
SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Metrics for power spectra:
an axiomatic approach

Tryphon T. Georgiou, Johan Karlsson, and Mir Shahrouz Takyar

Abstract— We present an axiomatic framework for seeking a
distance between power spectral density functions. The axioms
require that the sought metric respects the effects of additive
and multiplicative noise in reducing our ability to discriminate
spectra, as well as the require continuity of statistical quantities
with respect to perturbations measured in the metric. The pur-
pose of this paper is to explore certain notions of distance which
are based on the Monge-Kantorovic transportation problem
and satisfy the natural set of axioms that we have put forth.
These type of distance measures are contrasted with an earlier
Riemannian metric which was motivated by the geometry of the
underlying time-series.
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I. INTRODUCTION

A key element of any quantitative scientific theory is a well-
defined and natural metric. A model for the development of
such a metric is provided, in the context of information theory
and statistics, in the work of Fisher, Rao, Amari, Centsov
and many others, via an axiomatic approach where the sought
metric is identified on the basis of a natural set of axioms—
the main one being the contractiveness of stochastic maps.
The subject of the present paper is not the geometry of infor-
mation, but instead, the possibility of analogous geometries
for power spectra starting from a similar axiomatic rationale.
Specifically, we seek a metric between power spectra which is
contractive when noise is introduced, since intuitively, noise
impedes our ability to discriminate. Further, we require that
any statistic is continuous with respect to spectral uncertainty
quantified by the sought metric. We build on [14] where a
variety of metrics were studied, based on complex analysis,
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which quantify spectral uncertainty given estimated statistics.
The focus of the current paper is twofold, firstly to develop a
natural axiomatic framework for seeking such geometries for
power spectra, and secondly to propose a particular candidate
metric which abides by the axioms. This metric is based on
the Monge-Kantorovic transportation problem and is suitably
modified to deal with power spectra.

In Section II we outline and discuss the axiomatic frame-
work. In Section III we contrast the development herein with
the axiomatic basis of Information Geometry and of alternative
route to a spectral geometry based on prediction theory. In
Section IV we present basic facts of the Monge-Katnorovic
transportation problem which are then utilized in Section V,
where we develop a suitable family of metrics satisfying the
axioms of the sought spectral geometry.

II. MORPHISMS ON POWER SPECTRA

We consider power spectra of discrete-time stochastic pro-
cesses. These are bounded positive measures on the interval
I = (−π, π], and thus belong to

M := {dµ : dµ ≥ 0 on I} .

The physics of signal interactions suggests certain natural
morphisms between spectra that model mixing in the time-
domain. The most basic such interactions, additive and multi-
plicative, adversely affect the information content of signals. It
is our aim to devise metrics that respect such a degradation in
information content. Another property that ought to be inherent
in a metric geometry for power spectra is the continuity of
statistics. More specifically, since modeling and identification
is often based on statistical quantities, it is natural to demand
that “small’ changes in the spectral content, as measured by
any suitable metric, result in small changes in any relevant
statistical quantity.

Consider a discrete-time stationary (real-valued) random
process {y(k), k ∈ Z} with corresponding power spectrum
dµ ∈ M. The sequence of covariances

R(`) := E{y(m)y(m− `)},
where E{·} denotes expectation and “ ” denotes complex
conjugation, are the Fourier coefficients of dµ, i.e.,

R(`) =
∫

I
e−j`θdµ(θ).

In general, second order statistics that are being considered in
this paper, are integrals of the form
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R =
∫

I
G(θ)dµ(θ)

for an arbitrary vectorial integration kernel G(θ) which is
continuous in θ ∈ R and periodic with period 2π. For
future reference we denote the set of such functions by
Cperio((−π, π]).

Now, suppose that dµa represents the power spectrum of an
“additive-noise” process ya which is independent of y. Then
the power spectrum of y + ya is simply dµ + dµa. Similarly,
if dµm represents the power spectrum of a “multiplicative-
noise” process ym, the power spectrum of y ·ym is the circular
convolution dν = dµ ∗ dµm, i.e. dν satisfies

∫

x∈S

dν(x) :=
∫

x∈S

∫

t∈I
dµ(t)dµa(x− t) for all S ⊆ I,

where the arguments are interpreted modulo 2π.
We postulate situations where we need to discriminate

between two signals on the basis of their power spectra and
their statistics. In such cases, additive noise or multiplicative
noise may impede our ability to differentiate between the
two. Thus, we consider noise spectra as morphisms on M
that transform power spectra accordingly. Thus, additive and
multiplicative noise morphisms are defined as follows:

Adµa : dµ 7→ dµ + dµa

for any dµa ∈ M, and

Mdµm : dµ 7→ dµ ∗ dµm

for any dµm ∈ M, normalized so that
∫
I dµm = 1. The

normalization is such that multiplicative noise is perceived
to affect the spectral content but not the total energy of
underlying signals.

The effect of additive independent noise on the statistics of
a process is also additive, e.g., covariances of the process are
transformed according to

Âdµa : R(`) 7→ R(`) + Ra(`),

where Ra(`) denotes the corresponding covariances of the
noise process. Similarly, multiplicative noise transforms the
process statistics by pointwise multiplication (Schur product)
as follows

M̂dµm : R(`) 7→ R(`) ·Rm(`).

More generally, M̂dµm : R 7→ R • Rm for statistics with
respect to an arbitrary kernel G(θ), where • denotes point-
wise multiplication of the vectors R, Rm.

Consistent with the intuition that noise masks differences
between two power spectra, it is reasonable to seek a metric
topology, where distances between power spectra are non-
increasing when they are transformed by any of the above
two morphisms. More precisely, we seek a notion of distance
δ(·, ·) on M with the following properties:
Axiom i) δ(·, ·) is a metric on M.
Axiom ii) For any dµa ∈ M, Adµa is contractive on M with
respect to the metric δ(·, ·).
Axiom iii) For any dµm ∈ M with

∫
I dµm ≤ 1, Mdµm is

contractive on M with respect to the metric δ(·, ·).
The property of a map being contractive refers to the require-
ment that the distance between two power spectra does not
increase when the transformation is applied.

An important property for the sought topology of power
spectra is that small changes in the power spectra are reflected
in corresponding changes in statistics. More precisely, any
topology induces a notion of convergence, and the question
is whether this topology is compatible with the topology in
the vector-space where statistics take their values. Continuity
of statistics to changes in the power spectra is necessary
for quantifying spectral uncertainty based on statistics. The
property we require is referred to as weak∗ continuity and is
abstracted in the following statement.
Axiom iv) Let dµ ∈ M and a sequence dµk ∈ M for k ∈ N.
Then δ(dµk, dµ) → 0 as k →∞, if and only if∫

I
Gdµk →

∫

I
Gdµ as k →∞,

for any G ∈ Cperio((−π, π]).

III. REFLECTIONS AND CONTRAST WITH INFORMATION
GEOMETRY

The search for natural metrics between density functions
can be traced back to several towering figures in the his-
tory of statistics, probability and information theory. A.N.
Kolmogorov was “always interested in finding information
distances” between probability distributions and, according to
Chentsov [5, page 992] (ref. [1]), he independently arrived at
and discussed the relevance of the Bhattacharyya [3] distance

dB(dµ0, dµ1) := 1−
∫ √

µ0(dx)µ1(dx) (1)

as a measure of unlikeness of two measures dµ0, dµ1. Also
according to Chentsov, A.N. Kolmogorov emphasized in his
notes the importance of the total variation

dTV(dµ0, dµ1) :=
∫
|µ0(dx)− µ1(dx)|

as a metric. Naturally, both suggestions reveal great intuition
and foresight. The total variation admits the following inter-
pretation (cf. [9]) that will turn out to be particularly relevant
in our context. Assuming that dµ0, dµ1 are power spectra, the
total variation represents the least “energy” of perturbations
for dµ0 and dµ1 that render the two indistinguishable, i.e.,

dTV(dµ0, dµ1) = min{
∫

dν0 +
∫

dν1 : dν0, dν1 ∈ M,

and dµ0 + dν0 = dµ1 + dν1} (2)

On the other hand the Bhattacharyya distance turned out to
have deep connections with Fisher information, the Kullback-
Leibler divergence, and the Cramér-Rao inequality. These
connections underlie a body of work known as Information
Geometry which begun in the work of Fisher and Rao [12],
[6], [2]. At the heart of the subject is the Fisher information
metric on probability spaces and the closely related spherical
Fisher-Bhattacharyya-Rao metric

dFBR(dµ0, dµ1) := 2 arccos
∫ √

µ0(dx)µ1(dx). (3)
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This latter metric is precisely the geodesic distance between
two distributions in the geometry of the Fisher metric. One of
the fundamental results of the subject is Chentsov’s theorem.
This states that stochastic maps are contractive with respect
to the Fisher information metric and moreover, that this is
the unique (up to constant multiple) Riemannian metric with
this property [6]. Stochastic maps represent the most general
class of linear maps which map probability distributions to the
same. Stochastic maps model coarse graining of the outcome
of sampling, and thus, form a semi-group. Thus, it is natural to
require that any natural notion of distance between probability
distributions must be monotonic with respect to the action of
stochastic maps.

An alternative justification for the Fisher information metric
is based on the Kullback-Leibler divergence

dKL(dµ0, dµ1) :=
∫

dµ0

dµ1
log(

dµ0

dµ1
)dµ1 =

∫
log(

dµ0

dµ1
)dµ0

between probability distributions. The Kullback-Leibler diver-
gence is not a metric, but quantifies in a very precise sense the
difficulty in distinguishing the two distributions [13]. In fact,
it may be seen to quantify, in source coding for discrete finite
probability distributions, the increase in the average word-
length when a code is optimized for one distribution and used
instead for encoding symbols generated according to the other.
The distance between infinitesimal perturbations, measured
using dKL, is precisely the Fisher information metric. It is
quite remarkable that both lines of reasoning, degradation of
coding efficiency and ability to discriminate on one hand and
contractive-ness of stochastic maps on the other, lead to the
same geometry on probability spaces.

Turning again to power spectra, we observe that dTV can be
used as a metric and has a natural interpretation as explained
earlier. The metric dFBR on the other hand can also be used, if
suitably modified to account for scaling, but lacks an intrinsic
interpretation. A variety of other metrics can also be place on
M. In particular, [7], [8] presented a metric for power spectra
that quantifies the degradation of predictive error variance –
in analogy with the latter argument that led to the Fisher
metric. More precisely, a one-step optimal linear predictor for
an underlying random process is obtained based on one power
spectrum and then the predictor is applied to a random process
with a different spectrum. The degradation of predictive error
variance, when the perturbations are infinitesimal, gives rise
to a Riemannian metric. In this metric, the geodesic distance
between two power spectra is

dpredictive(dµ0, dµ1) :=

√∫
(log

dµ0

dµ1
)2dθ − (

∫
log

dµ0

dµ1
dθ)2,

(4)
which effectively depends on the ratio of the corresponding
spectral densities. A similar rationale can be based on smooth-
ing instead of prediction (see [7], [8]), and this also leads to
expressions that weigh in ratios of the corresponding spectral
density functions.

A possible justification for such metrics, that weigh in
only the ratio of the corresponding density functions, can be
sought in interpreting the effect of linear filtering as a kind

of processing that needs to be addressed in the axioms. More
specifically, the power spectrum at the output of a linear filter
relates to the power spectrum of the input via multiplication
by the modulus square of the transfer function. Thus, a metric
that respects such “processing” ought to be contractive (and
possibly invariant). However, it turns out that such a property
is incompatible with the spectral properties that we would like
to have, and in particular it is incompatible with the ability of
the metric to localize a measure based on its statistics (cf.
Axiom iv)). This incompatibility is shown next.

Consider morphisms on M that correspond to processing
by a linear filter:

Fh : dµ 7→ |h|2dµ

for any h ∈ H∞. Here, h is thought of as the transfer function
of the filter, µ the power spectrum of the input, and |h|2dµ
the power spectrum of the output.

Proposition 1: Assume that δ(·, ·) is a weak∗ continuous
metric on M. Then there exists h ∈ H∞ such that Fh is not
contractive with respect to δ(·, ·).

Proof: We will prove the claim by showing that whenever
δ is a weak∗ continuous metric that satisfy Property i), we may
derive a contradiction. Denote by µt, t ≥ 0 the measure with a
unit mass in the point t and let ε = δ(dµ0, dµ0/2). By weak∗

continuity, there exists t0 > 0 such that δ(dµ0, dµt0) < ε/3.
Let h ∈ H∞ be such that |h(0)|2 = 1/2 and |h(t0)|2 = 1.
Then we have that

ε = δ(dµ0, dµ0/2) ≤ δ(dµ0, dµt0) + δ(dµt0 , dµ0/2)
= δ(dµ0, dµt0) + δ(|h|2µt0 , |h|2µ0)

≤ 2δ(dµ0, dµt0) <
2
3
ε.

Which is a contradiction, and hence the proposition holds.
It is important to point out that none of the above is

weak* continuous metrics. In particular, the metric in (4) is
impervious to spectral lines as only the absolutely continuous
part of the spectra play any role. Similarly, (2) and (3) cannot
localize distributions either, based on their moments, because
they also lack a needed weak* continuity. Thus, in this paper,
we follow a line of reasoning analogous to the axiomatic
framework of the Chentsov theorem, but for power spectra,
requiring the metric to satisfy Axioms i)-iv).

IV. THE MONGE-KANTOROVIC PROBLEM

A natural class of metrics on measures are transport metrics
based on the ideas of Monge and Kantorovic. The Monge-
Kantorovic distance represents a cost of moving a nonnegative
measure dµ0 ∈ M(X) to another nonnegative measure dµ1 ∈
M(X), given that there is an associated cost c(x, y) of moving
mass from the point x to the point y. The theory may be
formulated for rather general spaces X , but in this paper
we restrict our attention to compact metric spaces X . Every
possible way of moving the measure dµ0 to dµ1 corresponds
to a transference plan π ∈ M(X ×X), which satisfies

∫

y∈X

dπ(x, y) = dµ0 and
∫

x∈X

dπ(x, y) = dµ1,
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or more rigorously, that

π[A×X] = µ0(A) and π[X ×B] = µ1(B) (5)

whenever A, B ⊂ X are measurable. Such a plan exists only
if the measures dµ0 and dµ1 has the same mass, i.e. µ0(X) =
µ1(X). Denote by Π(dµ0, dµ1) the set of all such transference
plans, i.e.

Π(dµ0, dµ1) = {π ∈ M(X ×X) : (5) holds for all A, B} .

To each such transference plan, the associated cost is

I[π] =
∫

X×X

c(x, y)π(x, y)

and consequently, the minimal transportation cost is

Tc(dµ0, dµ1) := min {I(π) : π ∈ Π(dµ0, dµ1)} . (6)

The optimal transportation problem admits a dual formula-
tion, referred to as the Kantorovic duality (see [17]):

Theorem 2: Let c be a lower semi-continous (cost) function,
let

Φc := {(φ, ψ) ∈ L1(dµ0)×L1(dµ1) : φ(x)+ψ(y) ≤ c(x, y)},

and let

J (φ, ψ) =
∫

X

φdµ0 + ψdµ1.

Then

Tc(dµ0, dµ1) = sup
(φ,ψ)∈Φc

J (φ, ψ).

Lemma 3: Let c be a lower semi-continous (cost) function
with c(x, x) = 0 for x ∈ X . Then Adµa is contractive with
respect to Tc.

Proof: Contractiveness of Adµa follows from the dual
representation. Any pair (φ, ψ) ∈ Φc satisfies φ(x)+ψ(x) ≤ 0,
and hence

∫

X

φdµ0 + ψdµ1 ≥
∫

X

φdµ0 + ψdµ1 + (φ + ψ)dµa.

Monge-Kantorovic distances are not metrics, in general, but
they readily give rise to the so-called Wasserstein metrics. This
is explained next.

Theorem 4: Assume that the (cost) function c(·, ·) is of the
form c(x, y) = d(x, y)p where d is a metric and p ∈ (0,∞).
Then the Wasserstein distance

Wp(dµ0, dµ1) = Tc(dµ0, dµ1)min(1, 1
p )

is a metric and metrizes the weak∗ topology.
Proof: See [17], chapter 7. Note that since X is compact,

the weak∗ topology on M coincides with the weak topology.

V. METRICS BASED ON TRANSPORTATION

The Monge-Kantorovic theory deals with measures of equal
mass. As we have just seen, it provides metrics that have some
of the properties that we seek to satisfy. The purpose of this
section is to develop a metric based on similar principles, that
applies to measures of possibly unequal mass.

Given nonnegative measures dµ0 and dµ1 on I, we postulate
that these are perturbations of the two measures dν0 and dν1,
respectively, with equal mass. Then, the cost of transporting
dµ0 and dµ1 to one another can be thought of as the cost of
transporting dν0 and dν1 to one another plus the size of the
respective perturbations. Thus we define

T̃c,κ(dµ0, dµ1) := inf
ν0(I)=ν1(I)

Tc(dν0, dν1)+κ

2∑

i=1

dTV(dµi, dνi),

(7)
where κ is a suitable parameter that weighs the relative
contribution of perturbation and transportation. Define

c(x, y) = |(x− y)mod2π|p (8)

where (x)mod2π is the element in the equivalence class x+2πZ
which belongs to (−π, π]. The main result of the section is
the following theorem.

Theorem 5: Let κ > 0 and c(x, y) defined as in (8), where
p ∈ (0,∞). Then

δp,κ(dµ0, dµ1) :=
(
T̃c,κ(dµ0, dµ1)

)min(1, 1
p )

is a metric on M which satisfies Axiom i) - iv).
The proof uses the fact that (7) has an equivalent formu-

lation as a transportation problem, and a corresponding dual
stated below.

Theorem 6: Let c be a lower semi-continuous (cost) func-
tion, let

Φc,κ :=
{
(φ, ψ) ∈ L1(dµ0)× L1(dµ1) : φ(x) ≤ κ,

ψ(y) ≤ κ , φ(x) + ψ(y) ≤ c(x, y)
}
,

and let
J (φ, ψ) =

∫

I
φdµ0 + ψdµ1.

Then
T̃c,κ(dµ0, dµ1) = sup

(φ,ψ)∈Φc,κ

J (φ, ψ).

Proof: The problem (7) can be thought of as a trans-
portation problem on the set X = I ∪ {∞}, where a mass is
added at ∞ as needed to normalize the measures so that they
have equal mass, e.g.,

µ̂i(S) = µi(S) for S ⊂ I
µ̂i(∞) = M − µi(I)

for some M ≥ max{µi(I) : i = 1, 2}. Accordingly, the (cost)
function is modified as follows

ĉ(x, y) =





min(c(x, y), 2κ) for x, y ∈ I,
κ for x ∈ I, y = ∞,
κ for x = ∞, y ∈ I,
0 for x = ∞, y = ∞.

(9)
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Then T̃c,κ satisfies

T̃c,κ(dµ0, dµ1) = Tĉ(dµ̂0, dµ̂1), (10)

and is, according to Theorem 2, equal to the supremum of

Ĵ (φ, ψ) :=
∫

X

φdµ̂0 + ψdµ̂1

subject to

φ(x) + ψ(y) ≤ ĉ(x, y) for x, y ∈ I, (11)
φ(x) + ψ(∞) ≤ κ for x ∈ I, (12)
φ(∞) + ψ(y) ≤ κ for y ∈ I, (13)

φ(∞) + ψ(∞) ≤ 0. (14)

The result now follows if we can show that there is no
restriction to require φ(∞) = ψ(∞) = 0. This is since, Φc,κ

is essentially identical to the set

{(φ, ψ) : (11)− (14) hold and φ(∞) = ψ(∞) = 0},
of the extensions of (φ, ψ) that now has support at ∞ as well.

To show this, let (φ, ψ) be an arbitrary pair of functions
satisfying (11)-(14). Since additive scaling of (φ,−ψ) does
not change the constraints nor the value of Ĵ (φ, ψ), we may
assume that φ(∞) = 0. There are two cases that we need to
consider. If supx∈I φ(x) ≤ κ, then define

φ̂(x) = φ(x) for x ∈ X, ψ̂(x) =
{

ψ(x) x ∈ I
0 x = ∞,

and if supx∈I φ(x) = ε + κ > κ, then define

φ̂(x) =
{

φ(x)− ε x ∈ I
0 x = ∞ , ψ̂(x) =

{
ψ(x) + ε x ∈ I

0 x = ∞.

In both cases we have that Ĵ (φ, ψ) ≤ Ĵ (φ̂, ψ̂) as well as that
(φ̂, ψ̂) satisfies (11)-(14). In the second case, the constraint
(13) is not violated; ĉ(x, y) ≤ 2κ implies that supx∈I φ(x) +
supy∈I ψ(y) ≤ 2κ, and hence supy∈I ψ(y) ≤ κ− ε.

In both cases, from an arbitrary pair (φ, ψ), we have
constructed a pair (φ̂, ψ̂) for which the constraints (11)-(14)
hold, φ̂(∞) = ψ̂(∞) = 0 holds, and the value of Ĵ (φ, ψ) has
not decreased. Therefore we may without loss of generality
let φ(∞) = ψ(∞) = 0.

Lemma 7: Let c(x, y) be a function of |x − y|. Then for
any dµm ∈ M with

∫
I dµm ≤ 1, Mdµm is contractive on M

with respect to T̃c,κ.
Proof: Note that

∫

x∈I
φ(x)(dµm ∗ dµ0)(x)

=
∫

x∈I
φ(x)

∫

τ∈I
dµm(x− τ)dµ0(τ)

=
∫

τ∈I

(∫

x∈I
φ(x)dµm(x− τ)

)
dµ0(τ)

=
∫

τ∈I
(φ(x) ∗ dµm(−x))|τ dµ0(τ),

and denote

φm(τ) = φ(x) ∗ dµm(−x)|τ
ψm(τ) = ψ(x) ∗ dµm(−x)|τ .

From this, it follows that

J(dµm∗dµ0,dµm∗dµ1)(φ, ψ) = J(dµ0,dµ1)(φm, ψm),

where the subscript specifies the measures in the functional
J .

Let (φ, ψ) ∈ Φc,κ, then we have that

φ(x− τ) + ψ(y − τ) ≤ c(x− τ, y − τ),

and by integrating with respect to dµm(−τ) over τ ∈ I, we
arrive at

φm(x) + ψm(y) ≤ min(c(x− τ, y − τ), 2κ).

Furthermore, it is immediate that φ(x) ≤ κ and ψ(y) ≤ κ
implies that φm(x) ≤ κ and that ψm(y) ≤ κ, and hence
(φm, ψm) ∈ Φc,κ follows.

T̃c,κ(Mdµm
(dµ0),Mdµm

(dµ1))
= sup

(φ,ψ)∈Ψc,κ

J(dµm∗dµ0,dµm∗dµ1)(φ, ψ)

= sup
(φ,ψ)∈Ψc,κ

J(dµ0,dµ1)(φm, ψm)

≤ sup
(φ,ψ)∈Ψc,κ

J(dµ0,dµ1)(φ, ψ)

= T̃c,κ(dµ0, dµ1)

Now we summarize the proof of the main theorem.
Proof: [Proof of Theorem 5]: From the formulation (10),
T̃c,κ can be viewed as a transportation problem. Since the
associated cost function ĉ from (9) is of the form dp, where
d is a metric, Axiom i) and Axiom iv) follows from Theorem
4. From this formulation, Axiom ii) follows from Lemma 3.
Finally Axiom iii) follows from Lemma 7.

Remark 8: It is interesting to note that for the case p = 1

δ1,κ(dµ0, dµ1) = max
‖g‖ ≤ κ
‖g‖L ≤ 1

∫
g(dµ0 − dµ1),

where ‖f‖L = sup |f(x)−f(y)|
|x−y| the Lipschitz norm. Further-

more, in general, for any p,

1
κ

δ1,κ(dµ0, dµ1) → dTV(dµ0, dµ1) as κ → 0.

VI. CONCLUDING REMARKS

This work relates to a quantitative theory for spectral
uncertainty. Our aim has been to identify natural notions of
distance that allow localization of power spectra based on
estimated statistics and, at the same time, share certain natural
properties with regard to how noise affects distance between
power spectra. We have presented an axiomatic framework
that attempts to capture these intuitive notions and we have
developed a family of metrics that satisfy the requirements.

While there are many possibilities for developing metrics
with the required properties, we have chosen to base our
approach on the concept of transportation. The reasons is
that the resulting metrics have certain additional desirable
properties which related to the deformations of spectra. More
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specifically, from experience, it appears that geodesics (in
e.g., the Wasserstein 2-metric) preserve “lumpiness.” A con-
sequence is that, when linking power spectra of two similar
speech sounds via such geodesics, the corresponding formants
are “matched” and the power transfers accordingly. It will
be interesting to expand the set of axioms to include such
desirable properties, which in turn may narrow down the
possible choices of metrics.

Finally, we wish to comment on the need for analogous
metrics for comparing multivariable spectra. The ability to
localize matricial power spectra is of great significance in
system identification, as for instance, in identification based
on joint statistics of the input and output processes of a system
(see [10]).
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