining applications provides an empirical

justification of this claim [Schoelkopf et al, 1999]. Herein lies the connection between the

problem formulation and constructive learning methods for statistical inference: available

learning methods are designed for specific problem formulations, but the problem formulation

itself has to be meaningful, i.e. should reflect application requirements.

The major challenge for data mining applications is to come up with realistic learning

problem formulations that faithfully reflect real-life application requirements [Cherkassky, 2001].

Currently, most applications are mapped onto either ‘pure’ classification or ‘pure’ regression

formulation. It can be argued that such standard learning formulations do not adequately reflect

many application requirements [Cherkassky, 2001]. In such cases, inadequacies of standard

formulations are compensated by various preprocessing techniques and/or heuristic modifications

of a learning algorithm (for classification or regression). Effectively, these practical heuristics

introduce a priori knowledge on the level of constructive learning algorithm. In contrast,

[Cherkassky, 2001] proposed to develop more flexible problem formulations – this can be

potentially beneficial for many applications where ‘standard’ classification or regression is not

 4

appropriate. The main assumption underlying existing statistical formulations is the assumption

that all available data is generated by a single (unknown) statistical model. We call it single

model estimation. Generic learning system for single model estimation is shown in Fig.1 - this

system describes such common tasks as density estimation, regression and classification [Vapnik,

1995; Cherkassky and Mulier, 1998]. We briefly review next standard (single-model) regression

formulation, in order to contrast it to multiple-model regression formulation introduced later.

Standard regression formulation: given finite number of samples called training data

),...,1(),,(niyii =x . Statistical model assumes that response values (output) is the sum of

unknown (target) function and random error,

δ+=)(xty (1)

where δ is i.i.d. zero mean random error (noise) and)(xt is a target function (ground truth). The

goal of learning (estimation) is to select the best model (function)),(*ωxf from a set of

admissible models parameterized by (generalized) parameter vectorω : Ω∈ωω),,(xf . The best

model provides most accurate approximation of (unknown) target function. Various learning

methods developed in statistics, neural networks and learning theory (such as MARS, CART,

MLP networks and SVM) differ in the parameterization of admissible models (2), strategies for

minimizing empirical risk and in methods for model selection (complexity control) – see

[Cherkassky and Mulier, 1998] for details.

Multiple model regression formulation: Generic system for multiple model estimation is

shown in Fig.2 – it describes a learning system for estimating two models from a single data set.

We discuss the two-model case for the sake of explanation, and its generalization to multiple

models is straightforward. In order to understand multiple model formulation in Fig. 2, it may be

 5

instructive to focus on its differences with respect to traditional single-model estimation shown in

Fig.1. The main distinction between these formulations is that under multiple model formulation

data samples originate from several (generating or hidden) models (i.e. from System 1 and

System 2 as in Fig.2). However, the Learning Machine has no knowledge about proper

assignment of training /test data to respective models, i.e. training sample),(yx provided to the

Learning Machine has no label for the underlying (generating) model as shown in Fig.2. The goal

of learning now becomes two-fold, i.e. accurate estimation of each generating model AND

accurate classification/assignment of the training and test data to respective models. Specific loss

functions used to quantify generalization (prediction) performance of a learning method combine

these two goals (as detailed later in this paper).

In the next section we describe several application domains that can be naturally described

using multiple-model formulation. Section 3 provides detailed mathematical description of

multiple-model formulation. Summary and conclusions are given in Section 4.

2 Application Examples

This section describes several applications domains that can be described using multiple

model estimation framework. We emphasize that multiple model estimation approach naturally

reflects many application settings. Hence the focus is on presenting application requirements and

mapping them onto a meaningful learning problem formulation, rather than describing

constructive solution approaches (learning algorithms) for these problems.

Application 1: financial engineering. Here the goal is to develop consistently profitable

(‘safe’) daily trading strategies for broad market indices (such as S&P500 or Dow Jones

Industrial Average) or large diversified mutual funds. The motivation is based on the notion that

 6

it may be possible to benefit from a short-term (daily) market volatility using statistically-based

trading strategies. With recent computerization of the financial industry, there is a growing trend

towards negligible (zero) trading cost; as witnessed by a rapidly growing segment of the mutual

funds industry (Rydex, Potomac and ProFunds) catering specifically for short-term traders [WSJ,

1999]. For such mutual funds, we consider daily trading strategies that make a decision (whether

to stay invested in the market or switch into cash) in the end of each trading day, based on current

market indicators. Clearly, if we think that tomorrow the market (or given index/mutual fund)

will move UP, we should stay fully invested for possible appreciation; alternatively, if we think

the market will move DOWN, we should switch into cash for capital preservation (safety).

Hence, optimal trading strategies achieve statistically optimal trade-off between preservation of

principal and short-term (daily) gains. Application of statistical learning methodologies to

estimating optimal trading strategies can be described as follows [Cherkassky et al, 2000].

Formally, trading strategies can be represented as a set of indicator (BUY or SELL) decision

functions),(ωxf depending on a set of (proprietary) market indicators (at the end of each trading

day) denoted by x and parameterized by parametersω . An optimal parameter vector resulting in

optimal trading strategy),(*ωxf is estimated using available (historical) data. This problem

statement effectively follows standard single-model formulation, i.e., the goal is to estimate a

single model (trading strategy) from available data. Arguably, this objective itself may be

unattainable, since it is well-known that the market conditions and market psychology changes

very fast, in response to unanticipated economic and political events. Consequently, a single-

model estimation approach results in strategies that are too complex and dangerously non-robust.

Alternatively, the problem of estimating robust trading strategies can be formulated under

multiple-model framework, by noting that the stock market undergoes 3 medium-term market

 7

conditions, i.e. medium-term trend is UP, DOWN or FLAT. The medium-term trend conditions

can be detected using standard methods in technical analysis, such as plotting moving averages

etc. Further, it makes perfect sense to estimate optimal short-term (daily) trading strategies for a

given (known) medium-term trend. For example, if the medium-term trend is UP, a good short-

term strategy would be buying on the dips; if the trend is DOWN, a good short-term strategy

would be selling on the rallies. Using multiple-model formulation, the goal of learning is to

partition available training data into 3 data sets corresponding to different market conditions (UP,

DOWN and FLAT market) and to estimate 3 daily trading strategies optimized for each market

condition. We also note here that in this application the number of distinct models is known

(given a priori). We also emphasize that under multiple-model learning, partitioning of available

data into several subsets and model estimation (for each subset of data) are not two independent

problems. That is, we can not approach its solution by first partitioning (clustering) available data

into several subsets, and second using single model estimation techniques to model the data in

each subset. Constructive solution approaches for multiple model estimation will be discussed

later in a companion paper.

Application 2: motion analysis in computer vision. Let us consider the problem of motion

estimation from a time sequence of 2-dimensional image data)(tx , where)(tx denotes two-

dimensional coordinates of a point (pixel) in an image at discrete time t (present time).

Coordinates of this point at the next time moment 1+t can be represented as a function of its

coordinate at present moment t :

0)()()1(WtWtt ++=+ xxx (2a)

where the motion parameters are encoded in matrices W and 0W as

 8







=

2221

1211

ww
ww

W and 





=

02

01
0 w

w
W

That is, parameters in 0W represent translations in the horizontal and vertical dimensions,

whereas parameters in W represent affine motions (such as rotation, sheer etc.). Motion type and

motion parameters are usually unknown and need to be estimated from available data. In a simple

case when all image pixels follow the same (unknown) motion, the problem of motion analysis

leads to a standard (linear) regression formulation:

 δ+++= 0)()()(WtWtt xxy (2b)

where the response vector)1()(+= tt xy for notational convenience, and an additive noise δ is

included to reflect the effects of measurement noise. Representation (2a) and (2b) are equivalent,

since both put in correspondence similar image locations, drawn from two consecutive image

frames drawn at time t and 1+t , respectively. However, representation (2b) can be readily

interpreted using standard regression formulation (1), so that one can model (estimate) the

dependency of ‘response’ variables)(ty on the input variables)(tx using finite amount of

available data. Hence standard learning/estimation techniques can be readily applied to the

problem of motion estimation. The practical objective of such motion estimation may be making

accurate predictions for image pixels not included in the training set (‘interpolation’) and/or

making predictions for future frames (‘extrapolation’). The main issue in motion analysis is

determining correct motion type and estimating its parameters from finite available (training)

data. This involves statistical issues of model selection and complexity control – see, for

example, [Wechsler et al, 2002] who successfully applied VC-based model selection to the

problem of motion analysis and motion parameter estimation.

 9

Standard regression formulation (2b) for motion analysis works perfectly well for estimating

motion parameters when all image pixels follow the same (unknown) motion, i.e. rotation, pure

translation etc. However, there are many practical situations where different parts of an image

participate in different motions. Then motion analysis becomes more challenging: we need to

partition available image data into several subsets AND (at the same time) estimate motion

parameters using an appropriate subset of data. This problem (of simultaneous estimation of

multiple motions) is known as spatial partitioning in Computer Vision (CV) literature.

Specifically, we are interesting in non-disjoint spatial partitioning settings where parts of an

image experience non-disjoint motions, i.e. the trajectories of image pixels involved in different

motions may overlap in the input space. This setting can be contrasted to the case when different

motions occupy disjoint regions of the input space (known as disjoint spatial partitioning in CV),

where one can apply well-known partitioning techniques for standard regression formulation (i.e.,

regression trees or mixture of experts) that partition the input (x) space and estimate a different

model (motion) in each disjoint input region. For the problem of multiple motion estimation

(assuming non-disjoint case), we are given training data),(),...,,(),,(2211 nn yxyxyx , however it

is not known which portion of an image (which samples) are involved in each motion. This

problem can be naturally formulated using multiple-model estimation framework (see Fig.2), so

that each model represents an unknown motion, and the goal of learning is to separate available

data into several subsets and to estimate regression models (motions) describing each subset. The

number of different motions (models) is generally unknown; however the parametric form of

different possible motions is usually known from the Computer Vision literature. For example,

motion models are described by linear parametric models that include 2D linear affine, simplified

quadratic flow etc. [Black et al, 1997; Shashua and Wexler, 2001]. In general, the problem of

 10

(multiple) motion analysis is considered a challenging problem in CV. Even though many

learning algorithms have been proposed, notably suitable modification of methods from robust

statistics [Black et al, 1996; Chen et al, 2000], there is a general feeling that existing learning

heuristics have limited applicability. For example, the method described in [Chen et al, 2000]

appears to work well for 2D data; however the authors note that ‘its practicality for high

dimensions is not obvious’. We may argue that the main conceptual problem with existing

learning methods for multiple motion estimation in CV is that they all assume standard single-

model regression formulation. Instead, one should use multiple-model formulation that is more

appropriate for this application.

Application 3: home insurance fraud detection. Large insurance companies often employ

data-driven models for identifying fraudulent home insurance claims. The goal is to identify ‘bad

risk’ customers in order to drop their insurance coverage and thus avoid future losses. Currently,

fraudulent claims are identified by detecting abnormal frequency and/or claim amount of

insurance claims. For example, if a homeowner submits 3 or more claims over a 3-year period,

then his/her home insurance coverage may not be renewed. Using such fixed-rule-based criteria

for identifying fraudulent claims does not always make good business sense, because they do not

adapt to random unpredictable events (i.e., natural disasters). Therefore, a better approach is to

develop flexible data-driven strategies for identifying abnormal claims based on available

(historical) data of past claims. This approach assumes single statistical model which relates a

response variable (some quantifiable measure of the claim amount and frequency) to several

input (predictor) variables comprising the property value, length of past insurance coverage,

geographical location of the property (i.e., the state, rural vs metropolitan area location) etc.

Assuming that such a stable dependency exists, it can be estimated from available historical data

 11

using well-known regression estimation techniques. Then for a given test input (a set of input

variables), observing large deviations from this regression model can be used as an indicator of

‘abnormal’ claims and serve as a basis for dropping insurance coverage. The learning problem

(as stated above) assumes a single underlying model, i.e. a single dependency of the ‘normal’

claim amount/frequency on a set of input variables. It may be reasonable to describe this

application using a multiple-model formulation approach, assuming that available data is

generated by three underlying models, that is normal claim dependency for expensive homes,

normal claim dependency for medium-priced homes and normal claim dependency for

inexpensive homes. Under this approach, the goal of learning/estimation is simultaneous

partitioning of available data into three subsets and estimating regression model for each subset

of data. Note that the problem of data partitioning cannot be solved by simply splitting the data

based on the estimated dollar value of home prices. This is because the concept of ‘expensive’ or

‘cheap’ home depends strongly on the geographical location and other factors (input variables).

As evident from the above application examples, using multiple-model formulation relies

heavily on a priori (application-domain) knowledge. Good understanding of an application

domain is important for two reasons. First, the choice between single-model formulation and

multiple-model formulation cannot be made on the basis of theoretical analysis or some ‘good’

analytical properties of a particular formulation – this choice simply reflects common sense and

sound engineering as applied to the problem specification. Second, multiple-model formulation is

inherently more complex than single-problem formulation (because we need to estimate several

models from a single data set). Consequently, constructive learning algorithms for multiple-

model formulation need to incorporate more a priori knowledge (compared to algorithms for

single-model estimation) in order to make estimation/learning tractable. In particular, such a

 12

priori knowledge may include the number of (hidden) models (i.e., three medium-term market

conditions describing stock market behavior) and specific parametric form of each model (i.e.,

translation and rotation motions in the motion analysis application).

3 Formulation for Multiple Model Estimation

This section presents mathematical formulation for multiple model estimation, which can be

relevant for describing many real-life problems (i.e. example applications presented in Section 2).

The description focuses on the issues important for distinction between (proposed) multiple-

model formulation and traditional single-model formulation. In addition, we discuss the

connection and differences between multiple-model formulation and several well-known

partitioning learning methods (such as tree partitioning and mixture of experts approach)

originally developed for single model formulation.

Statistical model for data generation: assumes that response (output) values are generated by

several (unknown) models,

mmty δ+=)(x mX∈x (3)

where mδ is i.i.d. zero mean random error (noise), and (unknown) models are represented by

target functions Mmtm ,...,1),(=x . We assume that the number of models is finite but generally

unknown. In some applications, however, the number of models is given a priori. Statistical

model further assumes that the input samples for model m are generated according to some

distribution with (unknown) p.d.f.)(xmp . The ‘prior probability’ of model m samples is denoted

as mc , where 1
1

=∑
=

m

M

m
c . These prior probabilities are not known, but can be estimated from

(large) training data set. We also assume additive unimodal symmetric zero-mean noise mδ for

 13

each model (3). To simplify presentation, we assume that the noise distribution is the same for all

models (δδ =m) and this noise is described by unknown (but stationary) noise density)(yδ .

Generic formulation for multiple model estimation in Fig.2 allows for two distinct settings:

1. Piecewise-disjoint formulation. The input (X) domains for different generating models are

disjoint, i.e. φ=ml XX Ι if ml ≠ . Each of the hidden models applies to different (disjoint)

regions of the input space; however, partitioning of the input space into disjoint regions is not

known (given) a priori and needs to be estimated from data. Here the goal of learning may be

minimization of the traditional prediction risk (estimation accuracy) as in single model

formulation, or identification of abnormal future samples. This interpretation is somewhat

similar to partitioning methods for standard single model estimation (i.e., the mixture of

experts (ME) or tree-based methods such as CART). Such partitioning methods estimate an

unknown function (model) by partitioning the input space into several regions and estimating

a simple model for each respective region, in a data-dependent fashion. The main difference

between (existing) partitioning methods and (proposed) multiple model estimation setting is

that partitioning methods represent a solution approach for standard single-model

formulation. For example, ME assumes particular parameterization (mixture model) for

single-model estimation. Hence, partitioning methods (such as ME) emphasize ‘smooth’

transitions between adjacent regions, due to overlapping nature of gaussian mixture. In

contrast, multiple model estimation allows for sharp (discontinious) transitions between

adjacent regions. Whereas any comparisons between multiple model setting and partitioning

methods is ultimately application-dependent and will depend on application-specific loss

function, it may be possible to perform empirical comparisons between partitioning methods

and multiple-model approach for standard single-model piecewise function estimation (using

 14

standard loss functions for classification or regression). For example, piecewise-linear

function estimation can be interpreted as a single model estimation problem (using a

particular parameterization of a complex single model) or under multiple-model formulation

where the goal is to estimate several simple (linear) models appropriate for different (disjoint)

regions of the input space.

2. Non-disjoint formulation. The input domains for different models are identical: ml XX = .

Each of the hidden models in Fig.2 applies to the whole input space. In other words, x-

distribution of data is the same for all models. So the difference (between models) is

exclusively due to different distributions in y-space. Here the likely goal of learning may be

accurate classification of future (x, y) samples.

We present next several example data sets intending to illustrate the difference between

single model formulation and multiple model formulation in general, and between existing

partitioning methodologies (for single model estimation) and multiple-model estimation in

particular. Figs.3-5 show representative toy data sets and corresponding model estimates

(obtained from this training data) under different modeling assumptions (i.e. single-model vs.

multiple-model approach). The data sets are intentionally simple (i.e., univariate regression

setting) and are used to show (informally and intuitively) specific settings for data generation

when the proposed multiple-model estimation approach makes sense. Data set in Fig.3 is an

example of standard regression formulation (1); however it assumes discontinuous target function

defined in two (disjoint) regions in the input space. Technically, this data set can be modeled

using traditional single-function estimation methodology that would enforce continuous

transition between the two regions, as shown in Fig.3a. This approach, however, may result in

low model estimation accuracy especially when (unknown) target function has a large jump at

 15

discontinuity. Alternatively, the same data set can be modeled under the proposed multiple-model

approach as shown in Fig. 3b. An estimate shown in Fig. 3b consists of two separate models

defined in two disjoint regions of the input space. The advantages of this multiple-model

approach are two-fold: first, it provides better estimation accuracy (smaller generalization error),

and second, it can yield useful model interpretation (i.e., the existence of two distinctly different

models) important for many applications. Further, the data set in Fig.3 is a simple example of

(more realistic) higher-dimensional data sets for which many existing piecewise modeling (or

partitioning) methodologies (such as tree partitioning, mixture of experts etc.) have been

proposed under standard single-model formulation. Hence, it may be interesting to perform

empirical comparisons (in terms of prediction accuracy) between existing partitioning methods

and estimation methods based on the proposed multiple-model approach, for such data sets (both

synthetic and real-life). Data set in Fig.4 shows ‘non-standard’ regression problem where the two

components of the target function partially overlap at the point of discontinuity. Under single-

model estimation approach, the data in the overlapping region is interpreted as having very high

noise, and hence the jump (discontinuity) will be smoothed leading to very inaccurate model in

this region (see Fig. 4a). In contrast, the proposed multiple-model estimation would produce two

distinct models that are partially overlapping in the input space, as shown in Fig. 4b. Clearly, this

results in a more accurate model; however, the multiple-model approach here yields a totally new

type of model. That is, it produces two different response values for the same input (in the

overlapping region). Hence, it cannot be directly compared to standard partitioning methods

developed under single-model formulation. Finally, the data set in Fig. 5 shows an extreme

situation when the input domain of the two hidden models is the same. In this case, the single

model approach is completely inappropriate (as shown in Fig. 5a), whereas the proposed

approach enables accurate estimation of both hidden models (see Fig. 5b).

 16

Training/learning phase: given finite number of samples or training data),...,1(),,(niyii =x .

The objective of learning is two-fold:

(a) to estimate M target functions from a set of admissible models:

),...1,(),,(Mmf mmmm =Ω∈ωωx (4)

where mΩ is a parametric space for model m. Each model estimate approximates the

corresponding target function)(),(* xx mmm tf →ω .

(b) to partition available training data into M subsets, where each training sample is assigned to

a model. This may also (implicitly) partition the input (x) and/or output (y) space into M disjoint

regions.

As evident from the above description, statistical model for multiple-model estimation can be

viewed as a generalization of the traditional single-model estimation (also see Figs. 3-5 for

intuitive justification of the multiple-model approach). Alternatively, multiple-model estimation

setting can be viewed as a combination of traditional classification and regression formulations.

That is, we seek to partition a given data set (training data) into several subsets (classes), and at

the same time, to estimate an accurate regression-like model for each subset of data

Next we consider the operation/prediction phase of a learning system under multiple-model

formulation. Recall that under traditional (single-model) approach deduction amounts to

estimating response ŷ given test input x , simply as),(ˆ *ωxfy = , where),(*ωxf is a model

estimated from past (training) data. For multiple-model setting this approach would not work,

because for a given test input we need first to choose an appropriate model, and only then

estimate its response for given input. Further, we generally cannot select an appropriate model

using the test input x alone, since the input domains for different models may be overlapping

 17

(see Figs. 4 and 5). Hence, selecting correct model during the operation stage should be based on

the),(yx values of the test data as shown in Fig. 6(b). After the model m is chosen, estimated

response is generated as),(ˆ *
mmfy ωx= .

Operation/prediction phase.

For a given test sample),(yz x= generated by model k (which is unknown) and a set of

models estimated during training stage:

),...1(),,(* MiXf iii =∈xx ω (5)

we need to perform the following two tasks.

Task 1: Model assignment. Determine ‘correct’ or most likely model for a given test sample

),(yz x= . This is accomplished using (application-dependent) ‘distance’ between the test sample

and each of the models (5). Here each model (5) is defined as a region in the input (x) space and

the mapping yfm →x: in this region. Hence, the ’distance’ may be defined in the input (x)

space or in the y-space, or some combination of both. Formally, this can be expressed as:

{ }),(,(*)1(),(*minarg *
iii

i
fydistXdistm ωββ xx −+= (6)

where parameter []1,0∈β

Note that the ‘distance’ in the input space depends on the model densities)(xmp and on prior

probabilities in a rather complicated manner, when the model densities are overlapping (non-

disjoint). However, in this paper we consider two special cases for statistical model for data

generation (3) that is disjoint formulation and non-disjoint formulation. For disjoint formulation,

it is natural to set 1=β , so the correct model is determined using some distance in the input

space. For non-disjoint formulation, we assume that all models have identical densities in the

input space (however, models may have different prior probabilities). In this case, 0=β , and a

 18

natural notion of ‘distance’ may be the probability of misclassification. Hence, an optimal rule for

selecting correct model in this case is given by:

{ })],/([1minarg yMPm i
i

x−= (7)

 where)],/([yMP i x is a posterior probability of selecting the model iM given a test sample

),(yz x= . This probability can be expressed in terms of the noise density in the statistical model

(3), under the assumption that different models in (3) have the same noise distribution:

))(()],/([xx iii fycyMP −= δ (8)

Task 2: Estimate improved response using selected model. For multiple model setting, both

the input and the response values of the test sample),(yx are given, and this sample is first

assigned to an appropriate hidden model m and then an improved estimate for response ŷ is

obtained as),(ˆ *
mmfy ωx= .

Next we provide quantifiable metrics for prediction risk/loss appropriate for multiple model

estimation, with understanding that for practical problems such metrics have to be consistent with

application requirements. The problem is to estimate loss/risk for given test sample),(yz x=

with respect to the model selected during operation/prediction phase, where the goal is to obtain

an improved estimate for response ŷ (as outlined above). Let us define two components of

prediction loss for multiple model formulation. The first component measures model estimation

accuracy (under the assumption that test samples are classified correctly in Task 1 above). The

second component quantifies loss due to model misclassification (i.e. incorrect classification of

test samples in Task 1). We introduce and discuss each component separately, since their relative

importance may be strongly application-dependent. The model estimation risk is a

straightforward generalization of (prediction) risk under traditional single-model formulation

 19

[Vapnik, 1999, Cherkassky and Mulier, 1998]. That is, for each model i we measure the

discrepancy between the (known) estimate),(*
iif ωx and the unknown (target) function

)(xit averaged with respect to (unknown) distribution of input samples for this model:

[] xxxx dpftR i
X

iiiii

i

)(),()()(
2*∫ −= ωω (9)

Note that we used squared-error loss as in standard regression formulation; however one can

use any reasonable loss function in expression (9) consistent with application requirements (i.e.,

linear loss, classification error etc.). Further we calculate total model estimation risk by averaging

over all models:

)(),...,,(
1

21 ii

M

i
iM RcR ωωωω ∑

=

= (10)

Expressions (9) and (10) for prediction risk represent straightforward generalization of prediction

risk for single-model estimation, under the assumption that each test sample is correctly

classified, i.e. assigned to its generating model.

The model misclassification risk measures the cost of misclassification of test samples. Even

though (arguably) one can use traditional measures such as classification error (in standard

classification formulation) we introduce a new measure that is more appropriate for multiple

model formulation. Recall that for the test sample),(yx that is classified as originating from

hidden model m an estimated response ŷ is obtained as),(ˆ *
mmfy ωx= . Hence, if this sample

has been misclassified and the actual (true) model is model k rather than m , the loss due to such

misclassification can be quantified as))(,ˆ(xktyL using some loss function. For example, using

squared loss, we have the following loss due to sample from model k classified as originating

from model m :

 20

()2*)(),())(,ˆ(xxx kmkm tftyL −= ω (11)

In order to quantify the expected model misclassification risk we need to average loss (11)

over unknown distributions. This is shown next under two simplifying assumptions. First, we

assume only two models. Second, we assume non-disjoint formulation, where x -distribution of

data is identical for all models, so a test sample),(yx is assigned to one of the two models based

on the distribution in y-space. A general rule for assigning a test sample to one of the two models

is based on posterior probabilities, i.e. test sample),(yx originates from Model 1

if)],/([ˆ 1 yMP x >)],/([ˆ 2 yMP x , and from Model 2 otherwise. Recall that a given test sample

),(yx can be generated by one of the two models)(11 xtM = or)(22 xtM = . These models are

unknown, but we have model estimates obtained from the training data as),(ˆ *
11 ωxfy = and

),(ˆ *
22 ωxfy = . Hence, for a given test sample the model misclassification loss (for the 2-model

case) when the test sample assigned to Model 1 has been actually generated by Model 2 can be

expressed as:

())/(*)(),(]/),,[(21
2

2
*
1121 MMPtfMMyL xxx −= ω (12)

where)/(21 MMP is the probability that the test sample assigned to model 1M has been

generated by model 2M . Likewise, the model misclassification loss in the case when the test

sample assigned to Model 2 has been actually generated by model 1 is given by:

())/(*)(),(]/),,[(12
2

1
*
2212 MMPtfMMyL xxx −= ω (13)

 and)/(12 MMP is the probability that the test sample assigned to model 2M has been actually

generated by model 1M . Averaging model misclassification loss over (unknown) distribution of

x -samples yields expected model misclassification risk:

 21

() ()∫∫ −+−=
XX

dpMMPtfcdpMMPtfcMMR xxxx)()/()()/(),(12
2

12121
2

21221 (14)

where we used for notational brevity,),(*
111 ωxff = ,),(*

212 ωxff = ,)(11 xtt = and)(22 xtt = .

Assuming known unimodal noise density)(yδ in the statistical model δ+=)(xmty we can

analytically evaluate)/(21 MMP and)/(12 MMP as:

∫
−

+

∞−

=
2

21

2

21)()/(
tff

dyyMMP δ and ∫
+∞

−
+

=
1

21

2

12)()/(
t

ff

dyyMMP δ (15)

Figure 7 shows probabilities (15) under the assumption that 21 tt < .

Now total prediction risk can be formed as a (weighted) sum of model estimation risk (10)

and expected model misclassification risk (14). The goal of learning under multiple model

formulation is to partition the data (into several models) and to estimate parameters of each

model, in order to minimize total prediction risk.

4 Summary and Discussion

This paper introduced new formulation for predictive learning called multiple model

estimation. We have discussed several application domains where multiple model formulation

can be naturally applied, and introduced mathematical problem statement for multiple-model

regression.

In conclusion, we discuss general properties of constructive learning methods for multiple

model estimation. Our goal here is not to focus on particular constructive learning algorithms

(this is a subject of companion paper), but rather to discuss/introduce general statistical properties

of such algorithms. As evident from the mathematical problem statement (given in Section 3),

multiple-model estimation aims at solving simultaneously two problems: partitioning/clustering

available data into several subsets (unsupervised learning), and estimating a model for each

 22

subset (via supervised learning). Moreover, the prediction risk for multiple model formulation

was introduced in Section 3 based on the supervised learning formulation. Hence, constructive

learning methods for multiple model estimation are closely related to robust methods for

supervised learning. For example, for multiple regression formulation (described in Section 3) the

data can be modeled by several regression models. Assuming that the initial goal (of a learning

method) is to estimate a single (dominant) regression model from all available data, such a

learning method has to be:

(1) Very robust, i.e. can tolerate large percentage of ‘outliers’. In the case of multiple model

formulation the notion of outliers includes not only deviations (noise) with long-tailed

distributions, but also structured outliers corresponding to other models aka ‘data with

multiple structures’[Chen et al, 2000].

(2) Very stable, i.e. can provide an accurate and stable estimate of the dominant model, in

spite of high degree of potential variability in the data due to the presence of outliers

(other models).

In conclusion, we give a brief discussion of desirable properties and issues for learning

(estimation) algorithms for three distinct settings: standard regression under single-model

formulation, robust regression under single-model formulation, and robust regression under

multiple-model formulation:

- Standard regression. Here the goal is to estimate a single model using all available data.

Statistical model for data generation assumes that data is formed by (unknown) single

model (target function) corrupted by additive noise. Typical methods are based on least-

squares minimization (under the assumption of gaussian noise). The accuracy of

regression estimates improves as the sample size grows large. The main modeling issue is

flexible estimation (when the parametric form of the target function is unknown) and

 23

model complexity control, i.e. selecting optimal model complexity for given training

sample;

- Standard robust regression. Here the goal is to estimate a single model using all available

data. Statistical model assumes that data is generated by (unknown) single model

corrupted by (unknown) noise. The goal is robust estimation (of a single model) when the

model estimates are not (significantly) affected by (unknown) distribution of noise. The

main modeling issue is obtaining robust estimates (of a single model) under many

possible noise models, i.e. a mixture of gaussian noise and another noise density.

Standard robust algorithms work only when the absolute majority of data samples

(typically over 80%) are generated by a single model;

- Robust regression for multiple-model estimation. Here the goal is to estimate a single

model using a portion of available data. Statistical model assumes that training data is

generated by several (unknown) models, where each model may be corrupted by

(unknown) noise. The main challenging issue for a learning algorithm is using an

appropriate subset of available data for estimating a single (dominant) model. Here the

robustness of a learning algorithm refers to ignoring multiple secondary structures when

estimating the dominant model. Therefore, such algorithms should work well when

relative majority of data samples are generated by a single (dominant) model.

Acknowledgement:

this work was supported in part by NSF grant ECS-0099906. The concept of multiple model

estimation has been initially motivated by the problem of motion analysis in Computer Vision

introduced to one of the authors (V. Cherkassky) by Prof. H. Wechsler from GMU.

 24

REFERENCES

[1] V. Cherkassky and F. Mulier, Learning from Data: Concept, Theory and Methods, John

Wiley & Sons, 1998

[2] S. Dowdy and S. Wearden. Statistics for Research, John Wiley & Sons, New York, 1991

[3] V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995

[4] B. Scholkopf, J. Burges and A. Smola, ed., “Advances in Kernel Methods: Support Vector

Machine”, MIT Press, 1999

[5] V. Cherkassky, “New Formulations for Predictive Learning”, Plenary Lecture, ICANN 2001,

Vienna, Austria, 2001

[6] V. Cherkassky, F. Mulier and A. B. Sheng, “Funds exchange: an approach for risk and

portfolio management”, in Proc. IEEE Conf. on Computational Intelligence for Financial

Engineering, pp 3-7, New York, 2000

[7] The Wall Street Journal, “Trading pace in mutual funds quickens”, Sept 24, 1999

[8] H. Wechsler, Z. Duric, F. Li and V. Cherkassky, “Motion Prediction Using VC-

Generalization Bounds”, Proc. ICPR 2002 (To appear), 2002

[9] A. Shashua and Y. Wexler, “Q-Warping: direct computation of quadratic reference surfaces”,

IEEE Trans. PAMI, 23, 8, pp. 920-925, 2001

[10] M. J. Black and P. Anandan, “The Robust estimation of multiple motions: parametric and

piecewise-smooth flow fields”, Computer and Image Understanding, 63, 1, pp.75-104, 1996

[11] M. J. Black, Y. Yacoob and S. X. Ju, “Recognizing human motion using parameterized

models of optical flow”, in Motion-Based Recognition, S. Mubarak and R. Jain, Ed. Kluwer,

Boston, 1999, pp. 245-269

[12] H. Chen, P. Meer and D. Tyler, “Robust Regression for Data with Multiple Structures”, in

CVPR 2001, Proc. IEEE Computer Society Conf. vol 1 pp 1069-1075, 2001

[13] V. Vapnik, The Nature of Statistical Learning Theory, 2nd Ed. Springer, 1999

[14] P. Meer, “Introduction, Robust Computer Vision: An interdisciplinary challenge”, Computer

Vision and Understanding 78, pp 1-7, 2000

 [15] C. V. Stewart, Robust Parameter Estimation in Computer Vision, SIAM Review, Vol. 41 No.

3, 513-537, 1998

 25

Figure Captions

Fig.1. Learning system for single model estimation

Fig.2. Learning system for multiple model estimation

Fig.3. Traditional Regression setting with discontinuous target function and disjoint support in

the input (x) space (a) Single model estimation (b) Multiple model estimation

Fig.4. Non-standard regression setting with discontinuous target function and partially

overlapping support in the input (x) space (a) Single model estimation (b) Multiple model

estimation

Fig.5. Multiple model regression setting with the same support in the input (x) space for both

models (a) Single model estimation (b) Multiple model estimation

Fig.6. Prediction/ Operation stage of a learning system (a) Appropriate model chosen using test

input (x) (b) Model chosen using (x,y) values of test data

Fig.7. Probabilities of misclassification for the two-model case

 26

Generator
of samples

Learning
Machine

System

x

y

Λ
y

Fig. 1. [Cherkassky and Ma]

Learning
Machine

System 1

x

y

Λ
y

System 2for Model 2

for Model 1

Generator
 of input samples

Unknown

)1(y

)2(x

)1(x

)2(y

Fig. 2. [Cherkassky and Ma]

 27

y

x
X1 X2

(a) Single model estimation

y

x
X1 X2

(b) Multiple model estimation

Fig.3. [Cherkassky and Ma]

 28

y

x
X1 X2

(a) Single model estimation

y

x
X1 X2

(b) Multiple model estimation

Fig. 4. [Cherkassky and Ma]

 29

y

x
 X1 = X2

(a) Single model estimation (totally wrong)

y

x
 X1 =X2

(b) Multiple model estimation

Fig. 5. [Cherkassky and Ma]

 30

Choosing
Correct Model
(Region in X-space)

Estimating
Response

mx

),(*
mmfy ωx=

Λ

(a) Appropriate chosen using test inputs (x)

Choosing
Correct Model

Estimating
Response

m(x,y)

),(*
mmfy ωx=

Λ

x

(b) Model chosen using (x,y) values of test data

Fig.6. [Cherkassky and Ma]

t1 t2(f1+f2)/2

P(M2/M1)
P(M1/M2)

y

Fig.7. [Cherkassky and Ma]

