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The following is a brief report on the uses of a framework and certain matlab-
based routines for high resolution spectral analysis of time series. First we
address scalar time-series and how to use the software to resolve sinusoids in
particular. We then provide examples for multivariable analysis and system
identification.

1 Scalar time-series analysis

We begin we time-domain data and some prior information as to the frequency
range of interest. A filter-bank (one input many outputs) is then design with
suitable properties, namely, a bandpass characteristic over the frequency range
of interest. It consists of a dynamical system

xk+1 = Axk + Buk

with A, B matrices of size n × n, and n × m respectively. Of course, when the
time-series uk is scalar, m = 1. The time-series is considered to have zero mean
and is adjusted accordingly. An observation record

{u1, u2, . . . , uN}

is typically available, and on the basis of that an estimate of the state-covariance

P = E{xkx∗

k}

is obtained using routine dlsim complex.m. Relevant theory and the corre-
sponding routines
Name usage
sm.m [fr lines,ampl lines]=sm(P,A,B,k)

me.m me spect=me(P,A,B,omega)

envlp.m env=envlp(P,A,B,omega,noiselevel)

are then used for spectral analysis. They determine (a) spectral lines consistent
with the data, (b) a candidate spectrum for uk which is consistent with the
data P and is of maximal entropy, and (c) an envelop for the amplitude of all
consistent with the data spectral lines.

The resolution of the above routines strongly depends on the choice of A, B

and on the variance of the estimator for the state covariance P . Tradeoffs
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between robustness and resolution using such methods is the subject of a Ph.D.
thesis by A.Nasiri-Amini (that will be available in August 2005). It provides
guidelines for optimal design of input-to-state filters and theoretical bounds for
the expected gains in resolution.

In practice, as a rule of thumb, there are two parameters that dictate the
performance of the relevant spectral estimators: the time-constant of the input-

to-state filter
G(z) = (zI − A)−1B

and its bandpass character. Routines cjordan2.m and mjordan.m can be used
for designing suitable (A, B) pairs for scalar and vectorial time-series, respec-
tively. Typically one needs only specify a (complex) eigenvalue(s) for A and the
size of the corresponding Jordan block(s). The modulus of the eigenvalues dic-
tates the time-constant of G(z) and the phase specifies the band pass character.
Finally, the pair is then normalized to satisfy

AA∗ + BB∗ = I

where I is the identity, for numerical reasons. Typically, A can be chosen to
have one Jordan block (when uk is scalar) or as a Kronecker product of such a
matrix with the identity (as in mjordan.m).

Routine demo1.m exemplifies the performance of the above for an academic
example of separating two sinusoids in background noise. Because of the band-
pass character of G(s) and the fact that the framework relies on the state-
covariance of G(s), the performance of all the above is impervious to color noise
(as long as it is relatively white over the passband of G(s)). Yet, in the example
we use white noise for simplicity. A typical observation record is given in Figure
1 below.

Then, Figure 2 displays a typical output. The “true” spectrum of the time-
series uk is represented by the red “noise level” and two red arrows for the
sinusoids at frequencies 1.3 and 1.35 [rad/sec]. The subplots on the right rep-
resent zoom-in of those on the left, focusing on a frequency range of interest
[1.2, 1.5]. Fft-based reconstruction is shown in green, and our high resolutions
methods in blue. These, again, give spectral lines (shown in the first line as
blue arrows), envelop of such (shown on the thirds line), and maximum entropy
spectra (shown last).

Content of file: demo1.m

The following commands were used to generate Figures 1 and 2.

% This test file compares fft-based estimation

% with spectral envelopes, subspace methods, and maximum entropy.

figure(1), clf

% Setting up the signal

N=100; mag0=1.8;mag1=1.5; o1=1.3; mag2=2; o2=1.35;
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Figure 1: Time-series

t=0:N-1; t=t(:);

y=mag0*randn(N,1)+mag1*exp(j*(o1*t+2*pi*rand))+mag2*exp(j*(o2*t+2*pi*rand));

% plotting true spectrum

subplot(4,2,1), arrow([o1 o2],[sqrt(mag1) sqrt(mag2)]), hold on

plot( [0 2*pi],[mag0 mag0],’r’)

subplot(4,2,2), arrow([o1 o2],[sqrt(mag1) sqrt(mag2)]), hold on

plot( [0 2*pi],[mag0 mag0],’r’)

axis([1.2 1.5 0 2])

title(’true spectrum’)

% plotting the fft spectra

NN=2048; th=linspace(0,2*pi,NN);

subplot(4,2,3),

plot(th,abs(fft(y.*hamming(N),NN))/sqrt(N),’g’), hold on

plot(th,abs(fft(y,NN))/sqrt(N),’g-.’)

subplot(4,2,4), hold off

plot(th,abs(fft(y.*hamming(N),NN))/sqrt(N),’g’), hold on
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Figure 2: Original and reconstructed power spectra

plot(th,abs(fft(y,NN))/sqrt(N),’g-.’)

vaxis=axis; axis([1.2 1.5 vaxis(3) 2*vaxis(4)]);

plot([o1 o1],[vaxis(3) 2*vaxis(4)],’r’);

plot([o2 o2],[vaxis(3) 2*vaxis(4)],’r’);

title(’fft-based’)

% setting up filter parameters and plotting response

thetamid=1.325; [Ah,bh]=cjordan2([5],[0.88*exp(thetamid*j)]);

sv=Rsigma(Ah,bh,th);

subplot(4,2,1), plot(th(:),sv(:),’r--’)

% obtaining state statistics

P=dlsim_complex(Ah,bh,y’);

% obtaining and plotting subspace analysis results

[omega_ss,residues_ss]=sm(P,Ah,bh,2);

subplot(4,2,1), hold on, arrowb(omega_ss,residues_ss)

subplot(4,2,2), hold on, arrowb(omega_ss,residues_ss)

% obtaining and plotting spectral envelope and me-spectrum
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sqrtrho=envlp(P,Ah,bh,th,.2);

spectrum=me(P,Ah,bh,th);

subplot(4,2,5), plot(th,sqrtrho.^2),

subplot(4,2,6), plot(th,sqrtrho.^2),

hold on, axis([1.2 1.5 0 3]),

plot([o1 o1],[0 3],’r’),

plot([o2 o2],[0 3],’r’),

title(’line envelop’)

subplot(4,2,7), plot(th,spectrum),

subplot(4,2,8), plot(th,spectrum),

hold on, axis([1.2 1.5 vaxis(3) 2*vaxis(4)]),

plot([o1 o1],[vaxis(3) 2*vaxis(4)],’r’),

plot([o2 o2],[vaxis(3) 2*vaxis(4)],’r’),

title(’maximum entropy’)

%print -depsc demo1.eps

%subplot(2,1,1), plot(real(y))

%title(’time-series (real and imaginary parts)’)

%subplot(2,1,2), plot(imag(y))

%axis([0 100 -10 10])

%print -depsc demo1_timesignal.eps
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