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Abstract

Stochastic observability refers to the existence of a filter for which the errors of the

estimated state mean vector have bounded variance. In this paper, we derive a test to assess

the stochastic observability of a Kalman filter implemented for discrete linear time-varying

stochastic systems. This test is derived with the assumptions that the system matrices

consist of known, deterministic parameters and that there is complete uncertainty in the

statistics of the initial state vector. This test can also be used to assess the stochastic

observability of extended Kalman filters implemented for nonlinear stochastic systems

linearized about the true state vector trajectory. We illustrate the utility of the stochastic

observability test using an aided INS. We also provide a counterexample to illustrate that

observability is a necessary, but not sufficient, condition for the stochastic observability of

a Kalman filter implemented for a system.

Nomenclature

a acceleration

b bias

b0 constant bias null shift

b1 bias drift rate

C n × n uniform complete controllability grammian
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f dynamic model

fb accelerometer bias

F continuous-time state error mapping matrix

h measurement model

H p × n measurement matrix

I identity matrix

K n × p Kalman gain matrix

O kp × n observability matrix

Ō n × n uniform complete observability grammian

P n × n state covariance matrix

Q m × m process noise covariance matrix

R p × p measurement noise covariance matrix

t time

Tv threshold value

U n × n unitary matrix

v p × 1 measurement noise vector

V p × p unitary matrix

w m × 1 process noise vector

x n × 1 state vector

x̄ n × 1 state mean vector

z p × 1 measurement vector

Z measurement vector sequence

ẑk+1|k p × 1 predicted measurement vector

δ Dirac delta function

δx n × 1 state error vector

ν p × 1 innovation vector

τ correlation time of the process b1

ωz angular velocity about vertical body axis

ωbz gyro bias

Γ n × m process noise mapping matrix

Γc continuous-time process noise mapping matrix

Π projection operator

Φ n × n state mapping matrix
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Ψ heading angle

n(·) additive wide band noise of the measurement of (·)
p(·) position component along (·) direction

v(·) velocity component along (·) direction

N (·) null space of (·)
Q(·) power spectral density of (·)
R(·) range space of (·)
σ(·) standard deviation of additive wide band noise corresponding to (·)
σmax(·) largest singular value of (·)
(̂·) estimate of (·)
(·)a accelerometer quantity

(·)g gyro quantity

(·)m measurement of (·)
(·)x component of (·) along ı̂ body axis

(·)y component of (·) along ̂ body axis

(·)E component of (·) along E axis

(·)N component of (·) along N axis

(·)† pseudoinverse of (·)
Mn×p

r n × p matrix with rank r

1 Introduction

In certain applications, the performance objectives of a filter are to compute unbiased,

minimum variance estimates of a state mean vector from a set of measurements corrupted

by noise. These performance objectives influence the selection of physical components

such as sensors, their performance characteristics, and their locations. Furthermore, these

performance objectives also influence the selection of sensor measurement models, uncer-

tainty of the dynamic model, the statistics of the initial state vector, and, possibly, the

state vector trajectory.

The Kalman filter (KF) is used to estimate the statistics of a state vector whose

time evolution is governed by a stochastic system and is intended to be used with Markov

processes or sequences with Gaussian distributions. The KF, under various assumptions

on the system, can be considered as a model based algorithm that is used to recursively
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estimate both the state mean vector and state covariance matrix. The estimated state

covariance matrix provides a statistical description of the errors associated with the esti-

mated state mean vector and can be used as a metric to assess whether these estimation

errors have bounded variance.

The time evolution of the estimated state covariance matrix is governed by a Riccati

equation formulated using the matrices of the stochastic system. This Riccati equation

depends on the sensor performance statistics but not the actual sensor measurements.

Furthermore, for nonlinear systems, the corresponding Riccati equation is formulated using

system models linearized about a state vector trajectory. Therefore, the performance of

a KF implemented for a particular stochastic system can be assessed prior to real-time

application by evaluating the time evolution of the estimated state covariance matrix.

If the time evolution of all elements of the estimated state covariance matrix are

bounded or less than a predefined threshold value, then the filter implemented for the

stochastic system is stochastically observable. The threshold value is an application driven

design parameter that defines the maximum error of the estimated state mean vector. Con-

versely, if the time evolution of at least one element of the estimated state covariance matrix

is unbounded or greater than a predefined threshold value, then the filter implemented for

the stochastic system is stochastically unobservable. The stochastic unobservability of a

filter implemented for a system can be caused by several factors including the selection

of sensors, system matrices, state vector trajectory, and uncertainty of the initial state

vector.

The stochastic observability of a KF implemented for stochastic systems and the con-

vergence and stability of the resulting estimated state mean vector have been the subject

of much research. This research can be classified into three general categories. In the

first category are studies that consider KFs implemented for linear time-varying (LTV)

stochastic systems with system matrices consisting of known, deterministic parameters. In

the second category are studies that consider KFs or extended Kalman filters (EKFs) im-

plemented for LTV stochastic systems consisting of unknown, deterministic or stochastic

parameters. In the third category are studies that consider EKFs implemented for nonlin-

ear stochastic systems. Studies throughout these categories require certain restrictions on

the stochastic system.

In the first category, bounds on the state covariance matrix were derived in terms

of the uniform complete observability grammian for systems with no process noise vector
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[1]-[4] or in terms of the uniform complete observability grammian and uniform complete

controllability grammian by considering the effects of the process noise and measurement

noise vectors on the system individually [1], [5], [6]. These bounds are independent of the

initial state covariance matrix. The convergence and stability properties of the estimated

state mean vector were considered for systems with no measurement noise vector [1], [7],

[8], for systems with both process noise and measurement noise vectors [3], and for systems

where either the state vector, process noise vector, or measurement noise vector have a

non-Gaussian probability density function (pdf) [9].

In the second category, bounds on the state covariance matrix were derived for a

general class of systems with restrictions bounding the system matrices [10],[11]. The

convergence and stability properties of the estimated state mean vector were considered

for a general class of systems with restrictions bounding the system matrices [10]-[12] and

for systems designed specifically for certain applications such as parameter estimation [13],

[14].

In the third category, the convergence and stability properties of the estimated state

mean vector were considered for systems with no noise vectors [15], with system matrices

in a specific form [16], and for a general class of systems with restrictions bounding the

system matrices and initial state vector statistics [17], [18]. In [17] and [18], stochastic

observability of the EKF implemented for the nonlinear stochastic system is a necessary

condition for the analysis.

The objective of this paper is to derive a test to assess the stochastic observability of

a KF implemented for discrete stochastic systems. More specifically, we consider discrete

LTV stochastic systems subject to the following assumptions. First, the system mod-

els consist of known, deterministic time-varying parameters. This class of system model

includes nonlinear models linearized about the true state vector trajectory. In certain

applications, the stochastic observability test can be used to assess the stochastic observ-

ability of an EKF implemented for systems with known vehicle maneuvers. Second, the

statistics of the initial state vector are completely uncertain.

This paper is organized as follows. In Section 2, we review the general formulation

of an EKF. In Section 3, we derive a test to assess the stochastic observability of a KF

implemented for a discrete LTV stochastic system. In Section 4, we apply the stochastic

observability test to the transfer alignment of an aided inertial navigation system (INS).
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2 The Extended Kalman Filter

We consider discrete nonlinear stochastic systems of the form

xk+1 = fk(xk) + Γkwk (1a)

zk = hk(xk) + vk (1b)

We assume that fk and hk are C1 functions and consist of deterministic time-varying

parameters. If fk or hk are LTV functions, then equations (1a) and (1b) can be modified

using

fk(xk) = Φkxk (1c)

hk(xk) = Hkxk (1d)

We make the following assumptions regarding the statistics of the stochastic system. First,

wk and vk are modeled as zero-mean, Gaussian, uncorrelated white sequences with

E{wkwT
k } = Qk, Qk ≥ 0 (1e)

E{vkvT
k } = Rk, Rk > 0 (1f)

E{wiv
T
j } = 0, ∀ i, j (1g)

Second, the pdf of the initial state vector is Gaussian with mean x̄0 and covariance P0

E{(x0 − x̄0)(x0 − x̄0)
T } = P0 (1h)

Third, wk and vk are uncorrelated with x0

E{(x0 − x̄0)w
T
i } = 0 ∀ i = 1, ..., m (1i)

E{(x0 − x̄0)v
T
j } = 0 ∀ j = 1, ..., p (1j)

The EKF is used to estimate the statistics of the state vector using the following two

step procedure at times tk and tk+1 [19], [20]. At time tk, the state mean vector and state

covariance matrix are predicted using the measurement sequence Zk = [z0, ..., zk]

x̂k+1|k = fk(x̂k|k) (2)

Pk+1|k = ΦkPk|kΦT
k + ΓkQkΓT

k (3)
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Equation (2) suggests that the estimated state mean vector is propagated using the dy-

namic model regardless of its classification as linear or nonlinear. However, if the dynamic

model is nonlinear, then the estimated state covariance matrix is propagated using the

Jacobian of the dynamic model where

Φk =
∂fk(x)

∂x

∣

∣

x̂k|k
(4)

At time tk+1, the predicted state mean vector and predicted state covariance matrix

are corrected using the measurement vector zk+1 and the linear measurement update

equations

νk+1 = zk+1 − ẑk+1|k (5)

Kk+1 = Pk+1|kHT
k+1

(

Rk+1 + Hk+1Pk+1|kHT
k+1

)−1
(6)

x̂k+1|k+1 = x̂k+1|k + Kk+1νk+1 (7)

Pk+1|k+1 = Pk+1|k − Kk+1Hk+1Pk+1|k (8)

If the measurement model is nonlinear, then the correction step is performed using the

Jacobian of the measurement model where

Hk+1 =
∂hk+1(x)

∂x

∣

∣

x̂k+1|k
(9)

In addition to the assumptions previously stated, we make the following additional

assumptions for all times tk. First, fk and hk are linearized about the true state vector tra-

jectory. Second, Φk, Γk, Hk, Qk, and Rk consist of known, deterministic parameters that

are constant throughout the time interval [tk, tk+1]. We will refer to these five matrices as

the system matrices throughout the remaining sections of the paper. Third, (Φk, Γk

√
Qk)

is controllable. Fourth, (Φk, Hk) is observable.

The covariance equations of the time and measurement updates can be combined

to formulate a discrete time-varying Riccati equation. If equation (8) is substituted into

equation (3), then Pk+1|k can be rewritten as

Pk+1|k = ΦkPk|k−1Φ
T
k + ΓkQkΓT

k − ΦkKkHkPk|k−1Φ
T
k (10)

This Riccati equation relates Pk|k−1 to Pk+1|k without requiring the computation of Pk|k.

If the time updates occur at a faster rate than the measurement updates, then equation
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(10) requires suitable modification. If a measurement update occurs every l time updates,

then equations (3) and (10) can be rewritten as

Pk+l|k = Φk+l,kPk|kΦT
k+l,k + Q̂k

= Φk+l,kPk|k−1Φ
T
k+l,k + Q̂k − Φk+l,kKkHkPk|k−1Φ

T
k+l,k (11)

where

Q̂k =

k+l−1
∑

i=k

Φk+l−1,i+1ΓiQiΓ
T
i ΦT

k+l−1,i+1,

Φk+l,k = Φk+l · · ·Φk, and ΦT
k+l,k = ΦT

k · · ·ΦT
k+l. The Riccati equation, equation (10) or

more generally equation (12), governs the time evolution of the estimated state covariance

matrix. We simplify the notation Pk+1|k to Pk+1 throughout the remaining sections of the

paper.

3 Observability Tests

Observability is a property of combinations of the system matrices as specified in

equation (1). The objectives of this section are to define observability and stochastic

observability, to identify the relationship between these two types of observability and

their effect on KF performance, and to derive a test to assess the stochastic observability

of a KF implemented for the system, equation (1).

3.1 Observability

The observability of LTV or linearized systems with no process or measurement noise

vectors can be defined as follows [19], [20].

Definition 1 : A LTV or linearized system with no process or measurement noise vectors is

observable at time tN if the state vector at time tN , xN , can be determined from operations

on the measurement sequence ZN = [z0, ..., zN ] where tN > t0 and tN < ∞.

One test to assess the observability of a system involves evaluating the rank of the

observability grammian, OT
NON , where [19], [20]

OT
NON = HT

0 H0 +
N

∑

k=1

ΦT
k−1,0H

T
k HkΦk−1,0 (12)
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If OT
NON has full rank, then the system is observable. This test is based on evaluating

the rank of a n × n matrix whose dimensions depend only on the dimensions of the state

vector and not on the dimensions of the measurement vector or number of measurements.

An observable system ensures that all states of the state mean vector can be influenced

by the measurement vector. The test for observability does not incorporate the noise

covariance matrices, Qk and Rk, or the statistics of the initial state vector, P0. However,

the Riccati equation that governs the time evolution of the state covariance matrix depends

on all five system matrices and the statistics of the initial state vector. Regardless of

whether the Φ and H matrices of equation (1) satisfy the observability condition, Qk, Rk,

or P0 could cause the state covariance matrix to become unbounded or exceed a predefined

threshold value. Therefore, observability is a necessary, but not sufficient, condition to

ensure that the errors of the estimated state mean vector have bounded variance.

3.2 Stochastic Observability

The stochastic observability of the system as specified in equation (1) can be defined

as follows [21].

Definition 2 : The system specified in equation (1) is stochastically observable if there

exists a finite time tN such that the state covariance matrix is bounded or less than a

predefined threshold value, Tv, in the sense that

σmax(Pk) < Tv tk ≥ tN (13)

where Tv, tN < ∞ and σmax(·) refers to the largest singular value of the matrix (·).

Definition 2 is slightly modified from the definition given in [21] in three ways. First, we

have used the maximum singular value of Pk as the measure of whether the estimated state

covariance matrix has converged to a finite limit. Second, we have referred to this limit as

the threshold value. Third, we have added the condition that once σmax(Pk) is less than

the threshold value for tk = tN , σmax(Pk) must also be less than the threshold value for

tk > tN .

A test to assess the stochastic observability of a KF implemented for discrete LTV

systems subject to complete uncertainty of the statistics of the initial state vector is devel-

oped in the following three lemmas. The first two lemmas reorganize the Riccati equation
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into terms that have similar dependence on P0. The third lemma provides conditions for

which the state covariance matrix is bounded or less than a predefined threshold value. We

first define notation used for projection operators, or projectors, required in these lemmas.

We denote ΠR(Θ) as the projector onto the range space of the matrix Θ [22]

ΠR(Θ) = Θ(ΘT Θ)†ΘT (14)

We denote ΠN (ΘT ) as the projector onto the orthogonal complement of the range space of

Θ [22]

ΠN (ΘT ) = I − ΠR(Θ) (15)

Lemma 1 : Consider the system specified in equation (1) and assume that the initial state

covariance matrix is selected as

P0 = αI α ∈ ℜ, α > 0 (16)

then the Riccati equation, equation (10), can be rewritten as

Pk+1 = αΛk+1 + Q̄k+1 + ∆k+1(α
−1) (17)

where

Λ1 = Φ0Ω0Ω
T
0 ΦT

0 (17a)

Λk+1 = Φk,0Ω0,kΩT
0,kΦT

k,0 k > 0 (17b)

Q̄1 = Γ0Q0Γ
T
0 + Φ0Θ0((Θ

T
0 Θ0)

†)2ΘT
0 ΦT

0 (17c)

Q̄k+1 = Q̄k+1(Λk, Q̄k, Φk, Γk, Qk, Hk, Rk) k > 0 (17d)

∆1(α
−1) = −Φ0[α

−1Θ0((Θ
T
0 Θ0)

†)4ΘT
0 + · · ·]ΦT

0 (17e)

∆k+1(α
−1) = ∆k+1(α

−1, Λk, Q̄k, ∆k, Φk, Γk, Qk, Hk, Rk) k > 0 (17f)

and

ΠN (ΘT
k

) = ΩkΩT
k k ≥ 0

Ω0,k = Ω0 · · ·Ωk

ΥT
0 Υ0 = R0

ΥT
k Υk = Rk + HkQ̄kHT

k k > 0

Θ0 = HT
0 Υ−1

0

Θk = ΩT
0,k−1Φ

T
k−1,0H

T
k Υ−1

k k > 0
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The matrices Q̄k+1 and ∆k+1(α
−1) are defined in equation (A.36). The matrix Ωk has the

same rank as ΠN (ΘT
k

).

Proof : The proof is given in Appendix A.

Lemma 2 : Under the conditions of Lemma 1, if the following condition is satisfied

σmax(Λj) = 0 (18)

where Λ is defined in equation (17) and tj < ∞, then σmax(Λk+1) = 0 for all tk ≥ tj and

the Riccati equation, equation (10), can be rewritten as

Pk+1 = Q̄k+1 + ∆k+1(α
−1) tk ≥ tj (19)

where

Q̄k+1 = Q̄k+1(Q̄k, Φk, Γk, Qk, Hk, Rk) k ≥ j > 0 (19a)

∆k+1(α
−1) = ∆k+1(α

−1, Q̄k, ∆k, Φk, Γk, Qk, Hk, Rk) k ≥ j > 0 (19b)

The matrices Q̄k+1 and ∆k+1(α
−1) are defined in equation (A.42).

Proof : Lemma 1 shows that at each time tk, the Riccati equation can be rewritten as

Pk+1 = αΛk+1 + Q̄k+1 + ∆k+1(α
−1). If condition (18) holds, then Pk+1 = Q̄k+1 +

∆k+1(α
−1). The matrices Q̄k+1 and ∆k+1 are formulated in Appendix A.

Lemma 3 : Under the conditions of Lemma 1, if the following two conditions are satisfied

σmax(Λj) = 0 tj < ∞ (18)

σmax(Q̄k+1) < Tv Tv < ∞, tk ≥ tj (20)

where Λ and Q̄ are defined in equations (17) and (19), respectively, then as the scalar

α → ∞, the KF implemented for the system is stochastically observable.

Proof : Lemma 1 shows that at each time tk, the Riccati equation can be rewritten as

Pk+1 = αΛk+1 + Q̄k+1 + ∆k+1(α
−1). Lemma 2 shows that if condition (18) holds, then

Pk+1 = Q̄k+1 +∆k+1(α
−1), equation (19). If we take the limit of equation (19) as α → ∞,

then

lim
α→∞

Pk+1 = lim
α→∞

(Q̄k+1 + ∆k+1(α
−1))

= Q̄k+1 + lim
α→∞

∆k+1(α
−1)

= Q̄k+1 (21)
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If condition (20) holds, then

σmax(Q̄k+1) = σmax( lim
α→∞

Pk+1) < Tv (22)

There are several observations that can be made regarding Lemmas 1-3.

1) The assumptions P0 = αI and α → ∞ imply that the KF is initialized with no a

priori information available about the statistics of the initial state vector.

2) The matrices Λk+1 and Q̄k+1 are formulated from terms that do not include the

scalar α or the matrix ∆k(α−1). Therefore, the assumption α → ∞ plays no role either in

the formulation of these matrices or the conditions σmax(Λj) = 0 and σmax(Q̄k+1) < Tv.

3) The matrix Q̄k+1, formulated using either Lemmas 1 or 2, includes both positive

and negative terms. Therefore, σmax(Q̄k+1) does not necessarily increase at each time step.

4) The matrix ∆k+1(α
−1) consists of terms that have α−1 as a coefficient. Therefore,

the assumption α → ∞ implies that ∆k+1(α
−1) = 0 and that ∆k+1(α

−1) consists of

infinitesimal terms whose contributions to the state covariance matrix can be neglected.

5) The condition σmax(Λj) = 0 requires the modes of the matrices Φ0, ..., Φj to be

orthogonal to the modes of the projectors ΠN (ΘT
0

), ..., ΠN (ΘT
j
). This condition and the

assumptions P0 = αI and α → ∞ imply that the state covariance matrix is not a function

of α and, thus, the initial state vector statistics for all times tk, tk ≥ tj .

6) The condition σmax(Q̄k+1) < Tv implies that increases to Pk+1 due to contributions

from Φk, Γk, Qk, and Q̄k are offset by decreases to Pk+1 due to contributions from Φk, Hk,

Rk, and Q̄k. Therefore, if this condition fails, then alternative sensors, system matrices,

or state vector trajectories should be used when formulating the stochastic system.

7) The condition σmax(Λj) = 0 must be satisfied prior to checking the condition

σmax(Q̄k+1) < Tv.

The stochastic observability test developed in Lemmas 1-3 is summarized in Figure 1.

This test is based on evaluating the singular values of two n×n matrices whose dimensions

depend only on the dimensions of the state vector. If the conditions of the test are satisfied,

then the KF implemented for the system specified in equation (1) will be stochastically

observable for any P0. Therefore, if a KF implemented for a system is stochastically

observable for a large P0 and the conditions of the stochastic observability test are satisfied,
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then the system will remain stochastically observable even if P0 is modified. In other words,

this stochastic observability test can be used to assess whether a large P0 will destabilize

a KF implemented for the system.

However, this test is conservative because it provides conditions for stochastic observ-

ability for the worst case P0. For example, consider a filter implemented for a system

that is stochastically observable for σmax(P0) < ∞ but is stochastically unobservable for

P0 = αI, α → ∞. If the stochastic observability test is applied to this example, then one of

the two conditions (18) or (20) will fail and the test will indicate that the KF implemented

for the system is stochastically unobservable. Therefore, this test provides sufficient, but

not necessary, conditions to assess the stochastic observability of a KF implemented for a

system.

In [1], [5]-[8], and [11], bounds on the state covariance matrix for LTV stochastic

systems were derived and are of the form

(Ōk,k−l + C−1
k,k−l)

−1 ≤ Pk ≤ Ō−1
k,k−l + Ck,k−l (23)

where Ōk,k−l =
∑k−1

i=k−l ΦT
i,kHT

i R−1
i HiΦi,k and Ck,k−l =

∑k−1
i=k−l ΦT

k,i+1ΓiQiΓ
T
i ΦT

k,i+1.

These bounds were derived by using the information form of the KF and the LTV system

in two forms. First, bounds on Pk were derived using a system with a process noise vector

but with no measurement noise vector to derive C. Second, bounds on Pk were derived

using a system with a measurement noise vector but with no process noise vector to de-

rive Ō. These grammians were then combined using the superposition principle to derive

equation (23).

The test given in equation (23) can be used to perform an yes/no assessment of the

stochastic observability of a KF implemented for a stochastic system. The stochastic

observability test derived in this paper requires more matrix multiplications than equation

(23), however, this test provides an exact expression for Pk+1 and allows the filter designer

to identify the causes of a system’s stochastic unobservability. We note that the expressions

for Q̄k+1, equations (17) and (19), include C exactly and Ō in a slightly modified form.

4 Application of the Observability Tests

In this section, we demonstrate the utility of the stochastic observability test devel-

oped in Section 3 by analyzing the observability of a problem of significant current research
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interest: the transfer alignment of an aided INS [23]. In this application, known vehicle

maneuvers are used as inputs to excite particular modes of the INS or, more specifically,

to make the heading angle observable. Therefore, filter performance can be evaluated

for various vehicle maneuvers prior to real-time filter implementation. We note that the

stochastic system is nonlinear for this application, however, the linearization of the sys-

tem’s nonlinear models is about a known state vector trajectory. Therefore, the resulting

linearized system is a discrete LTV system consisting of known, deterministic parameters.

The observability analysis of this problem is typically conducted using a three-step

procedure. First, a vehicle maneuver is selected. Second, various forms of the observability

grammian are evaluated for the resulting stochastic system. Third, the EKF performance

is evaluated for the resulting system [24]-[26]. This approach is inevitably limited to specific

vehicle maneuvers and not applicable for arbitrary vehicle maneuvers. We, therefore, select

two vehicle maneuvers, apply both the observability and stochastic observability tests to

the resulting systems, and assess the performance of both tests. The EKF simulations and

application of the observability tests were performed using Matlab.

4.1 The Aided INS

Kinematic state refers to a vehicle’s position, velocity, and attitude. The kinematic

state of a vehicle can be defined by specifying the relative position, velocity, and orientation

of two reference frames. The two reference frames typically used are a vehicle fixed body

frame and a navigation frame with known orientation. In this application, we select a

North-East-Down (NED) frame as the navigation frame. An INS is used to estimate the

kinematic state of the vehicle or, more specifically, to estimate the position vector, velocity

vector, and orientation of the body frame relative to the navigation frame.

An INS refers to a set of sensors that continuously measure the vehicle’s accelera-

tion and angular velocity vectors, and the mathematical operations required to compute

estimates of the vehicle’s kinematic state. The acceleration vector is measured using ac-

celerometers fixed to the vehicle and aligned with the axes of the vehicle’s body frame.

Integrating these measurements once yields the vehicle’s velocity vector resolved in the

vehicle’s body frame. Integrating these measurements twice yields the vehicle’s position

vector resolved in the vehicle’s body frame. However, a meaningful kinetic state requires

the vehicle’s position and velocity vectors to be resolved in the navigation frame. The
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angular velocity vector is measured using rate gyros, or simply gyros, fixed to the vehicle

and aligned with the axes of the vehicle’s body frame. Integrating these measurements

once yields the orientation of the vehicle’s body frame relative to the navigation frame so

that the measured acceleration vector can be resolved in the navigation frame.

One component of an INS is to integrate the accelerometer and gyro measurements.

Therefore, certain components of the accelerometer and gyro measurement errors, such as

bias, result in potentially unbounded errors in the INS based estimates of the vehicle’s

kinematic state. These kinematic state errors can be bounded using measurements from

aiding sensors such as GPS sensors or magnetometers. The measurements from aiding

sensors are independent of the INS measurements and can be used to periodically esti-

mate the accelerometer and gyro biases and reset the INS based estimates of the vehicle’s

kinematic state. An aided INS fuses measurements from the INS and aiding sensors to

compute bounded estimates of the vehicle’s kinematic state.

We consider a constrained, or two-dimensional, form of the aided INS, Figure 2. In

this application, a vehicle, equipped with an aided INS, travels in the N-E plane of an NED

frame. This INS is mechanized using two accelerometers and a gyro. The accelerometers

are fixed to the vehicle’s body ı̂b and ̂b axes and measure the specific force vector in the N-

E plane. The gyro measures the vehicle’s rotation rate about its vertical body axis. Three

system architectures will be used to aid the INS. The first system architecture provides

measurements of the vehicle’s position and velocity vectors, and heading angle and will be

referred to as a PVH aided INS. The second system architecture provides measurements

of the vehicle’s position and velocity vectors and will be referred to as a PV aided INS.

The third system architecture provides measurements of the vehicle’s position vector and

will be referred to as a P aided INS.

An EKF can be used to fuse the sensor measurements from the INS and aiding systems

and compute estimates of the vehicle’s kinematic state. The aiding sensors of the PV and

P aided INS architectures do not directly measure the vehicle’s heading angle. However,

the vehicle’s heading angle can be indirectly measured by the aiding sensors if these modes

are excited by persistent, or periodic, acceleration. Therefore, vehicle maneuvers can be

used as a component of the aided INS and bound the errors of the INS based estimates of

the vehicle’s kinematic state.

The performance of the EKF implemented for the three aided INS architectures is

evaluated using two scenarios. In the first scenario, or scenario A, the vehicle is traveling
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East at a velocity of 30 m/s. At time t0 = 0 s, the vehicle begins to turn North at a

constant heading angle rate of −0.237◦/s while maintaining a constant speed of 30 m/s.

In the second scenario, or scenario B, the vehicle travels East as a constant speed of 30 m/s.

This two-dimensional sensor fusion problem will allow us to implement the observability

tests and avoid details of the three-dimensional aided INS that are not relevant to the

current discussion.

4.2 Aided INS Sensor Models

The aided INS sensor measurements for the three architectures and two scenarios were

simulated as follows. The accelerometer and gyro measurements were generated using the

models

amx(t) = ax(t) + fbx(t) + nax(t) (24a)

amy(t) = ay(t) + fby(t) + nay(t) (24b)

ωmz(t) = ωz(t) + ωbz(t) + ng(t) (25)

A general model for either the accelerometer or gyro bias is [27]

b(t) = b0 + b1(t) (26)

The bias drift rate can be modeled as a zero-mean, Gaussian, exponentially correlated

process where

ḃ1(t) = −1

τ
b1(t) + nb(t) (27)

E{b1(t)b1(τ)} = σ2
b1 exp(t − τ) (27a)

Qb1 =
2σ2

b1

τ
(27b)

The noise term nb can be modeled as a zero-mean, Gaussian, white noise process where

E{nb(t)nb(τ)} = σ2
bδ(t − τ) (27c)

We will select σb1 = σb in this application.
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The wide band noise terms nax, nay, and ng are modeled as zero-mean, Gaussian,

white noise processes where

E{nax(t)nax(τ)} = σ2
axδ(t − τ), (28)

E{nay(t)nay(τ)} = σ2
ayδ(t − τ), (29)

E{ng(t)ng(τ)} = σ2
gδ(t − τ) (30)

It should be noted that the measurement noise has a higher frequency content than the

bias drift rate.

The aiding system measurements were generated using the models

pmN (t) = pN (t) + npN (t) (31)

pmE(t) = pE(t) + npE(t) (32)

vmN (t) = vN (t) + nvN (t) (33)

vmE(t) = vE(t) + nvE(t) (34)

Ψm(t) = Ψ(t) + nΨ(t) (35)

The wide band noise terms npN , npE , nvN , nvE , and nΨ are modeled as zero-mean,

Gaussian, white noise processes where

E{npN(t)npN (τ)} = σ2
pNδ(t − τ) (36)

E{npE(t)npE(τ)} = σ2
pEδ(t − τ) (37)

E{nvN(t)nvN(τ)} = σ2
vNδ(t − τ) (38)

E{nvE(t)nvE(τ)} = σ2
vEδ(t − τ) (39)

E{nΨ(t)nΨ(τ)} = σ2
Ψδ(t − τ) (40)

The statistics of the aided INS sensors are summarized in Table 1.

4.3 Aided INS System Models
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The dynamic model of the stochastic system corresponding to all three aided INS

architectures is formulated using the equations

ṗN (t) = vN (t) (41)

ṗE(t) = vE(t) (42)

v̇N (t) = aN (t) (43)

v̇E(t) = aE(t) (44)

Ψ̇(t) = ωz(t) (45)

˙̂
fbx(t) = 0 (46)

˙̂
fby(t) = 0 (47)

˙̂ωbz(t) = 0 (48)

where the state vector for all three architectures is

x(t) = [ pN (t) pE(t) vN (t) vE(t) Ψ(t) fbx(t) fby(t) ωbz(t) ]
T

(49)

The accelerometer measurements are resolved in the NED frame using the two-dimensional

direction cosine matrix

[

aN (t)
aE(t)

]

=

[

cos Ψ(t) − sin Ψ(t)
sin Ψ(t) cos Ψ(t)

] [

ax(t)
ay(t)

]

(50)

The equations used to formulate and propagate the state covariance matrix are based

on the state error vector equations which can be summarized as

δx(t) = x(t) − x̂(t) (51)

= [ δpN (t) δpE(t) δvN (t) δvE(t) δΨ(t) δfbx(t) δfby(t) δωbz(t) ]
T

δẋ(t) = F (t)δx(t) + Γc(t)w(t) (52)

F (t) =























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 F (3, 5) − cos Ψ̂ sin Ψ̂ 0
0 0 0 0 F (4, 5) − sin Ψ̂ − cos Ψ̂ 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 −1/τax 0 0
0 0 0 0 0 0 −1/τay 0
0 0 0 0 0 0 0 −1/τg
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F (3, 5) = −(amx − f̂bx) sin Ψ̂ − (amy − f̂by) cos Ψ̂

F (4, 5) = (amx − f̂bx) cos Ψ̂ − (amy − f̂by) sin Ψ̂

The process noise vector is selected as

w(t) = [nax(t) nay(t) ng(t) nabx(t) naby(t) ngb(t) ]
T

(53)

Γc(t) =























0 0 0 0 0 0
0 0 0 0 0 0

− cos Ψ̂ sin Ψ̂ 0 0 0 0
− sin Ψ̂ − cos Ψ̂ 0 0 0 0

0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1























The process noise vector shows that the uncertainty of the dynamic model is due to INS

sensor error components. The power spectral density matrix of the process noise vector is

selected as

Qw = diag
[

σ2
ax, σ2

ay, σ2
g ,

2σ2
ab1x

τa
,

2σ2
ab1y

τa
,

2σ2
gb1

τg

]

(53a)

The measurement model used to correct the predicted state mean vector and state

covariance matrix is selected as

zk = Hkx̂k|k−1 + vk (54)

where for the PVH aiding system

HPV H,k = [ I5 05×3 ] (55a)

RPV H,k = diag [σ2
pN , σ2

pE , σ2
vN , σ2

vE , σ2
Ψ ] , (55b)

for the PV aiding system

HPV,k = [ I4 04×4 ] (56a)

RPV,k = diag [σ2
pN , σ2

pE , σ2
vN , σ2

vE ] , (56b)

and for the P aiding system

HP,k = [ I2 02×6 ] (57a)

RP,k = diag [σ2
pN , σ2

pE ] (57b)
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The general design of the EKF for the aided INS architectures is shown in Figure 3.

4.4 EKF Performance

The EKFs for the aided INS architectures were simulated for both scenarios using

discretized versions of equations (41)-(53) [20]

Φk = exp[F (tk+1 − tk)] (58)

Γk = I8 (59)

Qk =

∫ tk+1

tk

Φ(tk+1, τ)Γc(τ)Qw(τ)ΓT
c (τ)Φ(tk+1, τ)T dτ (60)

The statistics of the initial state vector for all simulations were selected as

x̄0 = [ 0 m 0 m 0 m/s 30 m/s 90◦ 0 m/s2 0 m/s2 0◦/s ]
T

(61)

P0 = 100 × diag [ 0.12, 0.12, 0.012, 0.012, 0.252, (0.001g)2, (0.002g)2, 0.052 ] (62)

The time and measurement update rates for all simulations were 10 Hz. We note that the

linearization of the nonlinear models was performed using the true state vector trajectory.

Figures 4 and 5 show the EKF performance for scenario A with the PVH aided INS

architecture. Figures 6 and 7 show the EKF performance for scenario A with the PV

aiding INS architecture. Figures 8 and 9 show the EKF performance for scenario B with

the P aided INS architecture. In Figures 4, 6, and 8, the estimated state mean vector is

represented by solid lines whereas the true state vector is represented by dashed lines. In

Figures 5, 7, and 9, the state error vector is represented by solid lines whereas the 1 − σ

estimation error bands are represented by dashed lines.

Figures 4 and 5 show that the EKF computed unbiased estimates of the vehicle’s

kinematic state. Furthermore, these figures show that the estimates of the vehicle’s kine-

matic state converged to within their 1 − σ estimation error bands. The estimates of the

accelerometer and gyro null shifts show the effect of both the correlated and uncorrelated

bias components. The estimates of the accelerometer null shifts remained within their 1−σ

estimation error bands. However, the estimates of the gyro null shift required 100 s to con-

verge within its 1− σ estimation error bands. It should be noted that all 1− σ estimation

error bands were bounded. These figures show that the PVH aided INS architecture can
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estimate the vehicle’s kinematic state as well as the accelerometer and gyro null shifts for

the vehicle maneuver in scenario A.

Figures 6 and 7 show that the EKF computed a biased estimate of the gyro null

shift of approximately 0.09◦/s. The biased estimate of the gyro null shift resulted in an

estimation error of the vehicle’s heading angle. The EKF computed unbiased estimates of

the four remaining vehicle kinematic states. The estimates of the accelerometer null shifts

show the effect of both the correlated and uncorrelated bias components. Furthermore,

these figures show that the estimates of the vehicle’s position and velocity vectors as well

as the accelerometer null shifts converged to within their 1 − σ estimation error bands.

It should be noted that the 1 − σ estimation error bands for the heading angle diverged

whereas the 1 − σ estimation error bands for the seven remaining states were bounded.

These figures show that the vehicle’s maneuver in scenario A was insufficient to enable the

PV aided INS architecture to estimate the vehicle’s heading angle and gyro null shift.

Figures 8 and 9 show that the EKF computed a biased estimate of the gyro null shift

of 0.5◦/s and, thus, the EKF was completely unable to estimate the gyro null shift. The

biased estimate of the gyro null shift results in a linear estimation error of the vehicle’s

heading angle. The EKF computed unbiased estimates of the four remaining vehicle kine-

matic states. The estimates of the accelerometer null shifts showed the effect of both the

correlated and uncorrelated bias components. Furthermore, these figures show that the

estimates of the vehicle’s position and velocity vectors as well as the accelerometer null

shifts converged to within their 1 − σ estimation error bands within 50 s. It should be

noted that the 1 − σ estimation error bands for the heading angle diverged whereas the

1 − σ estimation error bands for the seven remaining states were bounded. These figures

show that the vehicle’s maneuver in scenario B was insufficient to enable the P aided INS

architecture to estimate the vehicle’s heading angle and the gyro bias.

4.5 Observability Tests

The observability of the EKFs implemented for the three aided INS architectures

can be assessed using the tests discussed in Section 3. The observability test is given

in equation (12). The stochastic observability test is outlined in Figure 1. The system

matrices for the tests are formulated in Section 4.3. Figures 10 and 11 show the application

of the observability tests for scenario A with the PVH aided INS architecture. Figures 12
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and 13 show the application of the observability tests for scenario A with the PV aided

INS architecture. Figure 14 shows the application of the observability tests for scenario

B with the P aided INS architecture. In Figures 10 and 12, the 1 − σ estimation error

bands predicted by the Q̄k+1 term, equation (19), of the stochastic observability test are

represented by solid lines whereas the 1− σ estimation error bands computed by the EKF

are represented by dashed lines.

Figure 10 shows that the stochastic system selected for scenario A and the PVH aided

INS architecture is observable because the observability grammian has full rank following

two measurement updates. This system is observable because the aiding system sensors

directly measure the entire vehicle kinematic state independent of the vehicle maneuver.

Therefore, the results of the observability test indicate that this system has met the nec-

essary conditions to ensure the estimated state covariance matrix is bounded.

Figure 10 also shows that the EKF implemented for this stochastic system is stochas-

tically observable because both conditions of the stochastic observability test have been

satisfied. First, σmax(Λk+1) = 0 following two measurement updates. Therefore, sufficient

information is available from the aiding sensor measurements and the vehicle maneuver

so that the time evolution of Pk+1 is independent of P0. Second, σmax(Q̄k+1) is bounded

throughout the simulation time frame of 180 s. Therefore, the increases of Pk+1 due to

contributions from the matrices Qk, Φk, and Q̄k are offset by decreases of Pk+1 due to

contributions from the matrices Hk, Rk, Φk, and Q̄k.

Figure 11 shows the effect of assuming that ∆k+1(α
−1), equations (17) and (19),

consists of infinitesimal components whose contributions to Pk+1 can be neglected. The 1−
σ estimation error bands predicted by Q̄k+1 are of the same magnitude and have the same

convergence rate as the 1−σ estimation error bands computed by the EKF. Therefore, the

results of the stochastic observability test predict that the EKF implemented for scenario

A and the PVH aided INS architecture will be stochastically observable. Figures 4 and 5

confirm this result.

Figure 12 shows that the stochastic system selected for scenario A and the PV aided

INS architecture is observable because the observability grammian has full rank follow-

ing thirteen measurement updates. This system is observable because the aiding sensors

directly measure the vehicle’s position and velocity vectors independent of the vehicle

maneuver. Furthermore, the vehicle’s angular acceleration allows the aiding sensors to

indirectly measure the vehicle’s heading angle. Therefore, the results of the observability
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test indicate that this system has met the necessary conditions to ensure the estimated

state covariance matrix is bounded.

However, Figure 12 also shows that the EKF implemented for this system is stochas-

tically unobservable because both conditions of the stochastic observability test have not

been satisfied. First, σmax(Λk+1) = 0 following 133 measurement updates. Therefore,

sufficient information is available from the aiding sensor measurements and the vehicle

maneuver so that the time evolution of Pk+1 is independent of P0. But, σmax(Q̄k+1) is not

bounded and increases throughout the simulation times of 40 s to 180 s. Therefore, the

increases of Pk+1 due to contributions from the matrices Qk, Φk, and Q̄k are not offset by

decreases of Pk+1 due to contributions from the matrices Hk, Rk, Φk, and Q̄k.

The system is observable because the modes of the state vector are persistently excited

by the vehicle’s angular acceleration. However, observability does not guarantee that the

estimated state covariance matrix will be bounded because the noise covariance matrices

and initial state covariance matrix are not incorporated into the observability test. The

stochastic observability test indicates that alternative aiding sensors, vehicle maneuvers, or

process noise covariance matrix must be selected in the design of the stochastic system to

bound the estimate state covariance matrix. In this case, the vehicle maneuver of scenario

A was insufficient for the aiding system sensors to indirectly measure the vehicle’s heading

angle.

Figure 13 shows the effect of assuming that ∆k+1(α
−1) consists of infinitesimal com-

ponents whose contributions to Pk+1 can be neglected. The 1 − σ estimation error bands

predicted by Q̄k+1 are of the same order of magnitude and have the same convergence rate

as the 1 − σ estimation error bands computed by the EKF. Therefore, the results of the

stochastic observability test predict that the EKF implemented for scenario A and the PV

aided INS architecture will be stochastically unobservable. Furthermore, Q̄k+1 identifies

the modes that lead to the stochastic unobservability of a system. However, Figures 6

and 7 also show the limitations of the stochastic observability test. These figures show the

estimate of the gyro null shift has a bias of 0.09◦/s. The stochastic observability test can

not predict a bias in the estimates of the state mean vector but can predict whether the

estimated state covariance matrix is bounded. Figures 6 and 7 confirm this result.

Figure 14 shows that the stochastic system selected for scenario B and the P aided INS

architecture is unobservable because the observability grammian does not have full rank.

This system is unobservable because the vehicle maneuver does not allow the aiding sensors
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to measure the vehicle’s heading angle. Figure 14 also shows that the EKF implemented

for the system is stochastically unobservable because σmax(Λk+1) 6= 0. Therefore, sufficient

information was not available from aiding sensor measurements and the vehicle maneuver

to bound the estimated state covariance matrix. The results of the stochastic observability

test predict that the EKF implemented for scenario B and the P aided INS architecture

will be stochastically unobservable. Figures 8 and 9 confirm this result.

5 Conclusions

In this paper, we developed a test to assess the stochastic observability of KFs imple-

mented for discrete LTV stochastic systems consisting of known, deterministic time-varying

parameters. We refer to stochastic observability as convergence of the state covariance ma-

trix to within a user specified bound. We note, however, that there is no standard definition

of stochastic observability. In [28], the concept of stochastic observability is extended to

that of estimability which implies that the posterior state covariance matrix is smaller

than the prior state covariance matrix. In [11], the concept of stochastic observability is

extended to LTV stochastic systems consisting of stochastic parameters.

The test developed in Section 3 can be used to assess stochastic observability, first,

for large initial state covariance matrices, second, for the selection of the system matrices

including the process noise and measurement noise covariance matrices, and, third, for the

selection of a vehicle maneuver. The test requires computation of the maximum singular

value of two matrices formulated from the system matrices and the Riccati equation. The

dimensions of these matrices correspond to the dimensions of the state vector.

The stochastic observability test was developed based on two assumptions. First, the

system matrices consist of known, deterministic time-varying parameters. The applications

of this test include nonlinear systems linearized about the true state vector trajectory.

Therefore, this test can be used as a tool to evaluate EKF performance for different state

vector trajectories prior to real-time implementation. Second, the statistics of the initial

state vector are completely uncertain. Therefore, this test provides sufficient, but not

necessary, conditions for the stochastic observability of a KF implemented for a system.

We illustrated the application of the stochastic observability test using the transfer

alignment of an aided INS. In this application, vehicle maneuvers are selected to make

the heading angle observable. However, we selected a sensor set and vehicle maneuver
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to illustrate that while the system was observable, the KF implemented for the system

was stochastically unobservable. Therefore, observability is only a necessary, but not

sufficient, condition for the stochastic observability of a system. We then assessed the

stochastic observability of the system using the same sensor set and vehicle maneuver

to demonstrate the stochastic observability test will indicate that the EKF implemented

for the system is stochastically unobservable. Furthermore, the test indicated that the

stochastic unobservability of the system was due to the system matrices and not the initial

state covariance matrix.

The stochastic observability test has several limitations. First, the test can not be

used to assess the convergence and stability of the estimated state mean vector. Therefore,

the test can not predict a bias error in the estimated state mean vector. Second, the test

can not be used with system matrices consisting of unknown, deterministic time-varying

parameters or stochastic parameters. Therefore, the test can not be used to assess the

stochastic observability of EKFs implemented for nonlinear systems linearized about the

estimated state vector trajectory. Third, the test does not provide statistical conditions on

how sensors, sensor locations, sensor models, system matrices, or the state vector trajectory

should be selected to ensure a KF implemented for a system is stochastically observable.
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Appendix A

The objective of Appendix A is to prove Lemmas 1 and 2. This appendix is organized

as follows. In Section A.1, we prove three supporting Lemmas that are required in the

proof of Lemmas 1 and 2. In Section A.2, we prove Lemma 1. In Section A.3, we prove

Lemma 2.

A.1 Supporting Lemmas

We first make four assumptions without loss of generality and review the inverses of

a block matrix and a matrix series expansion.

Assumption A.1 : Θ ∈ Mn×p
r

Assumption A.2 : Θ has the singular value decomposition

Θ = UΣV T (A.1)

where U and V refer to n × n and p × p unitary matrices, respectively,

UT U = UUT = In

V T V = V V T = Ip,

Σ refers to a n × p matrix with rank r

Σ =

[

Σr 0r×p−r

0n−r×r 0n−r×p−r

]

,

and Σr refers to a full rank, r × r matrix with the singular values of Θ along its diagonal.

Assumption A.3 : The symmetric matrix M(α−1) ∈ Mp×p
r is analytic at α = ∞ and has

the following series expansion with constant term equal to the identity matrix

M(α−1) =

[

X Y
Y T Z

]

= I +
∞
∑

i=1

α−iMi (A.2)
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where

Mi =

[

Xi Yi

Y T
i Zi

]

X = I +
∞
∑

i=1

α−iXi X ∈ Mr×r

Y =
∞
∑

i=1

α−iYi Y ∈ Mr×p−r

Z = I +
∞
∑

i=1

α−iZi Z ∈ Mp−r×p−r
p−r

Assumption A.4 : The symmetric matrix M̂(α−1) ∈ Mp×p
r is analytic at α = ∞ and has

the following series expansion with constant term equal to the identity matrix

M̂(α−1) = V −1MV =

[

X̂ Ŷ
Ŷ T Ẑ

]

= I +
∞
∑

i=1

α−iM̂i (A.3)

where

M̂i =

[

X̂i Ŷi

Ŷ T
i Ẑi

]

X̂ = I +

∞
∑

i=1

α−iX̂i X̂ ∈ Mr×r

Ŷ =

∞
∑

i=1

α−iŶi Ŷ ∈ Mr×p−r

Ẑ = I +

∞
∑

i=1

α−iẐi Ẑ ∈ Mp−r×p−r
p−r

A.1.1 Block Matrix Inversion

Consider A ∈ Mm×m where

A =

[

A11 A12

A21 A22

]

(A.4)

and where A11, A12, A21, and A22 are matrices of compatible dimension. The inverse of

A can be written as [20]

D11 = A11 − A12A
−1
22 A21 (A.5)

A−1 =

[

D−1
11 −D−1

11 A12A
−1
22

−A−1
22 A21D

−1
11 A−1

22 + A−1
22 A21D

−1
11 A12A

−1
22

]

(A.6)
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A.1.2 Matrix Series Inversion

Consider A ∈ Mm×m with series expansion

A = I + α−1A1 + α−2A2 + α−3A3 + · · · (A.7)

The inverse of A can be written as

A−1 = I + α−1Â1 + α−2Â2 + α−3Â3 + · · · (A.8)

where Â1 = −A1, Â2 = A2
1 − A2, and Â3 = −A3

1 + A1A2 + A2A1 − A3.

A.1.3 Supporting Lemmas

Lemma A.1 : Given the matrices Θ, M , and M̂ as defined in Assumptions A.1-A.4, then

(α−1M + ΘT Θ)−1 = αΠN (Θ) + V Ξ0V
T + α−1V Ξ1V

T + α−2V Ξ2V
T + · · · (A.9)

where

Ξ0 =

[

Σ−2
r 0
0 −Ẑ1

]

Ξ1 =

[

−Σ−4
r −Σ−2

r Ŷ1

−Ŷ T
1 Σ−2

r Ẑ2
1 − Ẑ2

]

Ξ2 =

[

ξ11 ξ12

ξ21 ξ22

]

ξ11 = Σ−2
r (Σ−4

r − X̂1Σ
−2
r )

ξ12 = −Σ−2
r Ŷ2 + Σ−2

r Ŷ1Ẑ1 + Σ−4
r Ŷ1

ξ21 = −Ŷ T
2 Σ−2

r + Ẑ1Ŷ
T
1 Σ−2

r + Ŷ T
1 Σ−4

r

ξ22 = −Ẑ3
1 + Ẑ1Ẑ2 + Ẑ2Ẑ1 − Ẑ3 + Ŷ T

1 Σ−2
r Ŷ1

Proof : If we rewrite Θ using its singular value decomposition, then

(α−1M + ΘT Θ)−1 = V (α−1M̂ + ΣT Σ)−1V −1 (A.10)

If we rewrite M̂ using Assumption A.4, then

(α−1M + ΘT Θ)−1 = V

[

α−1X̂ + Σ2
r α−1Ŷ

α−1Ŷ T α−1Ẑ

]−1

V −1 (A.11)
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The inverse term of equation (A.11) can be computed using the matrix inversion

lemma given in equations (A.4)-(A.6). If we compare equation (A.11) to equations (A.4)

and (A.5), then

A11 = α−1X̂ + Σ2
r (A.12a)

A12 = α−1Ŷ (A.12b)

A21 = α−1Ŷ T (A.12c)

A22 = α−1Ẑ (A.12d)

D11 = Σ2
r + α−1(X̂ − Ŷ Ẑ−1Ŷ T ) (A.12e)

In equation (A.12e), if we rewrite Ẑ−1 using equation (A.8), then the series expansion of

X̂ − Ŷ Ẑ−1Ŷ T can be written as

X̂ − Ŷ Ẑ−1Ŷ T = I + α−1X̂1 + α−2(X̂2 − Ŷ1Ŷ
T
1 )

+ α−3(X̂3 − Ŷ1Ŷ
T
2 − Ŷ2Ŷ

T
1 + Ŷ1Ẑ1Ŷ

T
1 ) + · · · (A.13)

If we substitute equations (A.12) and (A.13) into equation (A.6), then equation (A.11)

can be rewritten as

(α−1M + ΘT Θ)−1 = αV

[

0 0
0 I

]

V −1 + V Ξ0V
−1 + α−1V Ξ1V

−1

+ α−2V Ξ2V
−1 + · · · (A.14)

where Ξ0, Ξ1, and Ξ2 are defined in equation (A.9). The intermediate steps of this proof

are given in [29, pp. 169-172].

Lemma A.2 : Given the matrices Θ, M , and M̂ as defined in Assumptions A.1-A.4, then

(α−1M + ΘT Θ)−1ΘT = (ΘT Θ)†ΘT + α−1V Ξ1Σ
T UT + α−2V Ξ2Σ

T UT + · · · (A.15)

where Ξ1 and Ξ2 are defined in equation (A.9).

Proof : If we rewrite Θ using its singular value decomposition and appeal to Lemma A.1,

then

(α−1M + ΘT Θ)−1ΘT = αV

[

0 0
0 I

]

ΣT UT + V Ξ0Σ
T UT

+ α−1V Ξ1Σ
T UT + α−2V Ξ2Σ

T UT + · · ·
= V

[

(Σ−2
r )Σr 0
0 0

]

UT + α−1V Ξ1Σ
T UT

+ α−2V Ξ2Σ
T UT + · · · (A.16)
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where Ξ0 is defined in equation (A.9).

Lemma A.3 : Given the matrices Θ, M , and M̂ as defined in Assumptions A.1-A.4, then

Θ(α−1M + ΘT Θ)−1ΘT = Θ(ΘT Θ)†ΘT − α−1Θ((ΘT Θ)†)2ΘT + α−2UΣΞ2Σ
T UT + · · ·

(A.17)

where Ξ1 and Ξ2 are defined in equation (A.9).

Proof : If we rewrite Θ using its singular value decomposition and appeal to Lemma A.1,

then

Θ(α−1M + ΘT Θ)−1ΘT = αUΣ

[

0 0
0 I

]

ΣT UT + UΣΞ0Σ
T UT

+ α−1UΣΞ1Σ
T UT + α−2UΣΞ2Σ

T UT + · · ·

= U

[

Σr(Σ
−2
r )Σr 0
0 0

]

UT

+ α−1U

[

−Σr(Σ
−4
r )Σr 0

0 0

]

UT

+ α−2UΣΞ2Σ
T UT + · · · (A.18)

A.2 Lemma 1: Proof

Consider the time-varying Riccati equation

Pk+1 = ΦkPkΦT
k + ΓkQkΓT

k − ΦkPkHT
k (Rk + HkPkHT

k )−1HkPkΦT
k (A.19)

where the matrices of equation (A.19) are defined in Section 2.

Let the initial state covariance matrix be diagonal with equal uncertainty for all states

of the state mean vector

P0 = αI α ∈ ℜ, α > 0 (A.20)

If equation (A.20) is substituted into equation (A.19), then P1 can be written as

P1 = αΦ0Φ
T
0 + Γ0Q0Γ

T
0 − αΦ0H

T
0 (α−1R0 + H0H

T
0 )−1H0Φ

T
0 (A.21)
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If we define

M0 = I (A.22)

Θ0 = HT
0 Υ−1

0 (A.23)

ΥT
0 Υ0 = R0 (A.24)

where Υ0 = R
1/2
0 , then P1 can be rewritten as

P1 = αΦ0Φ
T
0 + Γ0Q0Γ

T
0 − αΦ0Θ0(α

−1M0 + ΘT
0 Θ0)

−1ΘT
0 ΦT

0 (A.25)

If we appeal to Lemma A.3 and note that M0 is not a function of α, then P1 can be

rewritten as

P1 = αΦ0

[

I − Θ0(Θ
T
0 Θ0)

†ΘT
0

]

ΦT
0

+ Γ0Q0Γ
T
0 + Φ0Θ0((Θ

T
0 Θ0)

†)2ΘT
0 ΦT

0

− Φ0[α
−1Θ0((Θ

T
0 Θ0)

†)4ΘT
0 + · · ·]ΦT

0 (A.26)

In equation (A.26), the term Θ0(Θ
T
0 Θ0)

†ΘT
0 is the projector of a vector onto the range

space of Θ0 whereas the term I − Θ0(Θ
T
0 Θ0)

†ΘT
0 is the projector of a vector onto the

orthogonal complement of the range space of Θ0

Θ0(Θ
T
0 Θ0)

†ΘT
0 = ΠR(Θ0) (A.27a)

I − Θ0(Θ
T
0 Θ0)

†ΘT
0 = ΠN (ΘT

0
) (A.27b)

If equation (A.27) is substituted into equation (A.26), then P1 can be rewritten as

P1 = αΛ1 + Q̄1 + ∆1(α
−1) (A.28)

where

ΠN (ΘT
0

) = Ω0Ω
T
0 (A.28a)

Λ1 = Φ0Ω0Ω
T
0 ΦT

0 (A.28b)

Q̄1 = Γ0Q0Γ
T
0 + Φ0Θ0((Θ

T
0 Θ0)

†)2ΘT
0 ΦT

0 (A.28c)

∆1(α
−1) = −Φ0[α

−1Θ0((Θ
T
0 Θ0)

†)4ΘT
0 + · · ·]ΦT

0 (A.28d)
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and where Ω0 has the same rank as ΠN (ΘT
0

). The intermediate steps in the derivation of

P1 are given in [29, pp. 174-176].

Equation (A.28) suggests that the general form of Pk is

Pk = αΛk + Q̄k + ∆k(α−1) (A.29)

If equation (A.29) is substituted into equation (A.19), then Pk+1 can be rewritten as

Pk+1 = αΦk,0Ω0,k−1Ω
T
0,k−1Φ

T
k,0 + ΦkQ̄kΦT

k + ΓkQkΓT
k + Φk∆kΦT

k

− Φk(αΦk−1,0Ω0,k−1Ω
T
0,k−1Φ

T
k−1,0 + Q̄k + ∆k)HT

k ×
×

[

Rk + HkQ̄kHT
k + Hk∆kHT

k + αHkΦk−1,0Ω0,k−1Ω
T
0,k−1Φ

T
k−1,0H

T
k

]−1 ×
× Hk(αΦk−1,0Ω0,k−1Ω

T
0,k−1Φ

T
k−1,0 + Q̄k + ∆k)ΦT

k (A.30)

The terms of equation (A.30) can now be expanded so that the α terms can be identified

and collected. If we define

Mk = I + Υ−T
k Hk∆kHT

k Υ−1
k (A.31)

Θk = ΩT
0,k−1Φ

T
k−1,0H

T
k Υ−1

k (A.32)

ΥT
k Υk = Rk + HkQ̄kHT

k (A.33)

where Υk = (Rk + HkQ̄kHT
k )1/2 and we appeal to Lemmas A.1-A.3, then Pk+1 can be

written as

Pk+1 = αΦk,0Ω0,k−1Ω
T
0,k−1Φ

T
k,0 + ΦkQ̄kΦT

k + ΓkQkΓT
k + Φk∆kΦT

k

− Φk,0Ω0,k−1[αΘk(ΘT
k Θk)†ΘT

k − Θk((ΘT
k Θk)†)2ΘT

k ]ΩT
0,k−1Φ

T
k,0

− Φk,0Ω0,k−1[α
−1Θk((ΘT

k Θk)†)4ΘT
k + · · ·]ΩT

0,k−1Φ
T
k,0

− Φk,0Ω0,k−1[Θk(ΘT
k Θk)† + α−1UkΣkΞT

k,1V
T
k + · · ·]Υ−T

k HkQ̄kΦT
k

− Φk,0Ω0,k−1[Θk(ΘT
k Θk)† + α−1UkΣkΞT

k,1V
T
k + · · ·]Υ−T

k Hk∆kΦT
k

− ΦkQ̄kHT
k Υ−1

k [(ΘT
k Θk)†ΘT

k + α−1VkΞk,1Σ
T
k UT

k + · · ·]ΩT
0,k−1Φ

T
k,0

− ΦkQ̄kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k HkQ̄kΦT
k

− ΦkQ̄kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k Hk∆kΦT
k

− Φk∆kHT
k Υ−1

k [(ΘT
k Θk)†ΘT

k + α−1VkΞk,1Σ
T
k UT

k + · · ·]ΩT
0,k−1Φ

T
k,0

− Φk∆kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k HkQ̄kΦT
k

− Φk∆kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k Hk∆kΦT
k (A.34)
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In equation (A.34), the term Θk(ΘT
k Θk)†ΘT

k is the projector of a vector onto the

range space of Θk whereas the term I − Θk(ΘT
k Θk)†ΘT

k is the projector of a vector onto

the orthogonal complement of the range space of Θk

Θk(ΘT
k Θk)†ΘT

k = ΠR(Θk) (A.35a)

I − Θk(ΘT
k Θk)†ΘT

k = ΠN (ΘT
k

) (A.35b)

If equation (A.35) is substituted into equation (A.34), then Pk+1 can be written as

Pk+1 = αΛk+1 + Q̄k+1 + ∆k+1(α
−1) (A.36)

where

ΠN (ΘT
k

) = ΩkΩT
k (A.36a)

Λk+1 = Φk,0Ω0,kΩT
0,kΦT

k,0 (A.36b)

Q̄k+1 = ΦkQ̄kΦT
k + ΓkQkΓT

k

+ Φk,0Ω0,k−1Θk((ΘT
k Θk)†)2ΘT

k ΩT
0,k−1Φ

T
k,0

− Φk,0Ω0,k−1Θk(ΘT
k Θk)†Υ−T

k HkQ̄kΦT
k

− ΦkQ̄kHT
k Υ−1

k (ΘT
k Θk)†ΘT

k ΩT
0,k−1Φ

T
k,0

− ΦkQ̄kHT
k Υ−1

k ΠN (Θk)Υ
−T
k HkQ̄kΦT

k (A.36c)

∆k+1(α
−1) = Φk∆kΦT

k

− Φk,0Ω0,k−1[α
−1Θk((ΘT

k Θk)†)4ΘT
k + · · ·]ΩT

0,k−1Φ
T
k,0

− Φk,0Ω0,k−1[α
−1UkΣkΞT

k,1V
T
k + · · ·]Υ−T

k HkQ̄kΦT
k

− Φk,0Ω0,k−1[Θk(ΘT
k Θk)† + α−1UkΣkΞT

k,1V
T
k + · · ·]Υ−T

k Hk∆kΦT
k

− ΦkQ̄kHT
k Υ−1

k [α−1VkΞk,1Σ
T
k UT

k + · · ·]ΩT
0,k−1Φ

T
k,0

− ΦkQ̄kHT
k Υ−1

k [α−1VkΞk,0V
−1
k + · · ·]Υ−T

k HkQ̄kΦT
k

− ΦkQ̄kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k Hk∆kΦT
k

− Φk∆kHT
k Υ−1

k [(ΘT
k Θk)†ΘT

k + α−1VkΞk,1Σ
T
k UT

k + · · ·]ΩT
0,k−1Φ

T
k,0

− Φk∆kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k HkQ̄kΦT
k

− Φk∆kHT
k Υ−1

k [ΠN (Θk) + α−1VkΞk,0V
−1
k + · · ·]Υ−T

k Hk∆kΦT
k (A.36d)
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and where Ωk has the same rank as ΠN (ΘT
k

). The intermediate steps in the derivation of

Pk+1 are given in [29, pp. 184-188].

A.3 Lemma 2: Proof

If σmax(Λk) = 0, then the general form of Pk, equation (A.29), is

Pk = Q̄k + ∆k(α−1) (A.37)

If equation (A.37) is substituted into equation (A.19), then Pk+1 can be rewritten as

Pk+1 = ΦkQ̄kΦT
k + ΓkQkΓT

k + Φk∆kΦT
k

− Φk(Q̄k + ∆k)HT
k ×

×
[

Rk + HkQ̄kHT
k + Hk∆kHT

k

]−1
Hk(Q̄k + ∆k)ΦT

k (A.38)

The terms of equation (A.38) can now be expanded so that the α terms can be identified

and collected. If we define

Mk = I + Υ−T
k Hk∆kHT

k Υ−1
k (A.39)

ΥT
k Υk = Rk + HkQ̄kHT

k (A.40)

where Υk = (Rk + HkQ̄kHT
k )1/2, then equation (A.38) can be written as

Pk+1 = ΦkQ̄kΦT
k + ΓkQkΓT

k + Φk∆kΦT
k

− ΦkQ̄kHT
k Υ−1

k M−1
k Υ−T

k HkQ̄kΦT
k

− ΦkQ̄kHT
k Υ−1

k M−1
k Υ−T

k Hk∆kΦT
k

− Φk∆kHT
k Υ−1

k M−1
k Υ−T

k HkQ̄kΦT
k

− Φk∆kHT
k Υ−1

k M−1
k Υ−T

k Hk∆kΦT
k (A.41)

If we rewrite the M−1 term using equation (A.8), then equation (A.41) can be rewrit-

ten as

Pk+1 = Q̄k+1 + ∆k+1(α
−1) (A.42)

where

Q̄k+1 = ΦkQ̄kΦT
k + ΓkQkΓT

k − ΦkQ̄kHT
k Υ−1

k Υ−T
k HkQ̄kΦT

k (A.42a)

∆k+1(α
−1) = Φk∆kΦT

k

− ΦkQ̄kHT
k Υ−1

k [−α−1Mk,1 + · · ·]Υ−T
k HkQ̄kΦT

k

− ΦkQ̄kHT
k Υ−1

k [I − α−1Mk,1 + · · ·]Υ−T
k Hk∆kΦT

k

− Φk∆kHT
k Υ−1

k [I − α−1Mk,1 + · · ·]Υ−T
k HkQ̄kΦT

k

− Φk∆kHT
k Υ−1

k [I − α−1Mk,1 + · · ·]Υ−T
k Hk∆kΦT

k (A.42b)

The intermediate steps in the derivation of Pk+1 are given in [29, pp. 188-190].
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Table 1: Aided INS Sensor Statistics
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Figure 1: Stochastic Observability Test
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Figure 2: Vehicle Definition
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Figure 3: Aided INS Architecture
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Figure 4: Estimated State Mean Vector

Scenario A; PVH Aiding System
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Figure 5: Estimated State Error Vector

Scenario A; PVH Aiding System
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Figure 6: Estimated State Mean Vector

Scenario A; PV Aiding System
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Figure 7: Estimated State Error Vector

Scenario A; PV Aiding System
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Figure 8: Estimated State Mean Vector

Scenario B; P Aiding System
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Figure 9: Estimated State Error Vector

Scenario B; P Aiding System

46



1 1.5 2 2.5 3
5

6

7

8

ra
nk

 O
kT
 O

k

0 50 100 150
5

6

7

8

ra
nk

 O
kT
O

k

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0

0.5

1

σ m
ax

(Λ
k+

1)

0 20 40 60 80 100 120 140 160 180
0

0.005

0.01

σ m
ax

(Q
k+

1)

time (s)

Figure 10: Observability Tests

Scenario A; PVH Aiding System
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Figure 11: Comparison of Estimated Variances

Scenario A; PVH Aiding System
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Figure 12: Observability Tests

Scenario A; PV Aiding System
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Figure 13: Comparison of Estimated Variances

Scenario A; PV Aiding System
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Figure 14: Observability Tests

Scenario B; P Aiding System
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