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Abstract— Exploiting additional information to improve 
traditional inductive learning is an active research area in 
machine learning. In many supervised-learning applications, 
training data can be naturally separated into several groups, 
and incorporating this group information into learning may 
improve generalization.  Recently, Vapnik [9] proposed general 
approach to formalizing such problems, known as Learning 
With Structured Data (LWSD) and its SVM-based optimization 
formulation called SVM+. Liang and Cherkassky [5,6] showed 
empirical validation of SVM+ for classification, and its 
connections to Multi-Task Learning (MTL) approaches in 
machine learning. This paper builds upon this recent work 
[5,6,9] and describes a new methodology for regression 
problems, combining Vapnik’s SVM+ regression [9] and the 
MTL classification setting [6], for regression problems. We also 
show empirical comparisons between standard SVM regression, 
SVM+, and proposed SVM+MTL regression method. Practical 
implementation of new learning technologies, such as SVM+, is 
often hindered by their complexity, i.e. large number of tuning 
parameters (vs standard inductive SVM regression). To this 
end, we provide a practical scheme for model selection that 
combines analytic selection of parameters for SVM regression 
[3] and resampling-based methods for selecting model 
parameters specific to SVM+ and SVM+MTL.

I. INTRODUCTION

There is a growing need for development of powerful and 
robust methods for estimating predictive models from data. 
Most supervised learning methods developed in statistical 
learning, pattern recognition and machine learning are based 
on standard inductive formulation of the learning problem
[3,4,8]. Many challenging new applications with sparse high-
dimensional data may require new (non-standard) learning 
formulations [3,9].

In this paper, we consider supervised learning applications 
where the training data includes additional (group) 
information about training samples. Examples include: (1) 
handwritten digit recognition where training examples are 
provided by several persons, (2) medical diagnosis where 
predictive (diagnostic) model, say for lung cancer, is 
estimated using a training data set of male and female 
patients, etc. Incorporating this additional information has 
lead to approaches known as Multi-Task Learning [1,2,6,10] 
and, more recently, to Learning with Structured Data (aka 
SVM+) [9], as discussed next.
    Suppose that training data can be represented as a union of 
t related groups, i.e. each group ],..,2,1[ tr   contains 
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rn samples independently and identically generated from a 

distribution rP  on yx . Therefore, available data is a 

union of t>1 groups: 

1 1
{{ , }, 1,..., },{ , } {{ , }, ...,{ , }}

nr nrr r r r r r r rr t y y X Y X Y x x

 and can be thought as samples identically and independently 
generated from unknown distribution

( , ) { ( , ), { , } { , }}r r rP y P y if y x x x X Y . 

    If the group labels of future test samples are not given, the 
problem is “Learning With Structured Data (LWSD)” 
formulation [9]. In this formulation, the goal is to find one 
best mapping function f such that the expected loss

( ) ( ( , ), ) ( , )LWSDR w L f w y P y d dy  x x x

is minimized. Here L  is the loss function. Note that even 
though the expected loss is in the same form as in the 
supervised learning setting, the difference is that in 
supervised learning setting P is unknown, while in LWSD it 
is known that P is a union of t sub-distributions. 
       On the other hand, if the group labels of future test 
samples are given, the problem is Multi-Task Learning 
(MTL) problem [1,2,6,8]. The goal in multi-task learning is 

to find t related mapping functions },...,,{ 21 tfff  so that 

the sum of expected losses for each task 

1

( ) ( ( ( , ), ) ( , ) )
t

MTL r r
r

R w L f w y P y d dy


  x x x

is minimized. 
     From the application point of view, different learning 
settings (standard inductive learning, multi-task learning and 
learning with structured data) handle training and test data in 
different ways, as illustrated in Fig.1. That is, standard 
inductive setting does not use (ignores) group information in 
the training data; MTL setting estimates separate predictive 
models (for each task), and LWSD estimates a single model 
that utilizes group information in the training data. Note that 
under LWSD test inputs do not have group information, 
whereas under MTL test inputs are assumed to have group 
labels.
       Recently, Vapnik [9] proposed general approach for 
solving such problems, known as Learning With Structured 
Data (LWSD) and its SVM-based optimization formulation 
called SVM+. Liang and Cherkassky [5,6] showed empirical 
validation of SVM+ for classification, and showed its 
connection to Multi-Task Learning (MTL) classifiers in 
machine learning [1,2,6,10]. This paper builds upon this 
recent work and describes a new methodology for regression 
problems, combining Vapnik’s SVM+ approach [9] and the 
MTL classification scheme [6]. We also show empirical 
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comparisons between standard SVM regression, SVM+, and
the proposed SVM+MTL regression method. 
      The paper is organized as follows. Section II gives a 
brief overview of standard SVM regression and Vapnik’s 
SVM+ regression formulation, followed by the proposed 
optimization formulation for SVM+MTL regression. Section 
III describes different approaches to handling group 
information in the training data, including standard (single) 
SVM regression, multiple SVM regression models (trained 
independently), Vapnik’s SVM+ regression, and proposed 
SVM+MTL regression. Section IV shows empirical 
comparisons between these approaches. Conclusions and 
discussion are presented in Section V.
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Figure 1: Inductive learning, Multi-task learning and 
Learning with structured data handle training and test data in 
different ways.

II. SVM+ and SVM+MTL Regression Formulation

     This section describes first standard (linear) SVM 
regression [8], using  -insensitive loss function, in order to 
introduce basic notations and terminology. Then we describe 
Vapnik’s SVM+ regression formulation following [9], and 
finally present the proposed SVM+MTL regression 
formulation.

A. Standard SVM Regression

     Given iid training data 

   1
{ , } , , ,d

i i i ii n
y R y

 
   x x , standard SVM 

will first map input vectors x onto the feature space Z
( ( ) z x ) and then approximate the regression by a 

linear function: ( ) ( , ( ))f b x w x . To this end, 

standard SVM solves the following optimization problem:

*

,
1

1
min ( , ) ( )

2

n

i i
b

i

C  


 
w

w w                               (OP1)

Subject to: 
* *( , ) , 0, 1,...,i i i iy b i n       w z

( , ) , 0, 1,...,i i i ib y i n       w z

Where *, , 1, ...,i i i n   are called slack variables, 

measuring the deviation from  -insensitive tube. And C is 

the regularization parameter.

B. SVM+ Regression

      Suppose the training data are the union of 1t   related 
groups. Let us denote the indices from group r by 

1{ , , }, 1, ,r n nrT i i r t   .  Then all training samples 

can be represented as:

1 1
{{ , }, 1,..., },{ , } {{ , }, ...,{ , }}

nr nrr r r r r r r rr t y y X Y X Y x x

.  Similar to standard SVM, SVM+ will map vectors in each 

group ,i ri Tx simultaneously into two different Hilbert 

spaces Z ( ( )i z i z x ) and rZ ( ( )
r

r
i z i r z x ). 

To account for the group information, Vapnik [9] defines the 
slack variables as follows:

( , ) , , 1,...,i r i r rd i T r t    w z             
* * *( , ) , , 1,...,i r i r rd i T r t    w z .

     Compared to standard SVM regression, here the slack 
variables are restricted by the correcting functions, and the 
correcting functions represent additional information about 
the data. The goal is to find the regression function in 
decision space Z,

             ( ) ( , ( ))Zf b x w x
Note that data of different groups are mapped into the same 
decision space, and they are all used to construct the 
regression function. However, there are different correcting 
functions for different groups. Correcting functions are 
defined in the correcting space. Different correcting 
functions can be defined either in the same correcting space 
or different correcting function spaces. Of course, if data of 
different groups are mapped to different correcting spaces, 
the correcting functions for different groups are different. If 
data of different groups are mapped to the same correcting 
space, we still can construct different correcting functions for 
different groups. The importance is that correcting functions 
are different, not correcting space. 
      Correcting functions represent a unique way that SVM+ 
handles group information. Since correcting functions 
represent slack variables, there are some unique 
characteristics: 

(1) All slack variables are non-negative, so 

},...,1{,0),()( trdrriir  wxx . 

Therefore mapping samples in the correcting space 
have to lie on one side of the corresponding 
correcting function. Correcting function also has to 
pass through some points with slack variables being 
zero. 

(2) Like regression function, correcting function is also 
chosen from a set of correcting functions, and 



),( rr ww  reflects the capacity of the set of 

correcting functions; but this term does not have 
meaning of the size of margin (in classification).

(3)  Correcting functions are not used to assign a 
sample a group membership.  

In the case of two groups, mapping of the training data by 
SVM+ regression is schematically shown in Fig. 2. 

Figure 2: SVM+ maps data simultaneously into decision 
space and correcting spaces. Regression function is found in 
decision space. Slack variables are represented by correcting 
functions which are defined in correcting space.  

Formally, SVM+ regression approach estimates regression 

model ( ) ( , ( ))zf b x w x  by solving the following 

optimization problem: 

* * * *
1 1 1 1

* *

, ,..., , ,..., , , ,..., , ,..., 1 1

1
min ( , ) ( ( , ) ( , ))

2 2r r r r
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r r r r
b d d d d r r


 

  
w w w w w

w w w w w w

*

1

( )
r

t
r r
i i

r i T

C  
 

                                                  (OP2)

Subject to:
* *( , ) , 0, , 1,...,r r

i i i i ry b i T r t        w z

( , ) , 0, , 1,...,r r
i i i i rb y i T r t        w z

( , ) , , 1,...,r r
i r i r rd i T r t    w z

* * *( , ) , , 1,...,r r
i r i r rd i T r t    w z

Using the dual optimization technique (similar to standard 

SVM), one can show that w , rw  and *
rw can be expressed 

in terms of training samples:

*

1

( )
n

i i i
i

 


 w z ,

1
( )

r

r
r i i i

i T

C 
 

  w z ,

* * *1
( )

r

r
r i i i

i T

C 
 

  w z ,

where the coefficients i , *
i , i and *

i are solution of the 

following dual optimization problem:

* *

* *

, , , 1 1
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n n

i i i i i
i i

y
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 
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          * *

1 1
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 
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Subject to:

*

1

( ) 0
n

i i
i

 

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( ) | |, 1, ...,

r

i i r
i T

C T r t 

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* *( ) | |, 1, ...,

r

i i r
i T

C T r t 

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* *0, 0, 0, 0, 1,...,i i i i i n       

C.SVM+MTL Regression

     Similar to SVM+, SVM+MTL also makes good use of 
group information. However, the goal of this approach is to 
estimate t regression models (one model per group). So 
instead of incorporating group information into slack 
variables, SVM+MTL incorporates group information into 
estimated regression functions.  
     We specify the following parameterization for
t regression   models:

( ) ( ( ), ) ( ( ), ) , 1,...,
rr z z r rf b d r t     x x w x w . 

Here ( ( ), )z b x w is the common estimation function 

while ( ( ), )
rz r rd x w is the unique correction function for 

each group. The proposed method SVM+MTL formulation
solves the following optimization problem:

1 1, ,. .. , , ,.. . , 1

1
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r i T
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 

                                          (OP3)

Subject to:
*(( , ) ( , ) ) , , 1,...,r r r

i i r i r i ry b d i T r t        w z w z

(( , ) ( , ) ) , , 1,...,r r r
i r i r i i rb d y i T r t        w z w z

*0, 0, , 1, ..., .r r
i i ri T r t    

The dual form of the above optimization problem is as 
follows:
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Based on KKT condition, we can express w , rw in terms of 

training samples:
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III. APPROACHES for MODELING HETEROGENEOUS 
DATA

     “Learning with structured data” formulation and multi-
task learning formulation are similar in the sense that they 
both try to exploit the group information hidden in the data. 
Such ‘group information’ is common in many applications 
with heterogeneous data. For example, in medical diagnostic 
applications, patients’ data may include clinical, genetic and 
demographic input features. Then certain inputs, for example 
demographic features, such as Gender or Age, can be used to 
separate labeled training data into several groups. Proper 
selection of such a group variable is specific to each 
application at hand (see examples in Section 4).
     Assuming that available training data can be partitioned 

(in a meaningful way) into several groups, we can identify 
several learning approaches for utilizing the group 
information, as described next:

- Single SVM inductive model which estimates 
standard SVM regression by pooling together 
training samples from different groups (i.e. group 
information is ignored);

- multiple SVM approach where a separate SVM 
regression model is estimated for each group
(independently);

- SVM+ approach where a single regression model, 
utilizing available group information, is estimated 
from all data;

- SVM+MTL implementing multi-task learning, 
which estimates several related regression models.

Various approaches for incorporating group data into 
learning process are shown in Fig. 3. 

Figure 3: Different ways of using group information in 
learning: (a) sSVM ~ Single SVM regression, (b) SVM+ 
regression, (c) mSVM ~ multiple (independent) SVMs, and 
(d) SVM+MTL ~ proposed SVM+ Multi-Task Learning.

In this paper, we use SVM as an underlying technology for 
implementing different approaches utilizing group 
information. However, arguably one can employ other 
learning techniques, such as MLP networks or AdaBoost, for 
implementing standard inductive learning, Multi-Task 
Learning etc. Theoretically, one can expect more 
sophisticated modeling approaches (utilizing the group 
information), i.e., SVM+ and SVM+MTL, to yield better 
generalization than single inductive SVM and multiple
(independent) SVM’s, respectively. In practice, the trade-off 
is not so clear, because more  advanced approaches (SVM+ 
and SVM+MTL) have more tunable parameters (than 
standard SVM), and their potential advantages can be easily 
offset by more complex model selection.
Next we consider tunable parameters for various learning 
approaches:

- Single SVM regression:  parameters C ,  (width of 

insensitive zone) and  ( if RBF kernel is used);

- Multiple SVMs: parameters C , and  (if RBF 

kernel is used) for  each task;

- SVM+ regression, where same kernel as in standard 
SVM is used for the common space, and RBF 
kernel is used for correcting space, requires 

following parameters  C ,  and common (as in 

standard  SVM), and correction (RBF width);

- SVM+MTL regression: requires following

parameters C ,  and common  (as in standard

SVM), and correction (RBF width parameter).

Clearly, application of SVM+ and SVM+MTL regression 
requires practical strategies for tuning parameters of these 



methods for a given data set. Next we discuss such a strategy 
that will be used in empirical comparisons presented later in 
Section 4. For standard SVM regression, we use analytic 
prescription for parameters C following [3] and resampling 
for   and  . The same approach is used for multiple 
SVMs, where parameters C , and are selected for each 
group (task). For SVM+ and SVM+MTL, parameters are 
tuned in a two-stage manner: first set parameters parameters

C ,   and common   same as for standard SVM regression, 

and second, select parameters  and correction via 

resampling. Empirical comparisons presented next use 5-fold 
cross-validation for estimating  and .

IV. EMPIRICAL COMPARISONS

This section describes empirical comparisons of various 
modeling approaches such as single SVM (sSVM), multiple 
SVM (mSVM), SVM+ and SVM+MTL. All comparisons for 
synthetic data use linear parameterization for sSVM and
mSVM, and RBF(Gaussian) kernel is used for real data. The 
common estimation space for SVM+ and SVM+MTL use 
linear kernel for synthetic data and RBF kernel for real data
while the unique correction space use RBF kernel. All 
comparisons use the following experimental procedure:

(a) Select a group variable (from a list of input 
variables). 

(b) Partition available data into several groups 
(tasks) corresponding to different values (or 
range of values) of group variable. Each group 
should be roughly of similar size.

(c) Within each group, order data samples by 
increasing value of the group variable.

(d) For estimating prediction error of a particular
method, use 5-fold cross-validation, so that 
80% of data samples are used for training and 
20% of the data are used as test data. Note that 
conditions (b) and (c) ensure that each fold has 
approximately equal number of samples from 
all groups (tasks). 

(e) For each training fold, parameter tuning (model 
selection) for different methods is performed as 
specified in Section 3. That is, parameter C is

estimated first following [3], and then
parameters ,  and  are tuned via 

resampling within the training fold.

     For each modeling method, we present the predicted
mean squared error (MSE) for each of the five folds, as well 
as the mean and standard deviation of the MSEs.

A. Boston Housing Dataset

    This dataset is available at UCI machine learning 
repository. It includes 14 variables (13 continuous and 1 

Boolean) and 506 instances. The goal is to estimate the 
median value of owner-occupied homes in $1000’s from 13 
attributes. We present two different comparisons for this 
dataset. First, variable ‘RAD’ is selected to separate data 
into 3 groups: group 1( 5RAD  , 192 instances), group 
2( 5 7.5RAD  , 158 instances) and group 3( 7.5RAD  , 
156 instances). Second, we separate data into 3 groups by 
another variable ‘DIS’: group 1( 2.5DIS  , 188 instances), 
group 2( 2.5 4.5DIS  , 163 instances) and group 
3( 4.5DIS  , 155 instances). Therefore, sSVM, mSVM, 
SVM+ and SVM+MTL all use 13 attributes for prediction.  
Possible choices of parameters for SVM+ and SVM+MTL
are: [10 1 0.1 0.01 0.001]  , [0.25 0.5 1 3 4]  . 

Results are shown in Table 1 and Table 2.

B. Auto MPG Dataset

    This is another dataset from UCI machine learning 
repository. There are 398 instances, each of which has 8 
input variables and 1 output variable (mpg). The input 
variable ‘horsepower’ has 6 missing values. After removing 
6 samples with missing values, we are left with 392 samples 
used for modeling.  The goal is to estimate the real-valued 
output ‘mpg’ for each car using 7 input variables ( the input 
variable ‘car name’ is not used  for modeling). We choose 
variable ‘cylinders’ to separate the data into 3 groups: 
group1(cylinders< 6, with 206 instances), 
group2(cylinders=6, with 83 instances), group3(cylinders>6, 
with 103 instances). Possible choices of parameters for 
SVM+ and SVM+MTL are: [10 1 0.1 0.01 0.001]  , 

[0.25 0.5 1 3 4]  . Modeling results are shown in 

Table 3. In both cases, the SVM+MTL method shows some
improvement in MSE prediction error, over all other 
methods.

C. Synthetic Dataset

This data set was artificially generated, in order to illustrate 
the effect of training set size and the noise level, on relative 
performance of different learning methods.
Synthetic data set was generated as follows:
(1) Let number of input features be 30d  , and number of 

tasks(groups) be 3t  .

(2) Generate 30Rx with each component 

~ (0,1), 1,...,30ix uniform i  .

(3) The coefficient vectors of three (linear) regression tasks 
are specified as: 

1 [1,1,2,3,3,1,1,1,1,0,2,0,2,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]  ,

2 [1,1,2,3,3,1,1,1,0,2,0,2,2,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0]  ,

3 [1,1,2,3,3,1,1,0,1,0,0,3,0,0,2,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0]  .

(4) For each task and each data vector, iy n x , 

where n is Gaussian noise with 1noise  .



For each task, we generate N samples for training, 

N samples for validation, and 1000 samples for testing, and 
repeat the experiment 5 times. We use the same four 
methods described in Section III. We follow the ways of 
tuning parameters in Section III except that  and  for 

SVM+ and SVM+MTL are now tuned using validation data. 
Possible choices of parameters for SVM+ and SVM+MTL 
are [100 10 1 0.1 0.01]  , [0.25 0.5 1 4 6 8]  . 

Comparison results, for different values of N (number of 
training samples per task), are shown in Table 4 and Table 5.
Note that SVM+MTL shows superior prediction accuracy vs 
other learning approaches.
In the next experiment, we reduced the input dimensionality

( 20d  ) and noise level( 0.5noise  ), and increased the 

sample size used for training and validation ( 100N  ). 
Also, new coefficient vectors used to generate target 
functions for three tasks are specified as follows:

1 [1,1,2,3,3,1,1,1,1,0,4,0,4,4,0,0,0,0,0,0]  ,

2 [1,1,2,3,3,1,1,1,0,4,0,2,4,0,0,0,0,0,0,0]  ,

3 [1,1,2,3,3,1,1,0,1,0,0,4,0,0,4,0,0,0,0,0]  .

Comparison results shown in Table 6 indicate that
SVM+MTL underperformed mSVM.
Careful examination of results in Tables 4-6 makes it 
possible to relate performance of different learning 
approaches to statistical characteristics of synthetic data sets, 
as discussed below:

- Synthetic data set 1 (see Table 4) is small and very 
noisy, so one can expect that methods emphasizing 
utilization of group information (such as SVM+ and 
SVM+MTL) yield better prediction performance;

- Synthetic data set 2 (see Table 5) has more training 
samples (N=50 vs 20 for set 1). Therefore, 
separating training data into several independent 
groups as in mSVM approach can now be 
beneficial, and this accounts for relative 
improvement in the prediction accuracy of mSVM;

- Synthetic data set 3 (see Table 6) has largest 
number of training samples, and very low noise 
level. Hence, we can expect that independent 
estimation of individual regression models, as in 
mSVM, would yield the best prediction accuracy.

Table 1 Prediction MSE for Boston housing dataset
(group variable: RAD)

Folds 1 2 3 4 5 Mean(st.dev) 

sSVM 8.9 26.1 8.5 5.9 10.9 12.1(8.0)

mSVM 12.1 27.2 10.4 6.2 15.1 14.2(7.9)

SVM+ 8.9 23.5 9.5 6.1 8.8 11.4(6.9)

SVM+MTL 7.6 15.6 8.0 4.9 8.7 9.0(4.0)

Table 2 Prediction MSE for Boston housing dataset 
(group variable: DIS)

Folds 1 2 3 4 5 Mean(st.dev) 

sSVM 8.9 8.3 11.1 9.0 18.4 11.1(4.2)

mSVM 10.2 8.9 10.3 11.1 20.1 12.1(4.5)

SVM+ 8.1 8.7 10.7 7.9 16.5 10.4(3.6)

SVM+MTL 7.1 8.2 8.6 8.4 17.0 9.9(4.0)

Table 3 Prediction MSE for auto mpg dataset 
(group variable: cylinders)

Folds 1 2 3 4 5 Mean(st.dev) 

sSVM 6.4 6.8 5.9 10.6 6.6 7.3(1.9)

mSVM 5.9 7.4 6.5 10.8 8.2 7.8(1.9)

SVM+ 6.7 6.9 5.8 10.3 6.6 7.3(1.8)

SVM+MTL 5.5 6.9 5.7 10.3 4.5 6.6(2.2)

Table 4 Prediction MSE for synthetic data set 1

( 30d  , 20N  , 1noise  )

Trials 1 2 3 4 5 Mean(st.dev) 

sSVM 4.2 3.7 4.2 4.0 3.8 4.0(0.21)

mSVM 5.1 4.9 4.5 5.1 4.9 4.9(0.27)

SVM+ 4.3 3.3 3.5 3.9 4.0 3.8(0.37)

SVM+MTL 2.9 2.7 2.9 3.0 3.4 3.0(0.25)

Table 5 Prediction MSE for synthetic data set 2

( 30d  , 50N  , 1noise  )

Trials 1 2 3 4 5 Mean(st.dev) 

sSVM 2.5 2.4 2.6 2.5 2.5 2.5(0.08)

mSVM 2.7 1.8 2.8 2.1 2.2 2.3(0.44)

SVM+ 2.5 2.4 2.4 3.4 3.0 2.7(0.44)

SVM+MTL 1.9 1.7 1.8 1.7 1.9 1.8(0.11)

Table 6 Prediction MSE for synthetic data set 3

( 20d  , 100N  , 0.5noise  )

Trials 1 2 3 4 5 Mean(st.dev) 



sSVM 7.8 7.8 8.1 7.8 7.6 7.8(0.15)

mSVM 0.3 0.4 0.3 0.3 0.3 0.3(0.01)

SVM+ 7.8 7.9 7.5 7.6 7.7 7.7(0.13)

SVM+MTL 1.0 1.0 1.1 1.1 1.1 1.1(0.06)

V.CONCLUSIONS AND DISCUSSION

This paper presents new methodology called SVM+MTL 
regression, for utilizing group information in regression 
problems. This approach extends original Vapnik’s SVM+ 
regression technology to multi-task learning. Empirical 
comparisons using several data sets show that the proposed 
SVM+MTL regression can provide significant improvement 
in prediction accuracy vs standard inductive SVM 
regression. Further, we discussed several approaches for 
utilizing the group information available in real-life data sets, 
including standard inductive SVM, multiple SVMs, SVM+
and SVM+MTL. Whereas presented empirical comparisons 
may suggest the advantages of SVM+MTL, we strongly 
warn against making such over-reaching conclusions. 
Relative performance of learning methods is always strongly 
affected by the properties of application data at hand. To this 
end, we also presented a synthetic data set where the 
proposed method shows inferior generalization performance.
New learning settings, such as SVM+ regression and 
SVM+MTL regression, are more complex than standard 
SVM, and have more tuning parameters. Therefore, practical 
application of these new learning methodologies requires 
robust strategies for model selection. This paper describes 
such a practical strategy that combines analytic tuning of two 
parameters for standard SVM regression, followed by 
resampling approach for tuning parameters specific to 
SVM+ and SVM+MTL regression formulations.
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