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ABSTRACT

In recent years, there have been tremendous efforts to
elucidate the complex mechanisms of cancer networks by
investigating the interactions of different genetic and epige-
netic factors. Mathematical tools can help significantly with
overcoming many of these challenges and can facilitate bet-
ter understanding of the complexities of the corresponding
networks. This has lead to the emergence of the field of
network and systems biology. The formal models employed in
biological networks range from graphs as abstract representa-
tions of pairwise interactions to complicated systems of partial
differential equations that try to capture all details of biological
interactions. Therefore, the mathematical methods and tools
employed in networks are quite diverse and heterogeneous. We
propose an integrative framework to identify genetic features
related to cancer networks and to distinguish them from
the normal tissue networks by geometrical analysis of the
networks provided by The Cancer Genome Atlas (TCGA) data.
Our study is based on the analogous notion of fundamental
concepts in Riemannian geometry, namely Ricci curvature, on
discrete spaces.

I. INTRODUCTION

This paper describes a number of facts about graph curvature
and its relation to functional network robustness with applica-
tions to studying mechanisms of robustness in cancer. Essen-
tially, it gives all the background material for understanding
[33] while proposing another notion of graph curvature valid
for graphs with negative weights [23], [42].

Cancer cells exhibit extensive mutational heterogeneity, and
subsequent elaborate protein interactions complicate the dis-
covery and understanding of involved genes and pathways. In
recent years, there have been tremendous efforts to elucidate
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the complex mechanisms of cancer networks by investigating
the interactions of different genetic and epigenetic factors.
Mathematical tools can help significantly with overcoming
many of the these challenges and can facilitate a better
understanding of the complexities of their networks. This has
led to the emergence of the field of network and systems
biology. The formal models employed in biological networks
range from graphs as abstract representations of pairwise
interactions to complicated systems of partial differential equa-
tions that try to capture all details of biological interactions.
Therefore, the mathematical methods and tools employed in
networks are quite diverse and heterogeneous. Furthermore,
recent decades have witnessed the thriving development of
new mathematical, computational and theoretical approaches
to tackle fundamental issues in network analysis. We have
proposed an integrative framework to identify genetic features
related to cancer networks and to distinguish them from the
normal tissue networks by geometrical analysis of the networks
provided by The Cancer Genome Atlas (TCGA) data.

Our study is based on the analogous notion of fundamental
concepts in Riemannian geometry, namely Ricci curvature,
on discrete spaces. The concept of curvature was initially
introduced to express the deviation of a geometric object
from being flat. The Riemann curvature tensor of such a
manifold encodes its geometric invariants and expresses the
deviation from Euclidean, that is, flat space. In Riemannian
geometry, sectional curvature is defined on two-dimensional
tangent planes and it expresses the convexity property of the
distance function between geodesics. The essential notion of
Ricci curvature is the average of sectional curvatures of all
tangent planes with some given direction. One important aspect
of Ricci curvature is that it can control the eigenvalues of the
Laplace-Beltrami operator [13].

Recently, several different notions of curvature have been
proposed applicable to more general metric spaces, and various
notions of generalized sectional curvature inequalities were
proposed. The one that we are interested in here is the Γ2-
calculus of Bakry-Émery. In their paper published in 1985 [3],
Bakry and Émery suggested a notion analogous to curvature
in the very general framework of a Markov semigroup. The
condition was based on the Bochner inequality with curvature-
dimension condition of (K,N), denoted by CD(K,N). These
attempts lead us to define the notions of curvature on discrete
structures like graphs. In fact, graphs are ideally suited for
explaining the meaning of curvature and the appeal of this dis-
crete feature is that it is fairly straightforward to be computed



on graphs in many cases. There have been several efforts to
define the notion of Ricci curvature on discrete spaces [25] [34]
[28] [15] . Previously, among these definitions of generalized
Ricci curvature, we applied the one of Ollivier [28] on graphs,
[33]. We showed that the Olivier-Ricci curvature can be useful
to differentiate the cancer networks from normal ones. In this
paper, we apply a notion of curvature based on Bakry-Émery
theory [3] to weighted graphs following the approach of [23].
Also, of note is that this discrete version of Ricci curvature
does not limit us to graphs with only positive weights, which
was the case with our previous work in [33]. Here, we can
define the curvature on graphs of positive/negative weights
as long as we have negative semi-definite Laplacian. The
criteria that guaranteed the negative semi-definiteness of graph
Laplacian is provided in a work by [42] which we briefly
review in section (V).

The other subject of interest is the theory of optimal mass
transport and its relationship with Riemannian geometry, in
particular Ricci curvature. In the Riemannian context, the L2-
Wasserstein distance is well-adapted to the study of Ricci
curvature. We study an alternative definition of Wasserstein
suggested by Benamou and Brenier [5] on the space of density
probability. This leads us to discover the geodesics in the
Riemannian probability spaces as the L2-Wasserstein distance.

Finally, considering this Riemannian structure, via the
Bochner formula we can show that there is a positive correla-
tion between changing of the entropy and the Ricci curvature.
In conjunction with the Fluctuation Theorem [12], we conclude
that increasing the Ricci curvature is positively correlated with
increasing the robustness, herein expressed as ∆Ric×∆R ≥ 0.
An appealing feature of this correlation is that we can quantify
the difference between normal and cancer networks by a
fairly straightforward computation of the Bakry-Émery-Ricci
curvature on the networks.

II. WASSERSTEIN DISTANCE AND RIEMANNIAN

GEOMETRY

Before describing the results on graphs, we will review
the necessary literature on manifolds. Accordingly, let M
be a Riemmannian manifold equipped with volume element
dvol(M).

A. The Monge-Kantrovich Problem

The first optimal transport problem was proposed by Monge
in the 1780’s, a civil engineering problem which asks for the
minimal transportation cost to move a pile of soil (“déblais”)
to an excavation (“remblais”). The places where the soil should
be extracted, and the ones which should be filled, are all
known. A more modern form of the problem introduced by
Kantorovich in 1940’s yields the so-called Monge-Kantrovich
problem (MKP). The framework of the problem is as follows.

Let (X,µ) and (Y, ν) be two probability spaces and Π(µ, ν)
denotes the set of all joint probability measures on X × Y
whose marginals are µ and ν. The optimal transport cost sug-
gested by Kantorovich was the following linear programming

problem:

minimize
∫
c(x, y) dπ(x, y) over allπ ∈ Π(µ, ν).

where c(x, y) is the cost for transporting one unit of mass from
x to y. The cost function was originally defined in a distance
form on a metric space (X, d). This leads us to the following
distance function know as Lp Wasserstein:

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)pdπ(x, y)
)1/p

,

Two exponents of p = 1 and p = 2 are particularly
interesting. The L1-Wasserstein distance is also known as the
Kantorovich-Rubinstein distance, or Earth Mover’s distance
among computer scientists. In [29], Ollivier used the L1-
Wasserstein distance to define the (Ollivier-)Ricci curvature.
We used this curvature in [33] to differentiate the cancer
networks from normal tissue networks. In this paper we focus
on the case p = 2. The L2-Wasserstein distance has some very
remarkable properties and can be related to fluid mechanics;
the research is based on the work of Yann Brenier which was
published in [5]. In this paper, Benamou and Brenier suggested
the following alternative numerical method to calculate the L2-
Wasserstein distance:

W2(µ0, µ1) =
(

inf
µ,v

∫ ∫ 1

0

µ(t, x)|v(x, t)|2dxdt
)1/2

, (1)

subject to the continuity equation (conservation of mass for-
mula):

∂µ

∂t
+∇ · (µv) = 0 (2)

with the initial and final conditions:

µ(0, .) = µ0, µ(1, .) = µ1. (3)

Here µ(t, x) is the density of a system of particles and v(x, t)
is the velocity field at time t and position x; ∇· stands for the
divergence operator.
The functional in (1) is the kinetic energy and it turns out that
the optimal conditions satisfy:

v(t, x) = ∇g(t, x),

where g is the Lagrange multiplier of constraints (2) and (3).
Also, the Hamilton-Jacobi equation holds for this optimal g:

∂g

∂t
+

1

2
||∇g||2 = 0. (4)

B. Riemannian Structure on Probability Densities

The Wasserstein distance defines a natural Riemannian
structure on the space of probability measures, and this struc-
ture is essential in explicating the relationship of entropy and
curvature [25] that we will sketch in Section VII-A.

Define

P := {µ ≥ 0 :

∫
µ dvol(M) = 1},

the space of probability densities. The tangent space at a given
point µ may be identified with

TµP ∼= {u :

∫
u dvol(M) = 0}.
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Thus inspired by the Benamou and Brenier [5], given two
“points”, µ0, µ1 ∈ P , the geodesic (Wasserstein) distance is:

inf
µ,g
{
∫ ∫ 1

0

µ(t, x)‖∇g(t, x)‖2 dt dvol(M)

subject to
∂µ

∂t
+ div(µ∇g) = 0,

µ(0, ·) = µ0, µ(1, ·) = µ1} (5)

In other words, we look at all curves in P connecting µ0 and
µ1, and take the shortest one with respect to the Wasserstein
metric.

This leads us to give P a Riemannian structure, which
will induce this Wasserstein distance. This idea is due to
Jordan et al. [21], [38]. Namely, under suitable assumptions
on differentiability for µ ∈ P , and u ∈ TµP , one solves the
Poisson equation

u = −div(µ∇g). (6)

This allows us to identify the tangent space with functions up
to an additive constant. Thus, for any given u we denote the
solution of (6) by gu. Then given, u1, u2 ∈ TµD, we can
define the inner product

〈u1, u2〉W2 :=

∫
∇gu1 · ∇gu2µ dvol(M), (7)

which imposes a Riemannian metric on the probability mea-
sure space P (X). Using integration by parts, we can see
this inner product will induce exactly the Wasserstein distance
defined by (5). We also have

〈u, u〉W2 =

∫
µ∇gu · ∇gu dvol(M)

= −
∫
gudiv(µ∇gu) dvol(M)

=

∫
u gu dvol(M). (8)

We note finally that the optimal g in the above optimization
problem satisfies the Hamilton-Jacobi equation:

∂g

∂t
+

1

2
‖∇g‖2 = 0. (9)

We also have the continuity equation:

∂µ

∂t
+ div(µ∇g) = 0, (10)

with boundary conditions

µ(0, ·) = µ0, µ(1, ·) = µ1.

Thus with these conditions, µt(x) = µ(t, x) defines a geodesic
in the Wasserstein sense on P(M). Further, the tangent vector
along the geodesic µt at µ0 is exactly

u :=
∂µ

∂t
|t=0. (11)

III. BAKRY-ÉMERY AND BOCHNER

We now review the Bochner formula [38] and Bakry-Émery
curvature [3]. We begin with the Bochner formula. Since this
is local, it is sufficient to review the notions in Euclidean
space. One of the ideas of Bakry-Émery [3] is to formulate
the Bochner formula through the Γ calculus that we sketch as
well now.

Let ∆ denote the Laplacian. Following [3], we define

Γ(f, g) := 1/2[∆(fg)− f∆g − g∆f ].

Therefore,
Γ(f, f) = 1/2[∆f2 − 2f∆f ].

It is easy to compute that

∆f2 = 2[f∆f + ‖∇f‖2].

Therefore, Γ(f, f) = ‖∇f‖2. Again following Bakry-Émery
[3], we iterate the above operation as follows:

Γ2(f, g) := 1/2[∆(Γ(f, g))− Γ(f,∆g)− Γ(g,∆f)],

and a simple calculation shows that

Γ2(f, f) = −∇f · ∇∆f + 1/2∆‖∇f‖2.

Recall the following argument in the continuous case on an
n-dimensional manifold via the classical Bochner formula:

−∇f · ∇∆f +
1

2
∆‖∇f‖2 = ‖∇2f‖2 +Ric(∇f),

where ∇2 denotes the Hessian operator. Now applying the
Cauchy-Schwartz inequality implies that

−∇f · ∇∆f +
1

2
∆‖∇f‖2 ≥ (∆f)2/N + k‖∇f‖2

if n ≤ N and k ≥ Ric. This is the C(k,N) criterion of
Bakry-Emery. Taking N =∞, we get

−∇f · ∇∆f +
1

2
∆‖∇f‖2 ≥ k‖∇f‖2. (12)

This motivates (15) to be given below.

IV. LAPLACIAN OF GRAPHS

Let G = (V,E) be an undirected graph with positive and
possibly negative weights. In order to define curvature in the
Bakry-Émery sense [3], one needs to ensure the the associated
combinatorial graph Laplacian LG is non-negative definite.
Necessary and sufficient conditions for this have been given
in [42]. We briefly review the necessary theory in the present
section.

Let G = (V,E) be a weighted graph with n vertices
(nodes). We always assume that the graph is connected. We
set

dx =
∑
y

wxy

µx(y) :=
wxy
dx

,

the sum taken over all neighbors of x where wxy denotes the
weight of an edge connecting x and y (it is taken as zero
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if there is no connecting edge between x and y). Note that
since the graph is undirected we have that wxy = wyx. We
let W = (wxy)1≤x,y≤n be the matrix of weights, and D be
the diagonal matrix with entries dx. Then the (combinatorial)
Laplacian matrix is defined as

LG := −(D −W ).

If all the weights are positive, then via the Gershgorin Circle
Theorem, LG is negative semi-definite. In the more general
case under consideration here, that under the assumption that
G has no cycles with negative weights, the necessary and
sufficient condition is the absolute values of the weights are
bounded by the entries of the resistivity matrix on the positive
part of the graph.

V. POSITIVE SEMI-DEFINITENESS OF GRAPH LAPLACIANS

Here, we review the necessary and sufficient conditions for
the combinatorial Laplacian matrix LG to be positive semi-
definite. As we discussed before, this is equivalent to the
negative semi-definiteness of our Laplacian matrix LG. From
electric circuit analysis, the graph G can be interpreted as
an electrical network where each edge represents a resistor
with resistance equal to the reciprocal of its edge weight. The
effective resistance across any two nodes x, y ∈ V is given by

Rxy(G) = eTxyL†exy

where L† is the Moore-Penrose pseudo inverse of L and exy ∈
R|E| denotes the column vector with a “1” in the x-th position,
a “-1” in the y-th position and zeros everywhere else [24].

When G has negative edge weights, both the magnitude of
these weights and the respective location of their associated
edges affect the positive semi-definiteness of the Laplacian
matrix. For simplicity, we follow the notation of [42] and
separate the positive and negative parts of the graph into
G+ = (V,E+) and G− = (V,E−) where E+ and E−
denote the set of edges with positive and negative weights,
respectively. Clearly, G = G+ ∪G−.

Now we assume that G+ is connected and require that no
cycle in G contains two distinct edges with negative weights.
Under this cyclic condition, we have the following theorem:

Theorem: Given a connected graph G = (V,E)
satisfying the conditions above, the combinatorial Laplacian,
LG = D − W , is positive semidefinite if and only if the
absolute value of each negative weight is bounded by its
effective resistance over the positive part of the graph, i.e.
|wxy| ≤ R−1

xy (G+) for all (x, y) ∈ E−.

Two proofs to the above theorem are provided in [9]. This
theorem helps us to identify the networks with negative semi-
definite Laplacians, LG, for which we will define the discrete
Ricci curvature.

VI. BAKRY-ÉMERY RICCI CURVATURE OF WEIGHTED

GRAPHS

We will assume that all of the graphs under consideration
have negative semidefinite Laplacians. Using the intuition of

[3], the authors of [23] give a notion of curvature on graphs
that is easily computable. Indeed, following [23] and using the
Γ calculus of [3], we define the following bilinear operators
for functions f, g : V → R and x ∈ V :

Γ(f, g)(x) := 1/2[LG(f · g)(x) (13)

− f(x)LGg(x)− g(x)LGf(x)],

Γ2(f, g)(x) := 1/2[LG(Γ(f, g)(x)) (14)

− Γ(f,LGg)(x)− Γ(g,LGf)(x)].

Γ2 is the Ricci curvature form on G.
Note from the former expression that

LG(f · g)(x) = f(x)LGg(x) + 2Γ(f, g)(x) + g(x)LGf(x)].

Set Γ(f) := Γ(f, f). Then following the logic of the Bochner
formula [23], we define the local graph Bakry-Émery-Ricci
curvature as the maximum value of k(x) such that

Γ2(f)(x) ≥ k(x)Γ(f)(x), ∀f, (15)

where x ∈ V.
The preceding discussion only makes sense if Γ is non-

negative definite at x. For graphs with negative weights, one
must take a more global approach since at nodes with negative
weights, this will not hold. More precisely, given f : V → R,
we have that Γ(f) : V → R, given by

Γ(f)(x) =
∑
y∼x

wxy(f(x)− f(y))2.

Note that as is standard,

f ′LGf = −1/2
∑
xy

wxy(f(x)− f(y))2,

where the sum is taken over all edges xy. These formulas
are correct for any combinatorial Laplacian for any undirected
graph with negative or positive weights. Assuming that the
Zelazo conditions [42] hold, f ′LGf is always non-negative.
For given x ∈ V , we have defined the local graph Ricci
curvature as the maximum value of k(x) such that

Γ2(f)(x) ≥ k(x)Γ(f)(x), ∀f,

where x ∈ V. This will only be applicable if∑
y∼x

wxy(f(x)− f(y))2 ≥ 0, ∀f. (16)

Unfortunately, this inequality cannot be guaranteed if wxyo <
0 for some adjacent yo. Indeed, we can take a function f such
that f(x) = f(y) = 0 for y 6= yo and f(yo) 6= 0.

Accordingly, we need to use a global notion of Ricci
curvature taken as follows: we simply take the maximum k
such that ∑

x∈V

Γ2(f)(x) ≥ k
∑
x∈V

Γ(f)(x), ∀f.

(This is really summing over all edges modulo a factor of
1/2 since each edge is counted twice in the summation.) We
will call this k the global graph Bakry-Émery-Ricci (BER)
curvature. BER will always refer to the global notion that is
well-defined whenever LG is non-negative definite.

4



VII. CURVATURE, ENTROPY, AND ROBUSTNESS

In this section, we draw an interesting relationship between
the BER Curvature defined in section (VI), Boltzman entropy
and robustness. The idea is similar to the one we have used in
[33]. Here, robustness is defined as the ability of a system
to functionally adapt to changes in the environment. First,
we implement the classical Bochner formula once again to
establish a relationship between entropy and curvature. Then,
in section (VII-B) we review the Fluctuation Theorem [12]
which leads us to the correlation between entropy and robust-
ness. Finally, we conclude that there is a positive correlation
between entropy and curvature; this can help us to distinguish
the more robust networks, namely, the cancer networks from
the normal networks.

A. Entropy and Bochner

As noted by Lott-Villani [25], curvature and entropy are
very closely related using the Riemannian structure described
in Section II-B. We sketch this relationship now.

Define
H(µt) :=

∫
M

µt logµt dvol(M), (17)

which is the negative of the classical Boltzmann-Shannon
entropy functional S(µt) := −H(µt).

We consider the Hessian operator ∇2H(µ) : TµP → TµP
on the Riemannian manifold P (M). We compute first the
second derivative of H along along a geodesic path in P (M),
namely: we have that

d2

dt2
H(µt)|t=0 =

d

dt
〈∇H(µt), u〉W2

= 〈∇u∇H(µt), u〉W2 + 〈∇H(µt),∇uu〉W2

= 〈∇2H(µt) · u, u〉W2 .

since ∇uu = 0 (∇u is the covariant derivative in the direction
u). Here u := ∂µt

∂t
|t=0.

Next straightforward computation gives

d2

dt2
H(µt) = −

∫
M

∇g · ∇∆g +
1

2
∆(‖∇g‖2)µt dvol(M)

(18)
where µt and g = gu satisfy equations (9) and (10) above (µt
is the geodesic path). Now we invoke Bochner:

〈∇2H(µt) · u, u〉W2 (19)

=

∫
M

‖∇2gu‖2 + Ric(∇gu,∇gu)µ0 dvol(M).

Assume Ric ≥ kI as quadratic forms on the manifold M .
Then from equation (19), ∇2H is k-convex with respect to
〈·〉W2 . Thus, we recover the fact from [25] that

H(µt) ≤ tH(µ0) + (1− t)H(µ1)− k

2
t(1− t)W2(µ0, µ1)2.

Therefore, the above inequality indicates the positive correla-
tion between entropy and curvature which we express as:

∆S ×∆Ric ≥ 0 (20)

B. Fluctuation Theorem

One can understand the Fluctuation Theorem [12] as fol-
lows. Recall that if pε(t) denotes the probability that the mean
deviates by more than ε from the original (unperturbed) value
at time t, then

R := lim
t→∞,ε→0

(−1

t
log pε(t)).

On the other hand, evolutionary entropy S may be character-
ized in this setting as

S := lim
t→∞,ε→0

(
1

t
log qε(t)),

where qε(t) denotes the minimal number of genealogies of
length t whose total probability exceeds 1−ε. Thus the greater
the qε(t), the smaller the pε(t) and so the larger the decay
rate. The Fluctuation Theorem is an expression of this fact for
networks, and can be expressed as

∆S ×∆R ≥ 0, (21)

Considering (20) and (21), we conclude that changes in ro-
bustness (∆R) are also positively correlated with the network
curvature, i.e:

∆R×∆Ric ≥ 0. (22)

According to the work done in [12] and [40], it seems
that in many cases the normal protein interaction networks
possess a lower entropy than their cancerous analogues; hence
they are less robust. This could be justified as the ability of
oncoproteins to better respond to the changes in the cellular
environment due to their disorganized arrangement which leads
to possession of higher degrees of freedom. Since the curvature
is positively correlated to the robustness of networks and easier
to compute, it can help in quantifying the robustness in terms
of the adaptability of networks.

VIII. RESULTS

As we discussed before, our interest is in calculating the
BER curvature at global and local scales. In this section, we
apply BER curvature to certain cancer networks to differentiate
them from normal tissue networks. In particular, our results
illustrate that cancer networks exhibits a greater degree of
functional robustness compared to the normal tissue networks
[12], [33], [40].

A. Description of Data Sets

We have studied seven transcription networks composed
of cancer specific genes provided by Memorial Sloan Ket-
tering Cancer Center. The data consists of correlation values
of gene-to-gene expression in cancerous and normal tissues
which were computed across all samples within a given
phenotype. The network is constructed using these correlation
values as weights of the graph and the adjacency matrix
of the graph is given by the underlying biological gene-to-
gene interactions. Our TCGA data includes approximately 500
cancer-related genes of seven different tumor types: breast
invasive carcinoma [BRCA], head and neck squamous cell
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carcinoma [HNSC], kidney renal papillary cell carcinoma
[KIRP], liver hepatocellular carcinoma [LIHC], lung adeno-
carcinoma [LUAD], prostate adenocarcinoma [PRAD], and
thyroid carcinoma [THCA].

B. Local BER Curvature of Transcription Networks

In Table I we present the difference (cancer-normal) in aver-
age local graph BER curvature of each TCGA data. As shown
in the table, the average difference between cancer and normal
tissue distribution is always positive. Therefore, the average
local BER curvature in all seven cancer networks of our study
possess a higher value than the normal corresponding tissue.
Of note is that these results are consistent with our previous
work in [33] where the average Ollivier-Ricci curvature was
greater for the cancer networks compared to the normal one.

Cancer Type ∆ Average
Local BER
Curvature

Breast Carcinoma 0.1823
Head/Neck Carcinoma 0.1164
Kidney Carcinoma 0.2171
Liver Carcinoma 0.2272
Lung Adenocarcinoma 0.3202
Prostate Adenocarcinoma 0.1789
Thyroid Carcinoma 0.1328

TABLE I
LOCAL BER CURVATURES DEMONSTRATE A HIGHER ROBUSTNESS

OF THE CANCER NETWORKS WITH RESPECT TO THE NORMAL

TISSUE NETWORKS.

Additionally, since the local BER curvature measures the
curvature at the nodal level, it can illuminate the genes with
the most contribution to the robustness of the cancer network,
as illustrated by Figure 1. To this end, we also provide the top
twenty genes sorted with respect to the local BER curvature
of breast carcinoma and lung adenocarcinoma in Table II and
Table III, respectively.

1) Top twenty ranked genes in breast carcinoma: Taking a
closer look at Table II, it is interesting to notice relationships
among the top twenty genes and to consider their possible
implications with respect to robustness of the breast cancer
network. For instance, PIK3CA encodes the p110α protein, a
catalytic subunit of the PI3K (phosphatidylinositol 3-kinase)
enzyme and has been found to exhibit a 25% mutation rate
in breast cancer thereby making it the most regularly mutated
constituent [26]. AKT1 encodes AKT1 kinases which are in-
volved in many signaling pathways, it is a downstream effector
of PI3K, and is over-expressed in breast cancer as well [11].
Considering PIK3CA and AKT1 were both ranked among the
top twenty genes seems suggestive of the PI3K/Akt signaling
pathway’s significance in regards to cancer robustness. In fact,
the PI3K/Akt signaling pathway regulates many cell functions
necessary for tumorigenesis and cancer survival such as cell
growth, proliferation and apoptosis. We also notice that the
MAP2K1 gene encodes for the protein kinase MEK1 which

is involved in the MAPK/ERK pathway, also known as the
MEK/ERK pathway. PTPN11 codes for SHP2 (Src-homology
2 domain-containing phosphatase), a known drug target in
breast cancer and is required to fully activate the MAPK/ERK
pathway [1]. This pathway is a signal transduction pathway
involved in the promotion of cell survival, proliferation, and
metastasis. Stimulation of growth-factor receptors such as
EGFR, (also ranked among the top twenty genes), initiate
downstream activation of the MAPK/ERK pathway. This
pathway is also found to be excessively activated in many
cancers including breast and lung cancer, among others, and
is often caused by upstream activation from overly-expressed
or aberrantly activated cell surface receptors (such as EGFR).
[32] Intuitively, it makes sense that the cascading effects
of mutations and abnormal activity through these pathways,
which are imperative for cancer cell growth and survival,
would be favorable in regards to the robustness of the network
so it is not surprising that we find such functional relationships
among the top ranked genes.

(a) ∆ Curvature
(Cancer-Normal)

(b) Curvature (Normal) (c) Curvature (Cancer)

Fig. 1. Breast Carcinoma network visualization: In the above
illustrations, each node represents a single gene. The color of each
node remains the same in each of the figures 1(a), 1(b), 1(c) and is
assigned by the difference in its local graph BER curvature (Cancer-
Normal). The top twenty ranked genes are labelled and shown in red-
orange colors. The only differences between the above illustrations
are in the sizes of the nodes. In figure 1(a), the size of each node is
scaled in the same way as its color, by the difference in its local graph
BER curvature (Cancer-Normal). This is shown to highlight the top
genes contributing to breast cancer network robustness. Figure 1(b)
shows node sizes scaled by their local graph BER curvature in normal
tissues and figure 1(c) shows node sizes scaled by their local graph
BER curvature in cancerous tissues. Comparing figures 1(b) and 1(c),
we see a dramatic change in the curvature of the top twenty ranked
genes, where they go from demonstrating low curvature in normal
tissues to demonstrating high curvature in cancerous tissues, relative
to the other genes.

2) Top twenty ranked genes in lung adenocarcinoma: With
regards to local BER curvature for lung cancer, we chose
to highlight three genes from Table III, CDK4, NPM1, and
Rac1. The CDK4 protein, encoded by the CDK4 gene, plays
an important role in the cell cycle, particularly during the G1
phase. The role it plays as a significant cancer-related gene
is becoming more and more clear, as its function is to drive
cell-cycle progression by phosphorylating the retinoblastoma
protein. Overexpression of CDK4 has been described in many
tumors, including lung cancer [41]. NPM1 is an important
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gene to consider with regards to human tumorigenesis and
is frequently overexpressed in solid tumors of a diverse his-
tological origin. Depending on its expression levels and gene
dosage, NPM appears to function either as an oncogene or
a tumour suppressor. Either partial functional loss or aberrant
overexpression could lead to neoplastic transformation through
distinct mechanisms. In fact, the loss of 5q35 (where NPM1
resides) is also observed in non-small-cell lung carcinoma
including lung adenocarcinoma. Therefore, loss of the 5q
chromosomal region could ensue genomic instability in these
tumors, which could in turn favor tumor progression [19].
Rac1 is an important GTPase, encoded by the Rac1 gene
that has been implicated in many cellular processes including
transcriptional activation, cytoskeleton rearrangement, and cell
adhesion. Furthermore, it is thought to play a role in cancer
cell migration, invasion, and metastasis. Rac1 overexpression
has been found in various cancers including lung adenocarci-
noma. Interestingly, Rac1 overexpression also appears to be an
independent predictor of adverse outcome of these carcinomas
[7].

Gene
Rank

Top 20 Genes ∆ Curvature (Cancer-
Normal)

1 PICALM 7.4910
2 CLTCL1 4.9102
3 EPS15 4.3210
4 KIF5B 4.1284
5 CLTC 4.0657
6 PTPN11 4.0465
7 YWHAE 3.8416
8 EGFR 3.8357
9 JAK1 3.7590
10 MSN 3.6079
11 CDC73 3.5274
12 PIK3CA 3.4499
13 XPO1 3.4274
14 ALDH2 3.3854
15 SDHB 3.2626
16 GNAS 3.1372
17 AKT1 3.1279
18 MAP2K1 3.0754
19 CBL 3.0287
20 PML 3.0043

TABLE II
THE TOP 20 GENES WITH RESPECT TO LOCAL BER CURVATURE

FOR BREAST CARCINOMA.

C. Global BER Curvature of Transcription Networks

We also calculate the global BER curvature for the cancer
and normal networks as a whole. Since the average local
curvature (Table I) is not the optimal statistic of the networks,
the global BER curvature could better justify the higher
robustness of the cancer network with respect to the normal
network. Table IV shows five cancer networks which have a
higher global curvature than their corresponding normal ones.
As discussed before, this differentiates the cancer networks
with greater robustness compared to the normal network.

Gene
Rank

top 20 Genes ∆ Curvature (Cancer-
Normal)

1 CDK4 4.5675
2 PP2R1A 4.3991
3 NPM1 4.3766
4 MAP2K2 4.2263
5 SMARCE1 3.7553
6 YWHAE 3.6548
7 RPN1 3.4337
8 NONO 3.2941
9 XPO1 3.0835
10 H3F3A 3.0566
11 RAD21 2.9930
12 RAC1 2.8890
13 CDC73 2.8444
14 MSH2 2.8199
15 SYK 2.7858
16 LCK 2.7803
17 SET 2.5233
18 CALR 2.3671
19 RPL22 2.3658
20 HMGA1 2.3211

TABLE III
THE TOP 20 GENES WITH RESPECT TO LOCAL BER CURVATURE

FOR LUNG ADENOCARCINOMA.

Cancer Type ∆ Global BER
Curvature

Breast Carcinoma 1.3881
Head/Neck Carcinoma 0.7689
Liver Carcinoma 6.0827
Lung Adenocarcinoma 6.0637
Thyroid Carcinoma 0.8727

TABLE IV
GLOBAL BER CURVATURES ILLUSTRATE THAT THE CANCER

NETWORK AS A WHOLE EXHIBITS GREATER ROBUSTNESS THAN ITS

CORRESPONDING NORMAL NETWORK.

IX. CONCLUSIONS AND FURTHER RESEARCH

Our definition of BER curvature has consistently demon-
strated that cancerous networks characteristically exhibit
higher curvature than non-cancerous networks, both globally
and locally. More importantly, this characteristic is not lost
when considering networks with positive and negative edge
weights. As a result of the Fluctuation Theorem discussed
above, BER curvature provides a way to quantify robustness
of the entire network as well as the robustness of a particular
gene. Such a tool has the potential to elucidate unknown
key roles of proteins, suggest new promising drug targets,
measure the efficacy of certain therapies and help prevent drug-
resistance. While we have not yet verified that BER curvature
has these capabilities, our findings are encouraging.

An immediate next step would be to repeat this study on
larger networks, using TCGA data consisting of both cancer
and non-cancer-related genes. Ranking the nodes by their
BER curvature, we would expect to find the cancer-related
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genes clustered at the top of the list and the non-cancer-
related genes clustered at the bottom. This would provide
additional support for our definition of BER curvature and any
unexpected rankings could possibly provide some new insight.

A closely related idea for future work is to construct a
directed Laplacian that is consistent with our methods thus far
and also allows defining the local graph Ricci curvature for
nodes connected to edges with negative weights. This would
alleviate the limitation of using the combinatorial Laplacian as
defined above, which is obviated by inequality (16) in section
(VI).
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1

[14] H. Ebi, et al., “PI3K regulates MEK/ERK signaling in breast
cancer via the Rac-GEF, P-Rex1,” Proceedings of the National
Academy of Sciences 110(52) (2013), pp. 21124-21129.

[15] M. Erbar, J. Maas, and P. Tetali. “Discrete Ricci curvature bounds
for Bernoulli-Laplace and random transposition models,” Arch.
Ration. Mech. Anal. 206 (3) (2012), pp. 997-1038. 2

[16] L. C. Evans, “Partial differential equations and Monge–
Kantorovich mass transfer, ” Current Developments in Mathe-
matics, International Press, Boston, MA, (1999) pp. 65-126.

[17] W. Gangbo and R. McCann, “The geometry of optimal trans-
portation,” Acta Math. 177 (1996), pp. 113-161.

[18] C. Givens and R. Shortt, “A class of Wasserstein metrics for
probability distributions,” Michigan Mathematical Journal. 31
(1984), pp. 231-240.

[19] S. Grisendi, C. Mecucci, B. Falini, PP. Pandolfi, “Nucleophosmin
and cancer”, Nature Reviews Cancer 6 (2006), pp. 493-505. 7

[20] L. V. Kantorovich,“On a problem of Monge,” Uspekhi Mat.
Nauk. 3 (1948), pp. 225-226.

[21] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formu-
lation of the Fokker-Planck equation,” SIAM J. Math. Anal. 29
(1998), pp. 1-17. 3

[22] J. Jost, Riemannian geometry and geometric analysis, 3rd ed.,
Universitext, Springer-Verlag, Berlin, (2002)

[23] B. Klartag, G. Kozma, P. Ralli, and P. Tetali, “Discrete curvature
and abelian groups,” http://arxiv.org/abs/1501.00516 (2015) 1, 2,
4
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