
212 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 2, FEBRUARY 2007

The Carathéodory–Fejér–Pisarenko Decomposition
and Its Multivariable Counterpart

Tryphon T. Georgiou, Fellow, IEEE

Abstract—When a covariance matrix with a Toeplitz structure
is written as the sum of a singular one and a positive scalar
multiple of the identity, the singular summand corresponds to
the covariance of a purely deterministic component of a time-
series whereas the identity corresponds to white noise—this is
the Carathéodory–Fejér–Pisarenko (CFP) decomposition. In the
present paper we study multivariable analogs for block-Toeplitz
matrices as well as for matrices with the structure of state-
covariances of finite-dimensional linear systems (which include
block-Toeplitz ones). To this end, we develop theory which ad-
dresses questions of existence, uniqueness and realization of
multivariable power spectra, possibly having deterministic com-
ponents. We characterize state-covariances which admit only
a deterministic input power spectrum, and we explain how to
realize multivariable power spectra which are consistent with
singular state covariances via decomposing the contribution of the
singular part. We then show that multivariable decomposition of
a state-covariance in accordance with a “deterministic component
+ white noise” hypothesis for the input does not exist in general.
We finally reinterpret the CFP-dictum and consider replacing the
“scalar multiple of the identity” by a covariance of maximal trace
which is admissible as a summand. The summand can be either
(block-)diagonal corresponding to white noise or have a “short-
range correlation structure” correponding to a moving average
component. The trace represents the maximal variance/energy
that can be accounted for by a process at the input (e.g., noise)
with the aforementioned structure, and this maximal solution can
be computed via convex optimization. The decomposition of co-
variances and spectra according to the range of their time-domain
correlations is an alternative to the CFP-dictum with potentially
great practical significance.

Index Terms—Pisarenko harmonic decomposition, short-range
correlation, spectral analysis.

I. INTRODUCTION

PRESENT day signal processing is firmly rooted in the
analysis and interpretation of second order statistics.

In particular, the observation that singularities in covariance
matrices reveal a deterministic linear dependence between ob-
served quantities, forms the basis of a wide range of techniques,
from Gauss’ least squares to modern subspace methods in time-
series analysis. In the present work we study the nature and
origin of singularities in certain structured covariance matrices
which arise in multivariable time-series.

Historically, modern subspace methods (e.g., MUSIC,
ESPRIT) can be traced to Pisarenko’s harmonic decomposi-
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tion and even earlier to a theorem by Carathéodory and Fejér
on a canonical decomposition of finite Toeplitz matrices [26],
[27], [32]. The Toeplitz structure characterizes covariances of
stationary scalar time-series. In this context, singularity of the
Toeplitz matrix reflects the fact that there is a unique power
spectrum which is consistent with the data. Their multivariable
counterpart, block-Toeplitz matrices, having a less stringent
structure, has received considerably less attention. The present
work was motivated by the apparent lack of analogues of the
Carathéodory–Fejér–Pisarenko (CFP) decomposition for finite
block-Toeplitz matrices as well as for the more general setting
of state-covariances of a known linear dynamical system.
In particular, the singularity of a block-Toeplitz covariance
matrix does not reflect in general a unique consistent power
spectrum.

The decomposition of a covariance matrix into non-negative
definite summands suggests a corresponding additive decom-
position of the relevant time-series. Such a decomposition may
provide insight and facilitate modeling and stochastic realiza-
tion of the underlying random process—for analysis or filtering
purposes. While our declared objective has been to study mul-
tivariable generalizations of the CFP decomposition, a substan-
tial part of the paper is devoted to results that pertain to the ex-
istence, uniqueness and realization of power spectra, possibly
with deterministic components.

The realization of power spectra from second order statistics
amounts to a moment problem, and as such, in certain impor-
tant cases, it can be cast in the language of analytic interpolation
theory. This indeed is the case for the type of problems studied
here. Consequently, we make extensive use of techniques and
insights gained in recent years in the analytic interpolation liter-
ature, as presented in e.g., [1]–[3], [6], [12], [15], [16], [25],
[29], and [31]. Following our interest in deterministic power
spectra we develop certain explicit conditions which guarantee
uniqueness. These appear to be new. We also study the so-called
“central solution in the singular case,” because this relates to de-
terministic components in the power spectrum.

After we develop basic results on singular state-covariances
and associated power spectra we return to the CFP-dictum and
show that, in general, it does not hold for multivariable pro-
cesses. Indeed, we show that the decomposition of a given state-
covariance in accordance with a “deterministic component
white noise” hypothesis for the input does not exist in general.
We are then led to reinterpret the CFP-dictum. We seek a max-
imal-trace summand of the given state-covariance which can be
interpreted as due to input noise (white noise or a moving av-
erage process of any given order). The trace represents the max-
imal variance/energy that can be accounted for, and the optimal
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solution can be computed via convex optimization. This reinter-
pretation allows the decomposition of covariances and spectra
according to the range of time-domain correlations for the cor-
responding processes. It is an alternative to the CFP-dictum with
potentially great practical relevance.

Briefly, the contents of this paper are as follows. In Sec-
tion II, we begin with background material on matrices with
the structure of a state-covariance of a known linear dynam-
ical system—block-Toeplitz matrices being a special case. Sec-
tion III discusses the connection between covariance realization
and Carathéodory (analytic) interpolation. Section IV presents
a duality between left and right matricial Carathéodory inter-
polation and their relation to the time arrow in dynamical sys-
tems generating the state-process. Duality is taken up again in
Section V where we study optimal prediction and postdiction
(i.e., prediction backwards in time) of a stochastic input based
on state-covariance statistics. The variance of optimal predic-
tion and postdiction errors coincide with left and right uncer-
tainty radii in a Schur representation of the family of consistent
spectra given in [19], [20] and elucidate the symmetry observed
in these references. Further, Section V presents geometric con-
ditions on the state-covariance for the input process to be de-
terministic and for the optimal predictor and postdictor to be
uniquely defined. Vanishing of the variance of the optimal pre-
diction or postdiction errors is shown in Section VI to charac-
terize state-covariances for which the family of consistent input
spectra is a singleton.

Section VII gives a closed form expression for the power
spectrum corresponding the “central solution” of [20] (also, e.g.,
[16, Ch. V]). This expression is valid in the case where the
state-covariance is singular. Naturally, the subject of this sec-
tion has strong connections with the theory of Szegö–Geron-
imus orthogonal polynomials and their multivariable counter-
parts [8], [12, Ch. 8], which now become matricial functions
sharing the eigen-structure of the transfer function of the un-
derlying dynamical system. Then, Section VIII explains how to
isolate the deterministic component of the power spectrum via
computation of relevant residues with matrix techniques.

Having completed the analysis of singular state-covariances
and their relation to input power spectra, we show in Section IX
that a state-covariance may not admit a decomposition into one
corresponding to white-noise plus another corresponding to a
deterministic input. To this end, a natural interpretation of the
CFP dictum is to seek a maximal white-noise component at
the input consistent with a given state-covariance. We explain
how this is computed and discuss a further generalization where
the input “noise” is allowed to have “short-range correlation
structure.” In particular, if the state-covariance is (block-
)Toeplitz, then we may seek to account for input noise whose
auto-covariance vanishes after the first moments, i.e., colored
noise modeled by at most a -order moving average filter. In
this way, a maximal amount of variance that may be due to short
range correlations can be accounted for, leaving the remaining
energy/variance to be attributed to periodic deterministic com-
ponents and possibly, stochastic components with long range
(longer than ) correlations. Further elaboration of this view-
point, for the special case of Toeplitz matrices, is given in the
follow-up paper [22].

II. STRUCTURED COVARIANCE MATRICES

Throughout we consider a multivariable, discrete-time, zero-
mean, stochastic process taking values in
with . Thus, is to be thought of as a column vector.
We denote by , for , the sequence
of matrix covariances and by the corresponding matricial
spectral measure for which

for (see, e.g., [30]). As usual, star denotes the com-
plex-conjugate transpose, prime denotes the transpose,

following the usual “engineering” convention, and
denotes the expectation operator. Whenever star is applied
to a rational function of it represents the paraconjugate Her-
mitian where refers to -ing the coef-
ficients of whereas the transformation of the argument is
indicated separately.

It is well-known that a covariance sequence
and is completely characterized by the non-neg-

ativity of the block-Toeplitz matrices

...
...

. . .
...

(1)

for all . That is, such an infinite sequence with the property that
, qualifies as a covariance sequence of a stochastic

process and vice versa. On the other hand, the infinite sequence
of ’s defines the spectral measure (up to an additive con-
stant) and conversely.

It is often the case that only a finite set of second-order
statistics is available, and then, it is of interest to charac-
terize possible extensions of the finite covariance sequence

, or equivalently, the totality of consistent
spectral measures (see [8]–[11], [4], [19], and [20]). In general,
these are no longer specified uniquely by the finite sequence

. In the present paper we are interested
in particular, in the case where a finite set of second-order
statistics such as completely specifies the
corresponding spectral measure (and, hence, any possible
infinite extension as well). We address this question in the
more general setting of structured covariance matrices which
includes block-Toeplitz matrices as a special case.

A block-Toeplitz matrix such as given in (1) can be
thought of as the state-covariance of the linear (discrete-time)
dynamical system

for (2)

where

. . .
. . .

...
... ...

(3)
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with and the zero and the identity matrices of size
and block matrices,

respectively. The size of each block is and hence the
actual sizes of are and , with ,
respectively. While for general state-matrices the struc-
ture of the state-covariance may not be visually recognizable, it
is advantageous, for both, economy of notation and generality,
to develop the theory in such a general setting—the theory of
block-Toeplitz matrices being a special case.

Thus, henceforth, we consider an input-to-state dynamical
system as in (2) where

(4a)

(4b) rank

(4c) is a reachable pair, and

(4d) all the eigenvalues of

have modulus (4)

Without loss of generality and for convenience we often assume
that the pair has been normalized as well so that

(4e)

Conditions (4a-d) are standing assumptions throughout. When-
ever condition (4e) is assumed valid, this will be stated explic-
itly. With , a zero-mean stationary stochastic
process, we denote by

the corresponding (stationary) state-covariance. The space of
Hermitian matrices will be denoted by while
positive (resp. nonegative) definiteness of an will be
denoted by (respectively, ). Any state-covariance
as before certainly satisfies both conditions, i.e., it is Hermitian
and non-negative definite. The following statement character-
izes the linear structure imposed by (2).

Theorem 1: (see [19, Thms. 1 and 2]): Let 4(a)–(d) hold. A
nonnegative–definite Hermitian matrix (i.e., )
arises as the (stationary) state-covariance of (2) for a suitable
stationary input process if and only if the following equiv-
alent conditions hold:

(5a) rank

(5b) (5)

A finite non-negative matrix-valued measure
with represents the power spectrum of a stationary

-vector-valued stochastic process. The class of all such
matrix-valued non-negative bounded measures will be

denoted by . Note that the size is suppressed in the notation
because it will be the same throughout. Starting with a stationary
input with power spectral distribution , the state-

covariance of (2) can be expressed in the form of the integral
(cf. [30, Ch. 6])

(6)

where

(7)

is the transfer function of (2) (with corresponding to the delay
operator, so that “stability” corresponds to “analyticity in the
open unit disc ”). Thus, either condition
(5a) or (5b) in the above theorem characterizes the range of the
mapping

specified by (6). The family of power spectral distributions
which satisfy (6) will be denoted by

equation (6) holds

The previous theorem states that this family is nonempty when
satisfies the stated conditions. Furthermore, a complete

parametrization of is given in [19], [20].
The present work explores the case where is a singleton.

The special case where is scalar and a Toeplitz matrix (but
not “block-Toeplitz”) goes back to the work of Carathéodory
and Fejér a century ago, and later on, to the work of Pisarenko
(see [26], [27], [32]). In the scalar case, is a singleton if and
only if is singular (and of course non-negative definite). Then

is deterministic with a spectral distribution having at most
discontinuities (spectral lines). In the present paper we ob-

tain analogous results when is a state-covariance and is a
singleton, and then we study decomposition of a general
into a covariance due to “noise” plus a singular covariance with
deterministic components—in the spirit of the CFP decomposi-
tion of Toeplitz covariance matrices.

III. CONNECTION WITH ANALYTIC INTERPOLATION

The early work of Carathéodory and Fejér was motivated by
questions in analysis which led to the development of analytic
interpolation theory—a subject which has since attained an im-
portant place in operator theory, and more recently, closer to
home, in robust control engineering. We review certain rudi-
mentary facts and establish notation.

A non-negative measure specifies an matrix-
valued function

(8)

with an arbitrary skew-Hermitian constant (i.e., ),
which is analytic in the open unit disc and has non-negative
definite Hermitian part (see, e.g., [10, p. 36]). We denote by

the Herglotz integral given in the previous line. The class
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of such functions with non-negative Hermitian part in
, herein denoted by

is named after Carathéodory and often referred to simply as
“positive-real.” Conversely, given , a corresponding

can be recovered from the radial limits of the
Hermitian part of . It is obtained via

interpreted as a weak limit or, alternatively via

(9)

for (cf. [8, Sec. II]). In fact the families and are in
correspondence via (8) and (9) (with elements in identified
if they differ by a skew-Hermitian constant and distributions
defined up to an additive constant).

With (4e) in place, select so that

(10)

is a unitary matrix. Then

(11)

is inner, i.e., for all .
The rows of form a basis of

(12)

where denotes the Hardy space of functions analytic in
with square-integrable boundary limits. This can be easily seen
from the identity ([19], (38))

(13)

(from which it follows that the entries of are in ,
the orthogonal complement of in the Lebesgue space of
square-integrable function on the unit circle ).

Now let represent the power spectrum of the input to
(2), the corresponding state-covariance, and obtained
via (8). Then, turns out to be the Hermitian part of the
operator

(14)

with respect to basis elements being the rows of , where
denotes the orthogonal projection onto (see [19, eqs. (40)

and (41)]). Of course, is also the Grammian
with respect to the inner product

This is in fact the content of (6).

The relationship between and can be obtained by way
of . If is the zeroth Fourier coefficient of then
the matrix representation for with respect to the rows of

satisfies (see [19])

(15)

leading to (5) for . The matrices or com-
pletely specify and in fact

(16)

with and is a matrix-valued
function which is analytic in . Conversely, if and
satisfies (16), then it gives rise via (9) to a measure which is
consistent with the state-covariance .

Equation (16) specifies a problem akin to the Nehari problem
in -control theory involving positive-real functions instead
(cf. [11], [12], [1]–[3], and [15]).

IV. A DUAL FORMALISM

Using (13), (6) can be rewritten as

(17)

where and

(18)

The rows of , for , span

The notation denotes orthogonal complement in the “am-
bient” space—here . It readily follows that a state-
covariance of (2) satisfies the dual conditions given here.

Theorem 2: Let (4a-d) hold. A nonnegative-definite Hermi-
tian matrix arises as the (stationary) state-covariance
of (2) for a suitable stationary input process if and only if the
following equivalent conditions hold:

(5c) rank

or equivalently

(5d)

for some

and selected as in Section III so that
is inner. Conditions (5c-d) are equivalent to (5a-b).

It is noted that, rank in condition (4b) implies that
rank as well. To see this, assume without loss of gen-
erality that (4e) holds. Then which
implies that . Using once more unitarity of and the
fact that , we obtain that
which implies that rank .

An insightful derivation of Theorem 2 can be obtained by
considering (2) under time-reversal. More specifically, we com-
pare the state-equations for dynamical systems with transfer
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functions and
given as follows:

(19)

and

(20)

Both are interpreted as stable linear dynamical systems but with
opposite time-arrows. Since , the input to one
of the two corresponds to the output of the other, and (18) relates
the spectral measure of to the spectral measure of

. The state-covariance for both systems is the same when
the first is driven by and the second by , respectively.
Thus, if , Theorem 1 applied to (19) leads to
(5a–b) while, applied to (20), leads to (5c-d). The spectral mea-
sures of the respective inputs and relate as in (18).

Proof: [Theorem 2]: Follows readily from the above ar-
guments. More precisely, is a state-covariance of (2) for a
suitable stationary input process if and only if it is also
a state-covariance of for a suitable sta-
tionary input process . Then applying Theorem 1 we
draw the required conclusion.

An analogous dual interpolation problem ensues. To avoid
repeat of the development in [19], [20], we may simply rewrite
(17) as

where now the left integration kernel is
. Note that in general, since is Her-

mitian but may not be symmetric—where bar denotes com-
plex-conjugation. Trading a factor between the left integration
kernel and its para-hermitian conjugate on the right we obtain
that

leading to the analytic interpolation problem of seeking an
-function of the form

Transposing once more we may define

and draw the following conclusions.
Theorem 3: Let be an

inner function with observable and reachable. If
and the solution to (5d), then there exists a solu-

tion to (5b). Conversely, if and the solution to
(5b), then there exists a solution to (5d). With related
via (5b) and (5d), the following are equivalent:

(21a) (21)

(21b) with analytic in

(21c) with analytic in

Proof: Begin with and the solution to (5d). If
then is a state-covariance to (2) according to Theorem

2 and hence, there exists a solution to (5b). To argue the case
where may not be nonnegative definite necessarily, consider
without loss of generality condition (4e) valid and that as in
(10) is unitary. Then, and .
If is the solution to (5d) for a given , then is
the solution of the same equation when is replaced by

. We can always choose so that and then
deduce that there exists a solution to

(22)

Since now satisfies
(5b). The converse proceeds in the same way.

The equivalence of (21a) and (21b) follows as in [19]. If
, then (21b) follows from [19, Th. 2]. Conversely, if (21b)

holds, then [defined in (14)] satisfies (15) leading to being
its Hermitian part. Since , the Hermitian part of multi-
plication by is nonnegative, and hence it remains so when
restricted to the subspace .

The dual statement (21c) follows similarly.
Remark 1: If is a factorization of

into a product of inner factors, then it can similarly be shown
that the conditions (21) of the theorem are equivalent to the
solvability of a bitangential Carathéodory–Fejér interpolation
problem of seeking an where

for suitable . The
can be computed from e.g., by setting as the ana-
lytic part of and as in (21b). An alterna-
tive treatment can be based on [2] or, in a more general setting,
on [1].

V. OPTIMAL PREDICTION AND POSTDICTION ERRORS

A spectral distribution induces a Gram matricial
structure on the space of matrix-valued functions on the
circle (see [30, pp. 353, 361]) via

(23)

(24)

where are the Laurent coefficients of , respec-
tively. The correspondence

(25)

between functions on the unit circle (taking ) and linear
combinations of the random vectors , leaves the respective
Gram-matricial inner products in agreement and establishes
a natural isomorphism between and the space
spanned by (the closure of) linear combination (see [30,
Secs. 5 and 6], cf. [20]).
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Any matrix-valued function with entries
in and

(26)

corresponds via (25) to

past

which is interpreted as a “one-step-ahead prediction error.”
Likewise, if and

future

corresponds to “one-step-ahead postdiction error,” i.e., using
“future” observations only to determine the “present”. Occa-
sionally we may refer to these for emphasis as prediction for-
ward, and backwards in time, respectively. Either way, the “es-
timator,” which may not be optimal in any particular way, is the
respective linear combination of values of for

observation range

When the values extend in both directions it is a case of
smoothing and is needed to interpret the -function in Remark
1—this will be developed in a forthcoming report.

We first discuss prediction in the forward direction.
Throughout, we consider as data the covariance matrix
and the filter parameters. We assume that but oth-
erwise unknown. Because is not known outside , it can
be shown that the min-max problem of identifying the forward
prediction error with the least variance over all has
a solution which lies in . To this end we seek an element in

, i.e., an matrix-valued function

with

with rows in , having least variance

and subject to the constraint (26) which becomes

(27)

Existence and characterization of minimizing matrices is dis-
cussed next.

Nonnegative definiteness of the difference be-
tween two elements defines a partial order

in . An -valued function on a linear space is
said to be -convex iff

for and

It is rather straightforward to check that if , then

(28)

is in fact -convex. This basic fact ensures existence of
-minimizers satisfying (27) in the proposition given below.

Note that the statements ii) and iii) of the proposition are
rephrased in alternative ways ii-a) and iii-a), in order to highlight
an apparent symmetry. This is most clearly seen when expressed
in terms of the two directed gaps between the null space

of and the range

for

of —the directed gap is defined in the statement of the propo-
sition and represents an angular distance between subspaces and
is a standard tool in perturbation theory of linear operators (see
[28]) and in robust control (e.g., see [23]).

Proposition 1: Let having rank , and let
with . The following hold.
i) There exists an -minimizer of satisfying (27).
ii) The minimizer is unique if and only if

rank

ii-a) The minimizer is unique if and only if

iii) The -minimal value for is if and only if

is invertible

iii-a) The -minimal value for is if and only if

iv) If rank , then the -minimal value of is

and a minimizer [unique by ii)] is

v) If the -minimal value of is , then a
minimizer is given by

(29)

vi) In general, when is singular, the -minimal value
for is

(30)

and a minimizer is given by

(31)

where denotes the Moore–Penrose pseudoinverse

and
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Alternatively

and (32)

where

and (33)

Proof: Due to page limitations of this journal, the proof is
omitted. However, it can be found in the full report which has
been archived at http://arxiv.org/abs/math/0509225/

Remark 2: It should be noted that is not required to have
the structure of a state-covariance of a reachable pair (cf.
Theorem 1) since the matrix does not enter at all in the state-
ment of Proposition 1. However, if this is the case (see Proposi-
tion 2) and is a singular state-covariance, then is singular
as well—a converse to the first part of statement iv). Finally,
in (33) can also be taken as simply the perturbation ,
though this complicates the algebra.

For prediction backwards in time, the postdiction error

future (34)

corresponds to an element

with

The constraint arising from the the identity in front of in (34),
translates into while the variance of the postdiction
error becomes . Proposition 1 applies verbatim and yields
the following.

i’) There exists an -minimal postdiction error.
ii’) The minimizer is unique if and only if

rank

iii’) The variance of optimal postdiction error is equal to
if and only if is invertible.

iv’) If rank , then the variance of the optimal post-
diction error is (strictly) positive definite and the unique
minimizer is .
v’) If the variance of the optimal postdiction error
is equal to , then a (non-unique) minimizer is

.
Similarly, the analog of vi) holds as well.

Remark 3: It is interesting to point out that the square-roots
of the variances of prediction and postdiction errors

and appear as left and
right radii, respectively, in a Schur parametrization of the
elements of in [19] (cf. [20, Rem. 2]) and that, in view of
the above, if one is zero so is the other.

VI. WHEN CONTAINS A SINGLE ELEMENT

We now focus on the case where consists of a single
element, we analyze the nature of this unique power spectrum,
and study ways to decompose into a sum of two non-negative
definite matrices, one of which has this property and another

which may be interpreted as corresponding to noise. Conditions
for to be a singleton are stated next.

Theorem 4: Let satisfy (4) and for which (5)
holds. Then, the set is a singleton if and only if the following
equivalent conditions hold:

(35a)

(35b) is invertible (35)

If are selected so that in (11) is inner, the previous
conditions are also equivalent to

(35c)

(35d) is invertible

Proof: We first assume that (35) holds (and hence,
from Proposition 1, that (35a–d) are all valid). We recall the
definition of and in (11) so that the latter is inner,
as well as the definitions of in (12), in (7)
whose rows form a basis for , and we now consider an arbitrary

. We show that is unique and completely specified
by the data .

As we have seen earlier, the quadratic form on specified by
and expressed with respect to the rows of as basis, is

given by . Next we show that the quadratic forms specified by
on the nested sequence of subspaces ,

with

for , are uniquely specified by . This is
shown by induction. We first consider . If is given
by (11) then can be written as

with

(36)

The quadratic form induced by with respect to the rows of
is similarly given by

From Theorem 1

(37)

where

(38)

Let be as in (29) (for which and ).
Since, , it follows that , otherwise
it would be possible to render the quadratic form

indefinite with a suitable choice of
which would contradict . From (37) on the other hand,
we have that . Multiplying
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on the left by we conclude that
is uniquely specified from the original data . In view of
(37) the same is true for the “one-step” extension of . In
order to proceed with the induction, we only need to show that
the condition (35a) continues to be valid for the new data, i.e.,
that is also invertible. To prove this last claim we
argue as follows. Since is Hermitian,
is an orthogonal decomposition. Then, the null space of is
the orthogonal direct sum of

and

Then, where .
So, finally, , be-
cause is already positive definite. This completes
the proof of our claim that is invertible. It also
completes the general step of the inductive argument, i.e., it
proves that if specifies the quadratic form induced by
on with respect to the rows of as a basis, then is
uniquely specified by for .

In order to prove that is uniquely defined as well, we com-
pute an infinite sequence of relevant Fourier coefficients and
show that they are also specified uniquely by . To this
end, we first note that

Similarly

...

If we partition into blocks,
accordingly, we observe that after omitting the (1, 2) entry the
second column consists of the Fourier coefficients

for

of [which was encountered ear-
lier in (18)]. Since all the Fourier coefficients are uniquely spec-
ified by , so is . This is due to the fact that the
matricial trigonometric problem is determinate very much like
in the scalar case [8, Th. 1]. Of course, is uniquely spec-
ified as well and therefore is a singleton.

If is an extension of as before, . Fur-
thermore, if are two different extensions,

. Thus, to prove that is not a singleton, it suffices
to prove that there are choices in specifying while main-
taining . It turns out that the condition re-
stricts to a matrix ball with nontrivial left and right radii.
The computations have already been carried out in [19], [20]

for the case where is invertible. Here, we first summarize the
relevant facts and conclude the proof using by a limit argument.

Without loss of generality we assume that are normal-
ized so that (4e) holds. We define

, and we define via

(39)

taking

(40)

We note that the (1,1) entry of is simply . With as in
(10), we compute

Since , the non-negativity of is equivalent to the
non-negativity of the Schur complement of the 2 2-block ma-
trix on the right-hand side of the previous equation, pivoted
about its (1,1) entry. This leads to a quadratic expression for
which needs to be non-negative. As shown in [19], (47)–(51)
and in [20, Rem. 2], after standard (but rather complicated) al-
gebraic manipulations we conclude that if and only if

(41)

where the center of the ball is

and two radii are

and

Following part (iv) of Proposition 1, the columns of
where , from a basis for

. Similarly for with
is nonzero with the columns of in the

range of . Then, as , the limit of the two radii turn out
to be

and

while a corresponding expression can be obtained for the limit
of as well involving and . The fact that nei-
ther nor is zero implies that we can select at least two
families of values for indexed by and belonging to the ma-
trix ball in (41) for each , having different limits as . Each
choice renders , and hence in the limit, for the
two different limit values for . This completes the proof.

The unique element in under the conditions of the the-
orem can be obtained, in principle, after extending recur-
sively for using (36)–(38). This specifies a non-neg-
ative operator on a dense subset of which, in turn, speci-
fies a corresponding positive real function and the measure
can be obtained from the boundary limits of the real part of
as a weak limit. However, an explicit expression for will
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also be given later on. Before we do this, we explain some of
the properties of this unique measure.

The following result states that is a singular measure with
at most points of increase, i.e., at most spectral lines
whose directionality is encapsulated in suitably chosen unitary
factors. The spectral lines are in fact at the zeros of certain ma-
trix-valued functions, namely

(42)

and as in Proposition 1, which correspond to the optimal pre-
diction error and represent the analog of the Szegö–Geronimus
orthogonal polynomials of the first kind, cf. [20].

Theorem 5: Under the assumptions and conditions of The-
orem 4, the unique element in is of the form

where rank for
differ from one another, denotes a unit step at ,
and . The values for are the non-zero
eigenvalues of the matrix with as in (29). The
matrices are chosen so that

and can be normalized to satisfy as well as to make
diagonal.

Proof: Under the stated conditions, is a singleton by
the previous theorem and its unique element satisfies

(43)

with as in (29). It readily follows that can have points
of increase only at the finitely many points ,
where is singular. The “zeros” of coincide with
the “poles” of its inverse

(44)

where

(45)

Since has already eigenvalues at the origin, the number
of eigenvalues that it may have on the circle is at most .
Thus

where , and . Ex-
pressing with as claimed is standard. This
completes the proof.

Thus, being a singleton implies just as in the classical
scalar case (e.g., [32] and [26]) the underlying stochastic process
is deterministic with finitely many complex exponential com-
ponents. Subspace identification techniques represent different
ways to identify “dominant ones” and obtain the “residue”
that corresponds to each of those modes in the scalar (see [26],
[32], [17], [18]). In order to do something analogous for mul-
tivariable stochastic processes, we need an explicit expression
for the corresponding positive real function [corresponding via
(6) and (8)]. This is obtained in the next section.

Remark 4: A dual version of the representation in Theorem
5 gives that correspond to “zeros” on the circle of the op-
timal postdictor error . Similarly, the range

, for , is contained in the correspond null
space of the previous postdiction error when evaluated at the
corresponding zeros.

Remark 5: The “star” of the optimal postiction error can also
be interpreted as a “right matricial orthogonal polynomial of the
first kind”

(46)

These matricial functions, i.e., and , together with
their counterparts of the “second kind” and that
will be introduced in the next section, satisfy a number of in-
teresting properties similar to those of the classical orthogonal
polynomials [24] (cf. [8] and [9]). We plan to develop this sub-
ject in a separate future publication.

VII. THE “CENTRAL” POSITIVE REAL FUNCTION

When , there is a unique element in which maxi-
mizes the (concave) entropy functional

(47)

This element of can be identified in a variety of ways (e.g.,
see [20], [21], also ([12], Chapter 11) and the references therein)
as

(48)

and generalizes a classical result in [24, eq. (1.20)]—the sub-
script ME suggesting “maximum entropy.” However, in gen-
eral, when and singular, (48) is no longer valid. Singular
parts may be present in every element of , reflecting purely
deterministic components in the underlying time series. Yet the
expression in (48) cannot reflect such deterministic components.
Thus, when is singular, and in order to identify power spectra,
we need to make use of -functions corresponding to elements
in via (8). The singular part of the power spectral measure
can then be recovered either through (9) or by isolating the con-
tribution of poles of the -function which lie on the boundary
of the circle, as it will be explained in Section VIII.

Therefore, the purpose of this section is to present an expres-
sion for which generalizes the scalar result



GEORGIOU: THE CARATHÉODORY–FEJÉR–PISARENKO DECOMPOSITION AND ITS MULTIVARIABLE COUNTERPART 221

in, e.g., [24, eq. (1.14)]. This expression remains valid when
is singular in that the corresponding measure .

However, neither satisfies (48) nor represents a maxi-
mizer of (47) (since the value of the functional in (47) may equal

). Our approach, which is detailed in the proof of Theorem
6, has been to seek a fractional representation for which
directly generalizes the scalar case in ([24], (1.16)). Indeed, this
turns out to be possible leading to the following.

With satisfying (5b) in Theorem 1, define

(49)

where as before

(50)

and

(51)

Here, is the analog of the Szegö orthogonal polynomial
of the second kind (see [24, eq. (1.13)]) and was constructed
mimicking the scalar case, with the same dynamics as so
that is positive real and consistent with . Both, consis-
tency, which led to the specific expressions for and

, as well as membership in are verified in the proof of
Theorem 6.

Before we proceed with Theorem 6, we present an alternative
expression for which can be obtained via standard mul-
tivariable “pole-zero” cancellation in the fractional representa-
tion (49). Briefly, because and

share the same “state-matrix”
and the same “read-out” map , a state–space representa-

tion for the cascade connection of the two systems with transfer
functions and has unobservable dynamics. Mul-
tivariable “pole-zero” cancellation then amounts to obtaining a
canonical realization for this cascade connection. Since the dy-
namics associated with the matrix turn out to be unobservable,
the canonical realization is of dimension and can be simpli-
fied into

(52)

where

(53)

We now turn to establishing our claim that is positive real
and consistent with .

Theorem 6: Let satisfy (5b) of Theorem 1,
given as in (31), and given as in (49)–(51). Then

i) satisfies (16);
ii) .
Proof: Condition (16) is equivalent to

To show that this relationship holds for some analytic in
, it suffices to show that all negative Fourier coefficients of

(54)

vanish. By collecting positive and negative powers of we can
express

and similarly that

where is given by (15). Thus, negative powers of in (54)
sum up into

Thus, to prove our claim (and because is reachable),
we need to show that vanishes. Sub-
stituting the value for from (51) in the above expression we
get

Recall that , from the proof of Proposition 1,
while satisfies

Thus

identically for all , and hence, taking the limit as we get
the desired conclusion. This completes the proof of claim i).

We first argue that is analytic in . Of course, is
already analytic in by our standing assumption on the location
of the eigenvalues of . (Its poles cancel with the corresponding
zeros of anyway.) We only need to consider . If

is invertible, then has no poles in by [20, Prop. 1].
If is singular, then, once again, we consider

with

With and as before we
define and apply [20, Prop. 1] to deduce that

is analytic in the closed unit disc, for all . By
continuity, has no poles in the open unit disc. Similarly,
the Hermitian part of in is the limit of the Hermitian
part of
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where is given by (50) with replaced by , re-
spectively. A matricial version of a classical identity between or-
thogonal polynomials (of first and second kind [24, eq. (1.17)])
holds here as well

(55)

To verify this, after standard algebraic rearrangement, the left-
hand side becomes

where

and

If is invertible it is straightforward to show that

while

If is singular then, as usual, we replace by their -pertur-
bations and claim the same identities for the relevant limits. This
shows that for all . Hence, so is
since it is analytic in and its Hermitian part is nonnegative
being the limit of the Hermitian part of as .

Remark 6: The expression (49) for can in principle
be obtained in a variety of ways, e.g., using the linear fractional
parametrizations of solutions to related analytic interpolation
problems in, e.g., [20, Th. 2] and [2, Ch. 22], or developed in
analogy with [12, Ch. 11], [13]. However, the singularity of
renders the necessary algebra quite challenging.

Remark 7: The relationship (55) (cf. [24, eq. (1.17)]) between
matricial functions of the “first” and “second-kind” generalizes
to a two-sided version. Indeed, if we introduce analogous quan-
tities for a right fraction

by taking as in (46) and

then these satisfy

(56)

In the above we subscribe , setting and
, to highlight “left functions” since are the en-

tries of the left fraction of .

VIII. MULTIVARIABLE “RESIDUES”; AND SINGULAR PARTS

We begin with

(57)

as given in (52), suppressing the subscript “ME” for conve-
nience. When , then remains invertible in the closed
unit disc and (55) readily implies that

(58)

cf. (48). However, when is singular, the variance of the min-
imal prediction error is also singular (see Proposition 2) and
(48) may no longer be valid. The boundary limit of the Hermi-
tian part defines a measure which may no longer be absolutely
continuous. However, because is rational the singular part
consists of finitely many disconinuities in . In order to sep-
arate the singular part from the absolutely continuous, we need
to isolate the boundary poles of . Accordingly, de-
composes into a sum of “lossless” and “lossy” components—
the lossless part being responsible for the singular part of the
measure.

In the case where is scalar-valued, the multiplicity
of any pole

cannot exceed one and decomposes into

with

where the first term is “lossless” and the second,
, has no singularity at . Conformably

where denotes the angle of (i.e., ) and
is continuous at . Thus, in general

and the corresponding measure

Analogous facts hold true in the multivariable case with some
exceptions. Singularities in may not necessarily be associ-
ated with discontinuities in the measure and, while can
have poles with higher multiplicity on the boundary of , these
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may not have geometric multiplicity exceeding one. When
has poles on the boundary, these are associated with discontinu-
ities and our interest is to show how to decompose into a
lossless and a lossy part, in general, and thus isolate the singular
part of the measure. We first discuss the significance of being
singular. With as in (53) and as in Proposition
1 it holds that

(59)

This can be verified directly (by careful algebra). It can also
be shown via a limiting argument, replacing with

(as in the proof of Theorem 6) and
invoking [20, eq. (23)] to show that a similar identity holds for
the perturbed quantities for all , hence for their limits as
well. A direct consequence of (59) is the following.

Proposition 2: Let satisfy (4a-d), sat-
isfy (5), and the -minimal value of subject to (27). If

, then .
Proof: The pair is a reachable pair since it is

obtained from after a state-feedback transformation and
an invertible input tranformation. Then, must be the reacha-
bility Grammian from (59) which cannot be singular.

Example 1: Elementary scalar examples suffice to demon-
strate how singularities of can give rise to poles of on

. To see that this may not always be the case consider
as in (3) with and , and let which is now
block-Toeplitz as in (1) have entries

and

Then

and

Both and are singular while the eigenvalues of are
.

Next, we present some general facts about lossless rational
matrices in . If then

where

...

and block diagonal with blocks of the form of size
equal to the size of . Then but it is also lossless,
which amounts to a.e. on . It is a
consequence of the Herglotz representation that, modulo a state

transformation and an additive skew-Hermitian summand in ,
any rational lossless function is necessarily of this form. An al-
ternative characterization of lossless functions can be obtained
via the well-known positive real lemma (e.g., [14]) which, for
the case where the Hermitian part is to be identically zero, spe-
cializes to the following.

Proposition 3: A rational function
belongs to and has Hermitian part identically equal to zero
a.e. on the boundary of the unit circle if and only if there exists

such that

(60)

(61)

(62)

Proof: The nonnegativity of

(63)

along with is equivalent to
by the positive real lemma (see [14, p. 70]). Now, consider its
Hermitian part

and note that the null space of the mapping

where

consists of matrices of the form

It readily follows that if conditions (60)–(62) hold, then the
function is lossless. If on the other hand (60)–(62) do not hold
and (63) is simply nonnegative but not zero, then it can be
shown that the Hermitian part can be factored into the product
of nonzero spectral factors (cf. [14, p. 125]).

Returning to (57), in case has all its eigenvalues in the
open disc , then (48) is valid and (58) holds as well for all .
In case has eigenvalues on , we need to decompose
into a lossless and a lossy summands. To do this, select
matrices whose vectors form bases for the eignespaces of
corresponding to eigenvalues on and those in the interior of
the disc, respectively. Then, transforms into a block diagonal
matrix
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where and the spectrum of is on the boundary
and of in the interior of the unit disc, respectively. The input
and output matrices transform conformably into

and

Then, we need to determine a value for a constant so that

is lossless. Necessarily, the remaining term
is in and is devoid of singularities on the boundary.

The transformation above, can be chosen so that is
unitary, since has only simple eigenvalues on . Then con-
dition (60) leads to the commutation and, hence,
that is a polynomial function of , i.e., that

The vector of coefficients can now be computed
from (61) which becomes

When , this is an overdetermined set of equations which
is certain to have a solution. Finally, we may take

to satisfy (62) and ensure that is lossless. The matricial
residues which represent the discontinuities in can now
be computed by taking suitable limits at the singularities of

Evidently, if is first brought into a diagonal form, then a
convenient closed expression for the limit can be given in terms
of partitions of corresponding to the eigenvalue .

IX. IMPOSSIBILITY OF DECOMPOSITION INTO WHITE NOISE

DETERMINISTIC PART

For the case of a scalar stochastic process ,
where , any state-covariance can be written as

where

with being the solution to the Lyapunov equation

and the smallest eigenvalue of the pencil , i.e.,

(64)

(65)

The matrix is the controllability Grammian of the pair
and represents the state-covariance when the input is

unit-variance white noise. Then represents the
maximal summand of that can be attributed to a white-noise
input component of (2), while the remaining corre-
sponds to a deterministic input part. It can also be shown that
this decomposition is canonical in the sense that any other one,
consistent with a “white noise plus deterministic part” hypoth-
esis for the input, will have a larger number of deterministic
components (i.e., spectral lines). This is the interpretation of
the CFP decomposition. The theory was originally developed
for ’s having a Toeplitz structure [26], [32] and extended to
general state-covariances in [17] and [18].

It is rather instructive to present a derivation of the fact that,
when , the equivalent conditions iii) and iii-a) of Propo-
sition 1 are automatically satisfied by any singular state-covari-
ance. This underscores the dichotomy with the multivariable
case where a decomposition of consistent with a “white noise
plus deterministic part” input is not always possible (see Exam-
ples 1 and 2).

Proposition 4: Let satisfy (5b) in Theorem 1,
let and singular, and let . Then is
invertible (i.e., is nonzero, since it is only a scalar
quantity).

Proof: Suppose that is not invertible. Then

and (66)

(67)

From (5b) and (66), it follows that
, and hence, that . From (67),

. By induction, using (5b), it follows that

for

and hence, that is -invariant. But and so
is the largest -invariant subspace containing . Because

is a reachable pair, which contradicts the
hypothesis that is singular.

The following example shows that the statement of the propo-
sition is only valid when and that, in general, a decom-
position of consistent with a “white noise plus deterministic
part” input is not always possible.

Example 2: Let

and
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where, as usual, and are the 2 2 identity and zero ma-
trices, respectively. It can be readily seen that they satisfy con-
ditions (4) as well as (5b) in Theorem 2— being a block-
Toeplitz matrix. Then and singular. To see this note that
the first three principal minors of are positive definite while

If the input to (2) is white noise with variance the 2 2 non-
negative matrix

then the state-covariance (for the chosen values of and
corresponding to this white-noise input) is

We claim that

To prove this, consider that from which we obtain

(68)

Now, if then and .
Therefore

(69)

Thence, if

either or

In either case, and hence all three from
(69). Thus, and as claimed.

While the previous example shows that no white noise com-
ponent can be subtracted in the hope of reaching a state-covari-
ance satisfying condition iii) in Proposition 1 (thus corresonding
to pure sinusoids), more is true. The following example shows
that the off-diagonal block-entries of a block-Toeplitz already
prevent condition (iii) from being true.

Example 3: Let as in Example 2 and

In order for condition iii) of Proposition 1 to hold, the null space
must have a dimension (which can

also readily seen from condition iii-a) as well). We argue that
this cannot happen. Since

is a principle minor of , neither nor can vanish. The
rank of

must be equal to one, since there is a 3 3 minor of with
determinant . Hence, .
But then, the northwest 3 3 principle minor of is equal to

, which contradicts .

X. DECOMPOSITION AS A CONVEX OPTIMIZATION PROBLEM

We have just seen that in the case of a vectorial input, a de-
composition of the state-covariance of (2) which is consistent
with the hypothesis of “white noise plus a deterministic signal
at the input” may not always be possible (as demonstrated in,
e.g., Example 3). Yet, the CFP dictum admits an alternative in-
terpretation. Referring to (65) the CFP decomposition identifies
the maximal-variance white noise component at the input. The
fact that it leads to a splitting into white noise plus a determin-
istic signal for scalar inputs, may be seen as a lucky coincidence.
Thus, for the case of multivariable inputs, we may interpret the
CFP dictum as suggesting the selection of a maximal-variance
white input component. In general, such a component will have
a covariance which needs to be non-negative definite, i.e.,

(70)

Then, also, the state covariance which is due to such
a white noise input is the unique solution of the Lyapunov
equation

and needs to satisfy

(72)

(73)

Condition (72) follows from (71) together with the standing as-
sumption (4). The remaining (70), (71), and (73) define a subset
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of which is convex. Thus, the CFP dictum may be reinter-
preted to seek a suitable extremal element in this set. In partic-
ular, we may choose to select a so as to account for a max-
imal-trace summand of which may be due to a white noise
input. This is formulated as follows.

Problem 1: Given satisfying (4), , and (5a) in
Theorem 1, determine a decomposition

(74)

where the summands satisfy (70), (71), (73) and has
maximal trace, i.e.,

trace (70) (71) (73) hold

(75)

This is a standard convex optimization problem since the total
noise variance trace is a linear functional of the param-
eters in and all constraints appear in the form of linear matrix
inequalities. Thus, it can be readily and efficiently solved with
existing computational tools [7].

It should be pointed out that, in general, there is no maximal
element with respect to the partial order induced by non-nega-
tive definiteness and hence, alternatives to (75) corresponding to
a different “normalizations” are also possible and give different
solutions. For instance,

trace (70) (71) and (73) hold

(76)

with a “weight” to encapsulate “prior” information
about the directionality of the noise, or

trace (70) (71), (73) hold (77)

may be used instead.
Later, we present an example which shows that a maximum-

trace solution as above, in general, does not lead to a decompo-
sition with corresponding to a deterministic signal [i.e.,
satisfying (35)] even when an alternative decomposition does.
Thus, the condition on invertibility of in Theorem
4 is not expected to hold in general and the theory in Section VIII
may be used to construct the respective power spectra.

Example 4: With as in Example 1, consider the state-
covariance

where the block-diagonal entries are yet unspecified. The values
for these entries can be explicitly computed in the following two
cases:

i) is invertible;
ii) trace is minimal;

while always .

The first can be carried out as follows. Condition i) is equiv-
alent to the existence of a matrix

such that is the zero matrix. Denote

and

Since

while

we deduce that

(78)

(79)

Equation (78) leads to and, if we
factor with

we deduce that must be unitary. Then from (79) we
determine the eigenvalues of . Carrying out all computations
explicitly leads to

and

where . The values in is the unique set of
values for which i) holds.

Similarly, the computation of the state-covariance with min-
imal trace as in ii) can be carried out explicitly to give

Finally, it is easy to check that is indefinite.

XI. SHORT-RANGE CORRELATION STRUCTURE

The rationale for the CFP decomposition has been re-cast in
Problem 1 as seeking to extract the maximal variance that can be
attributed to white-noise. In the case where is block-Toeplitz
as in (1), this amounts to determining a block-diagonal matrix
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of maximal trace satisfying the required positivity con-
straints (70), (71), (73). Yet, it is rarely the case in practice that
a “white-noise” hypothesis is valid. Thus, we herein propose
a new paradigm-a paradigm that also leads to a convex opti-
mization problem and encompasses the above interpretation of
the CFP decomposition as a special case. We seek to identify a
maximal-variance summand which has a “short-range correla-
tion structure” defined as follows.

Definition 1: Given satisfying (4) a state-covariance
of the system (2) has correlation range if there exists a matrix

so that

...
(80)

for suitable matrices , such that

(81)

and

(82)

It is insightful to first consider the case where are given
as in (3) and the state-covariance structure is
block-Toeplitz. A block-Toeplitz matrix has correlation range

if it is block-banded with all entries beyond the th one being
zero and, most importantly, it remains a covariance matrix when
extended with zero elements beyond the th entry as well. This
is equivalent to being
an admissible extension since already

from (82) because and .
Example 5: The following elementary example helps illus-

trate the concept of bounded correlation range. Consider the
Toeplitz matrix

We seek a Toeplitz noise-covariance summand of maximal trace
with correlation range 1, i.e., we seek

so that , and . Since is
only of degree one, if and only if .
The solution turns out to be and .

Instead, if we sought diagonal corresponding to white
noise, the answer would have been .
It can be easily checked that .

Thus, colored MA-noise allows a larger amount of energy to be
accounted for.

Problem 1 with condition (71) replaced by

having correlation range (83)

is also a convex optimization problem. In general, the posi-
tive-real constraint (82) can be expressed as a convex condition
via the well-known positive-real lemma (e.g., see [14]), and the
maximizer of the trace can be readily obtained with existing nu-
merical tools (e.g., the Matlab LMI toolbox).

In the case (2) has nontrivial dynamics, the right hand side of
(81) becomes

and can be interpreted as the state covariance due to colored
noise at the input with spectral density

In a follow-up publication [22] we explain the relevance of such
a decomposition for Toeplitz and, accordingly, scalar input
and band-Toeplitz as in Example 5. A detailed study
on the full potential of decomposition according to “correlation
range” for high resolution spectral analysis will be presented in
a forthcoming report.

XII. CONCLUDING REMARKS

The CFP decomposition underlies many subspace identifica-
tion techniques in modern spectral analysis (such as MUSIC,
ESPRIT, and their variants [32]). But in spite of its importance
and its extensive appearance in many guises in the identification
and signal processing literature, no multivariable analog had
been proposed. Perhaps the reason can be sought in the fact that
the exact analog of the CFP-decomposition does not exist. This
realization led us to alternative interpretations of the CFP-de-
composition, and the goal of this paper has been to explore such
alternatives for a “signal plus noise” decomposition of covari-
ances for multivariable processes. In the process, we have found
that (e.g., see Example 3 and Section IX) regardless of how
much of the energy is accounted for by noise, the remaining en-
ergy, in general, cannot be accounted for by pure spectral lines
only. The remaining energy necessarily corresponds to a sin-
gular covariance matrix and thus, Sections VII and VIII develop
the needed theory to construct spectra for singular matrices. Fi-
nally Sections X and XI develop certain alternatives to the CFP
decomposition where we forgo the requirement that one part is
completely deterministic, and allow instead that it has a long
range correlation structure.
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