SUBMITTED TO THE IEEE TRANS. ON AUTOMATIC CONTROL

The structure of state covariances
and 1its relation to
the power spectrum of the input

Tryphon T.

Abstract—

We study the relationship between power spectra of sta-
tionary stochastic inputs to a linear filter and the cor-
responding state covariances. We identify the structure
of positive semidefinite matrices that qualify as state co-
variances of the filter. This structure is best revealed by
a rank condition pertaining to the solvability of a linear
equation involving the state covariance and the system
matrices. We then characterize all input power spec-
tra consistent with any specific state covariance. The
parametrization of input spectra is achieved through a
relation to solutions of an analytic interpolation problem
which is analogous, but not equivalent, to a matricial Ne-
hari problem.

Keywords: Linear filters, spectral analysis.

I. INTRODUCTION

ONSIDER a finite-dimensional linear filter which is

driven by a multivariable stationary stochastic pro-
cess, and suppose that nothing else is known about the
input process. In this context, we are interested in the
following two basic questions. Firstly, is there anything
we can say about the structure of the covariance of the
state vector which is independent of the specific input?
In particular, how can tell whether a given positive semi-
definite matrix qualifies as the state covariance of the filter
for a suitable input process? Second, assuming knowledge
of the state-covariance matrix, what are all admissible in-
put power spectra which are consistent with the particular
state-covariance?

The material presented herein generalizes the work in [7]
which deals with scalar inputs. The required theory is sig-
nificantly more complex since we deal with a multivariable
framework, yet certain of the results are derived in a sim-
pler and more definitive form. In particular, the answer to
our first question is given by a rank condition involving the
state-covariance and the state matrices of the filter (Theo-
rem 1 below), as opposed to [7, Theorem 1] which requires
solvability of a linear equation by a suitable commutator
of the filter state-matrix. The underlying analytic interpo-
lation problem is substantially more complex and in this
case, as it appears, there is no direct translation into stan-
dard H.-Sarason-type interplation, as the case was in the
description given in [7].

The exposition in this paper focuses on the theory needed
for answering the above two basic questions. The premise
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of these questions is to view spectral analysis and estima-
tion as an inverse problem, and characterize the totality of
spectra which are consistent with measured statistics. Ex-
position and discussion on specific techniques for analysis
of scalar time-series, which spring out of this viewpoint, can
be found in [1,6-8]. Numerical algorithms and applications
for the multivariable case will be presented in a subsequent
publication.

II. PROBLEM FORMULATION

Consider the linear discrete-time state equations

= Azp_1+ Buy, for k € Z, (1)

where 2, € C*, up € C™, A € C"*" B e C"*™, (A, B) is
a controllable pair, and the eigenvalues of A lie in the open
unit disk of the complex plane. Let {uy, : k € Z} be a zero-
mean stationary stochastic process with power spectrum
du(0); i.e., du(0), for 8 € (—m, ], is a non-negative matrix-
valued measure having as Fourier-Stieljes coefficients the
sequence of covariance lags of ug:

Tk

" e—ito dp(9)
27

Ry = E{upyeup} = / (2)

-

where £{-} denotes the expectation operator. Then, under
stationarity conditions, the state covariance

Y= E{xpay}
can be expressed in the form of the integral (cf. [10, Ch.
6))
) :/ (G(ej‘g)du—w)G(ej‘g)*> (3)
_r 2w
where

G\ =T —-XA)"'B

is the transfer function of system (1). Note that we use A
to denote the transform of the delay operator and therefore
G(X) is analytic in the unit disc of the complex plane. Our
goal is to study the correspondence in equation (3) between
3 and p. More specifically, given knowledge of the system
parameters (A, B), we pose and answer the following two
questions:

Question 1: How can we tell that a given non-negative def-
inite matrix qualifies as a state covariance of (1)?
Equivalently, given G(\) as before and a non-negative defi-
nite matrix X, how can we tell that (3) holds for a suitable
non-negative definite measure du(6)?



Question 2: Given a state covariance ¥ of system (1),
parametrize the set of power spectra for the input process
which are consistent with 3.

Equivalently, given ¥ for which there exists a non-negative
measure du(f) satisfying (3), it is required to parametrize
all such non-negative du’s.

Section III provides answers to both questions, while Sec-
tions V and IV are devoted to the theory needed for the
derivation of the results.

Notation and preliminaries

Throughout the paper we use the notation X > Y and
X > Y for Hermitian matrices X,Y to indicate that the
difference X —Y is nonnegative definite and positive def-
inite, respectively. We denote by 0, the zero matrix and
the identity matrix, respectively. Their size will be implicit
from the context. We use D to denote the open unit disk
in the complex plane.

We begin by recalling certain facts concerning matrix-
valued measures and integration (e.g., see [2,10]). Denote
by M the set of finite Hermitian non-negative matrix-
valued measures on [—m,7]. Such measures are defined
by bounded and nondecreasing Hermitian matrix-valued
functions () with 6 € [—m, 7], i.e., u(8) > p(a) when-
ever 8 > a. Note that du corresponds to p in a one-to-one
fashion, except for an arbitrary additive constant. It is
known that u(6) has at most countably many discontinu-
ities, that the limits p(6~) and p(@%) exist everywhere,
and that the derivative du(6)/df exists almost everywhere.
Further, the measure decomposes into du, + dus where
1o is the integral of the derivative and is absolutely con-
tinuous while p, is a singular measure with derivative 0
almost everywhere. If du represents the power spectrum of
a multivariable stochastic process, then dus corresponds to
a deterministic component. Whether du, corresponds to a
nondeterministic component as well depends on the inte-
grability of log (det (du,(6)/df)); this is the content of the
celebrated Szegs-Kolmogorov-Whittle theorem (e.g., see [2,
Theorem 18], [10, Ch. 10]).

There is a natural correspondence between elements in
M and “positive-real” matrix-valued functions (modulo
a skew-Hermitian constant); this is the content of Riesz-
Herglotz’s theorem (see [2, p. 150]). More specifically, if
dp € M and jc an arbitrary skew-Hermitian constant ma-
trix, then the matrix-valued function

1+ XN du(9)

FO) = /_,r (1 —Xeit? ) 27
is analytic in D with non-negative definite real part. The
class of functions F'()\) with the above property will be
denoted by F. Conversely, if F(A) € F then the Cesaro
means of the truncated Fourier series of the R{F(\)} con-

verge to a measure p € M in the weak-star topology [9,
Chapter 2]. One can also use

+Je, (4)

du(6)/d8 = lim R{F(re’")} (5)
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which holds almost everywhere whereas at points of dis-
continuity
9+

m R{F(re??)}db + o~ (6)

3 (WO + (7)) = lm A

2
with po an arbitrary constant matrix. These facts are clas-
sical in the scalar case [9, Chapter 2] and easy to extend
to the matrix case by considering scalar functions z* F/(\)x
for appropriate constant vectors z [2,4].

Finally, we use the standard notation Hsy for the Hardy
space of analytic functions in D with square integrable
boundary values, and (Hs)t for its orthogonal comple-
ment. These are precisely the spaces of Fourier transforms
of square integrable signals with support on non-negative
and negative integers, respectively. Finally, for any func-
tion f()\) with Fourier series )., fyA¥, we use the nota-
tion f(A)* to also denote the “para-Hermitian conjugate”
f*AY) = Y, fix % where in the last expressions the
“conjugate-traspose” operation applies to each of the coef-
ficients of the series.

III. MAIN RESULTS

We now provide answers to the two questions posed in
the introduction. In Theorem 1 we characterize the prop-
ery of a matrix ¥ being a state covariance as a rank con-
dition in the problem data X, A, B. The necessity of such
a condition is not surprising because, aside from positiv-
ity requirements, ¥ must lie in the range of an operator,
defined by the right hand side of (3), which is linear in p.
However, the sufficiency is deeper and amounts to an ex-
istence result in analytic interpolation. The proof of the
sufficiency part is constructive and is tightly connected to
Theorem 2. This last theorem provides a parametrization
of all admissible input power spectra which are consistent
with ¥ in terms of F-solutions to an associated analytic
interpolation problem.

Theorem 1: Let B € C**™, A € C" ™ be such that
(A, B) is a controllable pair with A having its eigenvalues
in D, and let ¥ € C*"*™ be a Hermitian positive semidefinite
matrix. The matrix X is the stationary state covariance of
system (1) for a suitable input process if and only if

Y- A¥A* B 0 B
rank B* 0 ] :rank[ B 0 ] (7

If B is full column rank then the right hand side of
(7) is simply 2m. In fact, the general case can be eas-
ily reduced to this case where B is full column rank—if
B = [By, 0]Vp with ¥, unitary and By full column rank,
then simply replace B with By for an equivalent problem
statement. Thus, whenever helpful, we will use the simpli-
fying assumption that B is full column rank.

Condition (7) of the theorem is equivalent to the solv-
ability of a certain linear matrix equation. This is given
below as equation (9) and its solution specifies the data of
the underlying analytic interpolation problem which will
be introduced in Theorem 2.
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Proposition 1: Let B € C**™ and A = A* € C"*".

Then,
A B 0 B
rank[ B 0 ] —rank[ B* 0 ], (8)
if and only if the matrix equation
A=DBH+ H*B* (9)

has a solution H € C™*™,

Remark 1: If the solution set of (9) is not empty and Hy
is a particular solution, then the set of solutions includes
H = Hy + jeB* with jc a skew-Hermitian matrix. For
instance, a solution H can always be selected so that e.g.,
H B is Hermitian.

In Theorem 1, the case where m = 1, i.e., where uy is a
scalar input and B is a column vector, has been analyzed in
[6,7]. It is interesting to recall the relevant result from [7,
Theorem 1] and derive it as corollary to Theorem 1. This
is stated below.

Corollary 1: (Case m =1 — [7, Theorem 1].) Let B €
Cr*l A € C™*™ be such that (A, B) is a controllable pair
with A having its eigenvalues in D, and let ¥ € C**™ be a
Hermitian positive semidefinite matrix. The matrix ¥ is the
stationary state covariance of system (1) for a suitable input
process if and only if it is of the form

Y=WE+ EW* (10)
with F the unique solution to the equation E— AEA* = BB*
and W a matrix which commutes with A.

The following theorem establishes the correspondence
between input power spectra which are consistent with a
given state covariance ¥ and solutions to an analytic in-
terpolation problem. This problem is analogous, but not
equivalent, to a matrix-valued Nehari problem (cf. [5]).

Theorem 2: Let B € C**™, A, ¥ € C"*™ be such that
(A, B) is a controllable pair, the eigenvalues of A are all in
D, the rank of B is equal to m, and ¥ is a Hermitian positive
semidefinite matrix which satisfies (7). The following hold:
(i) The equation

¥ - AYA*=BH + H*B* (11)
has a solution H € C™*".
(ii) The set of nonnegative matrix-valued measures dy which
satisfy (3) is non-empty and is in bijective correspondence via
(4) to the set of positive real matrix-valued functions F'(\) €
F of the following form:

FQA) = Fo(A) + QV (Y (12)

where (Q(\) is analytic in D,
Fo(\) = H(I-)A)™'B (13)
V(A) D+ CAI - A)™'B, (14)

and C, D chosen so that

E-3AE> E:B
CE3 D

is a unitary matrix, with E being the unique solution of the
Lyapunov equation £ — AEA* = BB*.

(ili) The set of F-functions in (ii) can be explicitely
parametrized via a sequence of “one-step-extensions” spec-
ified by a sequence of suitable contractive matrix-parameters.

Statement (i) is of course a direct consequence of Propo-
sition 1 but helps in setting up the corresponce between
input spectra consistent with ¥ and the interpolation prob-
lem specified in statement (ii). Aside from the correspon-
dence between the two sets, i.e., of input spectra and of so-
lutions to a “positive-real Nehari” problem, statement (ii)
also includes the fact that X is in essence the “Pick ma-
trix” corresponding to this interpolation problem. Hence,
the solution sets are nonempty when ¥ > 0, i.e,, ¥ is a
state covariance. The parametrization claimed in (iii) is in
the style of classical analytic interpolation and is explained
in detail in the course of the proof.

IV. ProoFs OF PROPOSITION 1, THEOREM 1, AND
COROLLARY 1

Proposition 1 expresses the solvability of a linear matrix
equation as a rank condition and is interesting in its own
right. It will be shown first. Then we give the proof The-
orem 1. The necessity part is completed in this section.
However, the proof of the sufficiency part relies on Theo-
rem 2 which will be established in the next section (Section
V).

Proof: [Proposition 1] The sufficiency is immediate by
noting that if (9) has a solution H then the matrices

» 0]

5 0]

are congruent since they are related by

& o[z 7]=[5 7]

The converse can be established using Roth’s theorem
[12]. Roth’s theorem gives conditions for the solvability of
A = BX 4+ YC where A, B,C are known and have com-
patible dimensions. When specialized to our case where
C = B* it asserts that (8) implies the existence of matrices
X, Y of suitable size so that A = BX + Y B*. Our proof is
complete by selecting H = (X + Y™)/2.

However, a simple and direct proof, without reference
to Roth’s result (or techniques used in [12]) can be con-
structed along the following lines. Through congruence

(15)

and

I H*
0 I



transformation the matrix (15) can be brought into the
form given below:

A|BT] |
B |0 ‘

where the size of I is equal to the rank of B. It is now
easy to see that in order for the rank of (15) to be equal to
that of (16), A; must be the zero matrix. The congruence
transformation used in the first step can be analyzed to
recover a solution H. |

1

(17)

O NO O
OODO
O OO~
o oo O

Proof: [Theorem 1] We first address the necessity
(“only if”) part in the theorem. We substitute G(X) in
(3) with B + MAG()\) to obtain

Y = B _ﬂ dl;—ST_H)B*-i-/_ﬂ (eﬂ"’AG(eﬂ'")d‘;—f)> B*
+B/j (d’;—ff)a(eﬂ)weﬂ)
+A 7; (G(ej‘g)d/;—gf)(}(eja)*) A

= BH + H*B* + AY A%, (18)
where
H = / (d/l‘(a) (lB*_i_G(eja)*A*ejé))
- 27 2
B*
L B*A*
= [§R0 R Ry ] B*(A*)2 (19)
with Ry, £ = 0,1,... the covariance-lags/Fourier-

coefficients of dy given in (2). Then (7) follows from (18)
and Proposition 1.

The sufficiency (“if” part) of the theorem is contained
in claim (ii) of Theorem 2. The proof of Theorem 2 is
constructive, and the needed theory and proof developed
in Section V. ]

Proof: [of Corollary 1] First we assume that ¥ is of the
form given in (10) with W commuting with A. It follows
that

S —ANA* = WE+EW* — AWE + EW*)A*
= WE-WAEA* + EW* — AEA*W*
WBB* + BB*W*. (20)

If H* := W B, because of Proposition 1, equation (7) fol-
lows.

For the converse, we begin with (7). The equation
¥ — A¥YA* = BH + H*B* must hold, again because of
Proposition 1. Since the pair (A, B) is controllable, i.e., A
is cyclic with B a cyclic vector, we can always solve the
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equation
Wo
w1
[ B AB An1B ] = H*
Wnp—1
for wg, ..., wn_1, and define

W =wol +wA+...+w, A" L.

This matrix is polynomial in A and therefore commutes
with A. Hence

Y - AYA* = BB*W* + WBB*.

Replacing BB* by E — AEA* allows us to retrace the al-
gebra that led to (20), backwards. We conclude that

S —WE — EW* = A(S — WE — EW*)A*.

Since the eigenvalues of A are in D it follows that the unique
solution to X = AX A* is the zero matrix. Hence, ¥ =
WE + EW?* as claimed in the corollary. |

V. ANALYTIC INTERPOLATION

It is helpful to note that the statements of Theorems 1
and 2 are not affected when we transform the data accord-
ing to:

(A,B,Y) — (TT'AT,T7'B,T7'S(T~1)*) (21)
with T an invertible matrix. This simply corresponds to a

change of coordinates for the state space of (1). Hence, we
can select such a transformation so that the controllability

grammian
™ . do .
— 70 70\ *
E: [ﬂ (G(e )—271_G(6 ) )

becomes the identity matrix. (If E # I simply take T to
be the Hermitian square root of E.) Therefore, without
loss of generality we assume in the sequel that £ = I, or
equivalently, that

AA*+ BB* =1I. (22)

A. Rational inner (all-pass) functions

Consider A, B normalized to satisfy (22). It follows that
the matrix [4, B] can be completed into a unitary matrix

oo

In fact C € C™*", and D € C™*™) are determined up
to a left unitary transformation. We note that such a left-
unitary transformation does not affect the subsequent anal-
ysis and hence, from this point on, we assume that the se-
lection of C, D represents any such particular completion.

(23)

A B
C D |’
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For future reference we list all algebraic relations between
A, B,C, D inherited by the fact that U is unitary:

BB* = - AA", (24)
DD* = I-CC*, (25)
AC* = —BD* aswell as (26)
C*C = - A*A, (27)
DD = I-B'B, (28)
A*B =- C*D. (29)

Proposition 2: If U in (23) is unitary, the matrix-valued
function

V(\) =D+ AC(I - AA)"'B (30)

is inner.

Recall that a square matrix-valued function is inner,
(which is referred to as all-pass in the engineering liter-
ature,) if it is bounded and analytic in D with unitary
boundary radial limits. In our case where V() is rational,
it is continuous on the boundary and V(A\)V*(A=1) = I.

Proof: Clearly V() is analytic in a disc of radius
larger than 1. We verify that V is unitary on the unit
circle by letting A = e’? in the following algebraic identity:

VOV*(AY) = DD*+XC(I-)A) " 'BD*
+ATIDB* (I — ATtAr) et
+C(I —XA)™'BB*(I — X7 'A*)"tC*
= I—-CC*+CAA(I-)A)"'C*
+C(I = XtAn)~tIxtarcr
+CO(I = NA)THI — A4 (T = \~tA)~ o
= I

For the first step of the derivation we used (25), (24), and
(26), while for the last step we used the identity

0 = MI-M)"'+I+(I-N)"'N (31)
—(I-M)'"I-MN)(I-N)"
for M = XA and N = AL A*. [ |

B. The analytic interpolation problem
We now translate condition (19) into an analytic interpo-
lation constraint for a corresponding positive real function.
Proposition 3: Assume that the function
1 2
F(A):§R0+)\R1+)\R2+... (32)

is in the class F. Then, its Taylor/Fourier series coefficients
R, (£=0,1,...) satisfy equation (19), i.e.,

B*
B*A*
H=[3Re Ri Ry ...]| pr(a*)? (33)

if and only if
FQA) =FX) +QNVQA)
with Fp(A) := HG(X) and Q(A) analytic in D.

Proof:  First assume that the Ry’s, which are uni-
formly bounded since F(\) € F, satisfy equation (33). It
follows that the negative Fourier coefficients of F(A)G(\)*
are

(34)

H(AY* for £=0,1,2,..., (35)
and hence independent of the particular F'(A). The nega-
tive Fourier coefficients of Fo(A\)G(A)*,

L7 HG()G () e dh = H(AY* for £=0,1,2, ...,

2 J_,
are identical to those of Fo(A)G(A)*. It follows that
(F(A) = Fo(N)GA)" =T1A+TaA+ ...
is analytic in D, and then, that
(FQA) —FW) VN =
(F(X) — Fo(N) D* +
At (Fl)\ +IToA+.. ) c*
= QM)

is also analytic in D. Thus, (34) holds.

Now assume that (34) holds. To prove (33) it suffices
to show that the Oth Fourier coefficient of F(A)G(A)* is
simply H. We first note that

1 (7 , , 1 (7 , ,
— Fy(e?)G(e)*dd = — HG(e?%)G(e'%)*d
2 J_, 2 J_,

- H.

Then, making use of (34),

1 (7 ; ;
H jé 70 \* —
}% 27r/ F(e?*)G(e?)*do

-

We claim that the last integral is equal to zero. To show
this we first use equations (27) and (29) to derive the iden-
tity
A[=A97'C*V(\) = —(AM[-A*)"'A*B
+(I = AT1AN (T - A*A)(I - NA)'B
= —(I-XA)"'B

= GO, (36)

where, for the last step, we also used (31) with M = \A
and N = A~1A*. Using (36) we deduce that the integrand
of (36)

QNG V(N)* QMM — A%)~tC™)*

QNAC(I — AA)~!

(F(\) = Fo(W) (D* + X'G(1)7C7)



which is analytic in ID. Thus the integrand is zero, and
the Oth Fourier coefficient of F'(A\)G(A\)* is equal to H as
claimed. |

Remark 2: The condition given as (34) represents an an-
alytic interpolation constraint on F' which is analogous to
the well-known Nehari problem in interpolation with H
functions [5]. However, although a standard Mdbius trans-
formation

FA) = s(\) =T —-F\)I +F\)™* (37)
maps JF-functions bijectively into contractive matrix-
valued function in He, it does not translate (34) into
the analogous problem for Ho.-functions due to non-
commutativity of the matrix functions involved. Hence,
we need to develop an analogous theory from scratch. This
is done next.

We point out that a direct correspondence between the
two via linear fractional transformation works only in the
case where m = 1 and V() is scalar, or when V() is a
scalar multiple of the identity. In such a case, (37) trans-
lates the problem into s(A) = so(A) + ¢(A\)V(N), where sg
is obtained from Fy via (37), and existing results from the
literature can be used to parametrize all solutions (as noted
in [7]).

C. Co-invariant subspaces and the “positive-real Nehari”

Throughout, H5* represents row vector-valued functions
in Hs. The “forward shift” corresponds to multiplication
by A and is denoted by S, while the “backward shift” is

given by
S*:HE = HE s x(N) = Ty, A tz(N)

and is precisely the adjoint operator to S. Subspaces which
are invariant under S* are precisely the ones that are or-
thogonal to invariant subspaces of the forward shift S, e.g.
see [11]. These are of the form

K :=HI o HIV)

with V(X) arbitrary inner function, and are referred to as
“co-invariant subspaces”.

Analytic interpolation a la Sarason amounts to speci-
fying an operator on a suitable co-invariant subspace and
seeking an extension to the whole of H5* which commutes
with S*. If this is possible, then the operator can then
be described via multiplication with an anti-analytic func-
tion (followed by projection onto H%*). Typically, contrac-
tiveness (or, positivity) of the “compressed” operator on
the co-invariant subspace and commutativity of this opera-
tor with S* are sufficient for existence of a contractive (or
positive, respectively) “lifting”. This is the content of the
celebrated Sarason-Sz. Nagy-Foias commutant lifting the-
orem [11]. However, in our setting the lifting theorem is
not directly applicable. This is due to lack of commuta-
tivity between the compressed operator and S* because of
the matricial nature of the interpolation conditions. Thus,
we are forced to develop the needed steps from scratch.
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We use a Schur-like parametrization of interpolants via
successive one-step extensions—an idea which of course is
quite standard in analytic interpolation. Following stan-
dard parlance, by “positive/non-negative” we mean that
real part is positive/non-negative definite, also, in order to
avoid excessive technical details many of the statements
and arguments will be special to the case of interest where
co-invariant subspaces are finite-dimentional, i.e., V/(\) is
rational.

Let A, B,V (X),G()), K be as above. First we note that
the orthogonal projection onto K is given by

e : HY™ — K : 2(\) s (H(H;XM)L:U(A)V(A)*) V).

To see this, note that since V(A) is inner, IIx defined
above is idempotant and Hermitian—hence a projection.
It is easy to verify that its kernel is precisely Hz*™V (\)
and therefore IIx is the orthogonal projection onto K as
claimed.

Proposition 4: The rows of G()) form a basis for K.

Proof: We first claim that any element in K is of the
form

o\ — A*)~1C*V ()

where v € C'*". To see this note that

(38)

Il To+ T A+ ...
(H(Hémn)l(xg FoA+. (D FATIB O + .)) 140
= v(A"LC* + AT2AC + . )V ()

where v = xoB* +x1B*A* + . ... Next, from equation (36)
we see that

G(\) = (M - A" tC*v (). (39)
In view of (38), the rows of G(\) span K. Finally, if
vG(A) = 0 for some v € C*™ then necessarily v = 0
because (A, B) is controllable. Hence the rows of G(\) are
linearly independent and form a basis for K as claimed. W

We now consider certain facts about non-negative op-
erators on ‘H5* which commute with S*. Commutativity
with S* forces a lower triangular Toeplitz structure when
expressed with respect to the standard basis in HJ":

iRy 0 0
T=| R iRy 0
R; R} 3R

Alternatively, such an operator can be represented by mul-
tiplication with the conjugate of a corresponding function
F(X) = $Ro + Ri X + ... followed by “projection”:

T:HT = HT :2(A) = (2(NF*(N)

where (-)1 denotes truncation of the negative Fourier co-
efficients. In general, neither the product z(\)F*(A) is a
square-integrable nor the operator 7' bounded. However,
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if F is in F the corresponding operator is defined on a
dense subset of HJ* and is non-negative. Conversely, if this
Toeplitz operator is non-negative, then F' is in F. This is
well known, e.g., [4].

On K, which is finite-dimensional, 7" is well defined
and bounded. In fact, if the Oth Fourier coefficient of
G(AN)F(A)* is H*, then

T(GN) = (GFN) )4 = (I - )~ H”,

and if (-,-) denotes the standard inner product in Ho,

W = (G, T(GN))
[ B AB A’B ... ]x

3Ry 0 0 [ B*

Ry LiR; 0 B* A*

R; R} iR} B*(A*)?
g T

B*A*

= [H* AH* A’H* ... ]| px(4*)?

Evidently, H satisfies (19), W satisfies

W — AWA* = H*B", (40)
and ¥ =2R(W) = W + W* satisfies
Y — AYA* = BH + H*B"*. (41)

Because F' € F, ¥ is non-negative definite. Conversely,
(40) is a consequence of the operator being representable
as a multiplication by the adjoint of a function Fy(A) =
H(I-XA)"!'B. Any analytic function F which agrees with
Fjy, in that it defines the same operator, relates to Fy via
(34) as stated in Proposition 3. It turns out that if the
real part is non-negative there is always a particular such
interpolant F' which belongs to F. This is the content of
the next statement which is the analog of Nehari’s theorem
for the case of positive real functions.

Theorem 3: Let V(A) = D+ CX(I —AA) !B be an inner
function and let Fy(\) = H(I — AA)~!B be such that the
real part of the operator

K = K :vG(\) = oG F(\)*,

with v € C1X™, is non-negative definite. Then there exists a
function F'(\) € F such that

FA) = F(A) +QNV ()
with Q(}) is analytic in ID.

This theorem is essentially equivalent to part (ii) of The-
orem 2. In fact, our preceeding discussion shows that ¥ is
the corresponding “Pick matrix”, i.e., the real part of the
“compressed” operator. Although analogous to the stan-
dard Nehari theorem (e.g., see [5]), we do not know a direct

way that it can be established from existing literature. A
proof is given next.

D. One-step extension

We now complete the proof of Theorems 2 and 3. The
key technical steps are packaged into two lemmas.

We first recall the definition of the Schur complement
pivoting about the nonsingular block entry Np; of a parti-
tioned matrix

N = [Nn

N2
Ny ’

Nao

which is
[N : Ni1] := Nap — N21N1_11N12;

and also recall the fact that the signature of N which is
the triple (p,n, z) of numbers of its positive, negative and
zero-eigenvalues, is equal to the sum of the signatures of
Nll and [N : Nll]-

The lemma, below requires that ¥ > 0 as opposed to only
> 0. This restriction will be relaxed by a separate argu-
ment after the lemma is applied.

Lemma 1: Let U be a unitary matrix partitioned as in (23),
with A € C**", D € C™*™ B,C' € C**™, and m < n.
Further assume that the rank of B is equal to m. If ¥ is a
positive definite matrix such that the identity

Y - AYA*=BH + H*B*
holds for a suitable matrix H, then the matrix

HB+ B*H* — HAX'A*H* (42)
+(D* — HAX™'C*)(C=~'C*) "1 (D — CE71A*H)

p =

is nonnegative defini;ce.
Proof: Let ¥2 denote the Hermitian square root of
¥, and define

L, 0 O
J = 0 0 I, |, and
| 0 I, O
[ ¥-34%: $°3B Y iH*
T := Ccxz 0
| HAR-: -] HB
It can be readily checked that
I, 00
TJT* = 0 R
0
where the 2 x 2-block submatrix R is
R= cx-ie* CT'A*H* - D
T | HAX'C*-D* HAY 'A*H*-HB - B*H*

The signature of 7 is (n +m,m,0) (i.e., it has n + m pos-
itive eigenvalues, m negative ones, and no 0-eigenvalue).
Therefore TJT* can have at most n + m positive eigen-
values. By observing the structure of T'JT™* we see that
R can have at most m positive eigenvalues. Because U is



unitary and hence B*B + D*D = I, the condition that
B has rank equal to m is equivalent to ||D|| < 1, which
in turn is equivalent to the rank of C' being equal to m.
Therefore, the (1,1)-block entry of R which is m x m, is
positive definite. It follows that the Schur complement of
R when pivoting on the (1,1)-block entry can have no pos-
itive eigenvalues. But this Schur complement is precisely
equal to —p which therefore is negative semi-definite. N

The next lemma gives an explicit construction of a one-
step-extension of a compressed operator to one in a larger
co-invariant subspace.

Lemma 2: Let V(A) = D + CA(I — MA)~1B be an inner
function with A, B, C, D selected as before so that U in (23)
is unitary, let

Ko
K1

Hz' © H3'V (N,
HE S HTAV(N),

and let Fy(\) = H(I — MA)~! B be such that the real part of
the operator

W: Ko = Ko z(X) = i z(A)F§(A)

is nonnegative definite. Then, there exists a constant matrix
o such that the function

Fi(\) = Hi(I - )A)™'By,

with Hi = [ H Qo ], satisfies

Mi,z(MNFL (A" = Tlg,z(A)Fo(N), (43)
and the real part of the operator
W1 = ’Cl — ’Cl : ZU()\) — H}CIIL'()\)Fl ()\)*,
is nonnegative definite.
The subspace K; in the lemma can be expressed as
Ki = HFOHFVI(N)
with V4 (A) = Dy + C1A\(I — MA;)71B; and
[ A 0
a= &0 (44)
[ B
5 - [2]
C: = [ 0 I ] ,
D1 0, and
A B
U= | C1 Dy ]

a unitary matrix as before. Indeed, U1U; = UU; = I as
well as V1(\) = AV (A), can both be verified by straight-
forward algebra. Thus, inductive reasoning via successive
one-step extensions of Fy(A) into F;(A), i =1,2,... (in the
obvious notation) allows us to claim the existence of a suit-
able interpolant on the whole of H,. We first proceed with
the proof of the lemma.
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Proof: The claim that the compression of Fj(\)* on
Ko agrees with Fo(\)* as in (43), is a direct consequence
of the fact F1(\) = Fo(\) + QoV()\). This latter identity
can be verified by straightforward algebra.
If ¥ represents two times the real part of WV, then ex-
pressed with respect to the standard basis G(A\) = (I —
AA)7IB for Ky is

S =W+ W,

where W and ¥ satisfy (40) and (41). Similarly, if ¥; is
two times the real part of W, then

S, = AS,A*+ B H, + HiB; (45)
_ [é]E[A* cr ]+ (46)
B H*
[D][H Q0]+[QO*][B* D]

Thus, to complete the proof we only need to verify the
existence of a ()¢ for which the right hand side of the above
equation is nonnegative definite. For simplicity we assume
that ¥ is positive definite and at the end of the proof we
complete the argument for the case of ¥ singular as well.
Using the expression for ¥; in (46) we compute that

U*s,U =

) C*Qo* + A*H*
HA+QoC HB+ B*H*+ QoD+ D*Qo* |

(47)

Since the (1,1) block entry ¥ is positive definite, X
is non-negative definite iff the Schur complement of the
above matrix, with pivot the (1,1) entry, is non-negative

definite. This Schur complement, after collecting con-
stant/linear /quadratic terms in Qo together, is
w(Qo) = N+ QoL+ L*Qo" —QoMQo" (48)
where
N = HB+B*H* - HAS'A*H*  (49)
L = (D-CZ'A*H*) and
M = Cx7lCc~

This is a quadratic function of Qg and will attain a maxi-
mum, in the positive-definite sense, for Qo = L*M ~!. The
maximal value is N + L*M ~'L which is precisely the ex-
pression for p in (42). From Lemma 1, p > 0. In fact,

w(@Q) >0 & N4+L*M'L>
QoMQo* — QoL — L*Qo* + L*M 'L
& p>(QM: —L*M~3)(M2Qy" — M~3L)
& 12 (M2Qo" — M2 L)p%|.
Therefore, w(Qo) is nonnegative definite for all Qg of the
form ) )
Qo=L*M"'+p2sM~z, (50)

where s is a contractive matrix, i.e., ||s|| < 1. In fact, s is
the analog of a Schur parameter (otherwise known as Szego
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parameter and partial reflection coefficient) which is en-
countered in one-step-extension solutions to interpolation
problems. The family of admissible ()¢’s is a matrix-ball

B(e,re,rr) == {Qo : Qo = ¢ + r¢sr, with ||s|| < 1}

around a central value

c=L*MY (51)
and left and right matrix radii
rg:p% and r, = M™2, (52)

respectively.

We now explain that the above claims and formulae re-
main valid even when ¥ is singular. (Evidently, inverses
have to be replaced by generalized inverses.) We will ar-
gue as follows: If ¥ is singular, then we use X, := ¥ + €/
instead. This is positive definite for all € > 0 and satisfies

Y, = AX A* + BH, + H*B*

where H. = H + eB*. (This is because of (22).) Hence,
there is a matrix ball B, of admissible Qg’s rendering (47)
nonnegative definite when Y. is used. Denote by ¢, the
center of the ball. We show below that if e, > €3 then
B¢, D B.,. Using this fact the proof is complete since, the
limit ¢y := lim,_,g ¢, exists and for Q9 = ¢g, the matrix

P, =
¥, C*Qo* + A*H*
HA+ QoC HB+ B*H!+ QoD+ D*Qo"

is nonnegative definite for all € > 0. Thus, by continuity,
it is nonnegative for € = 0 as well.

It remains to establish our assertion that if €; > €5 then
Be, D Be,. We first note that

[ de 48

B*A 2B*B

is nonnegative definite. To see this simply observe that the
Schur complement pivoting on the (2,2) entry is

9B*B - B*AA*B = 2B*B - B*B+ B*BB*B
= B*B+B*BB*B>0.

Now note that
¢€1 = @62 + (6]_ - Cz)T.

Thus, if a Qo makes ®., > 0 then it also makes ®., > 0.
This completes the proof. |

We now compile the above into a proof for Theorems 2
and 3.

Proof:  [Theorem 2 (i)]: This is a direct consequence
of (7) and Proposition 1.

Proof: [Theorem 2 (i) — except for existence/: First,
we have shown in Proposition 3 that the algebraic con-
straint (19) on the coefficients of an F-function is equiva-
lent to the analytic interpolation condition (34). Further,

the relationship between an F-function F(X) and a posi-
tive measure du was shown in Theorem 1, namely that a
function in F of the form (34) gives rise to a measure which
satisfies (3). Conversely, a nonnegative measure dy which
satisfies (3) gives rise to an F-function which meets (19),
and hence by the proposition, (34). The only remaining
step is to show that if ¥ > 0 then such a pair of dy and
F(\) exists. This is next.

Proof of Theorem 2 (i), of existence in (i), and of
Theorem 3:] The sequence K; (i = 1,2,...) is dense in Ha
by virtue of the fact that A’V (\) — 0 uniformly on com-
pact subsets of . Since ¥ is nonnegative definite, using
Lemma 2 we can extend the “compressed operator” W into
a positive operator W; on

Ki = HT € HFNV(N),

successively for ¢ = 1,2,... by suitable choice of @Q; at
each step. Then, W; corresponds to multiplication by the
conjugate of

= Fp(\)+ (Qo+ QA+ ... Qi AT V()

(in the obvious notation, consistent with (44) and (34),)
while H; = [H, Qo, Q1, ---,Qi-1] and Qi = ¢; + r¢,i8irr,i
with ||s;]] < 1.

We claim that for any choice of such s;’s, F;(A) tends to a
function which is analytic in . It suffices to prove that the
@;’s are uniformly bounded. To this end we consider the
general form of ¥;,1—the real part of W;; fori =1,2,....
It is straightforward to verify that

Yo=| v 0 QF
v Q1 0

where § := HB+B*H*+ QoD+ D*Qp and vy = HA+QoC.
Similarly, in general, ¥;; is of the form
Yot o4 oo
v QF ... @Qf
vy Q1 0 ... Q5

T Q@

Thus, as long as ¥;4; >0fori=1,2,...,
5oQ;
>0 53
[ Qi o ] - (53)
because this is a submatrix of ¥;;. It follows that
Qill < 114]]- (54)

In order to prove that (53) implies (54), let z,y be a pair of
unit norm maximal singular vectors for @;, (i.e., unit norm
vectors such that Q;z = ||Q;||y), and consider the value of
the quadratic form defined by the nonnegative matrix in
(53), when evaluated on
| ]
eivy
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with e/? chosen so that e /?y*Q;z is real and negative.
The value is

%6z +y oy + 2R (e 0y Qiz) < 2||0|| — 2/|Qill-

Therefore, unless (54) holds, the sign of the above expres-
sion violates (53). Thus (54) is true for any value of ¢, and
provides the uniform bound we claimed.

Finally, we have established that F;()\) converges to a
function F()\) which is analytic in I. On the other hand,
multiplication by its conjugate defines a positive operator
on a dense subset of H5'. These two imply that the limit
F()) belongs to F. This completes our proof. [ ]

Remark 3: Left and/or right radii r¢;, 7, ;, at some step
i, may be singular. In such a case, the corresponding Schur
parameter s; needs only be specified by a contractive map-
ping from the range of r,; to the orthogonal complement
of the null space of ;. Evidently, in the case where the
radii become the zero matrices, for some value of 7, the
extension is unique and specified by the central solution
Qr = ck, for k > i. For the analogous parametrization of
standard block-Toeplitz extensions see [3].

VI. FINAL REMARKS

The characterization of the algebraic structure of state
covariances, as well as the characterization of all input spec-
tra which are consistent with a given state covariance, have
significant implications in time-series analysis. The perti-
nent theory for the case where the underlying system (A, B)
has a scalar input and trivial dynamics (e.g., A is an or-
dinary shift matrix) is the basis of many of the so-called
“modern nonlinear spectral analysis methods” which ex-
ploit the Toeplitz structure of the state covariance (e.g.,
Burg’s maximum entropy method, Capon’s method, Pis-
arenko’s, MUSIC, ESPRIT, etc.—see [13]). In our earlier
work [7], we considered the case of scalar input and non-
trivial dynamics and derived a variety of algorithms which
encompass these ealier “modern nonlinear methods”. Typ-
ically, the algorithms represent specific selections for the
coefficients @ in our parametrization of input spectra. It
was noted in [6,7] that judicious choice of the filter param-
eters (A, B) (or, first-order filter-banks as in [1]) leads to
algorithms with resolution superior than state of the art.
The present work lays out the mathematical basis of the
multivariable case. The multivariable case should prove
useful in the spectral analysis of vectorial time-series, with
potential applications in high resolution imaging with po-
larimetric synthetic aperture radar, multifrequency radar,
etc.
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