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Abstract

The purpose of this paper is to describe certain alternative metrics for quantifying distances between
distributions, and to explain their use and relevance in visual tracking. Besides the theoretical interest, such
metrics may be used to design filters for image segmentation, that is for solving the key visual task of
separating an object from the background in an image. The segmenting curve is represented as the zero level
set of a signed distance function. Most existing methods in the geometric active contour framework perform
segmentation by maximizing the separation of intensity moments between the interior and the exterior of
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an evolving contour. Here one can use the given distributional metric to determine a flow which minimizes
changes in the distribution inside and outside the curve.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We present certain natural distance measures between distributions and discuss their relevance
in the context of visual tracking. These measures have their origin in different disciplines and
were devised for different purposes. Yet, as it turns out, they are both quite effective in discern-
ing differences between distributions and can be equally well applied for tracking using visual
information.

Image segmentation has been a topic of extensive research in the computer vision community;
see [1–6] and the references therein. In particular, geometric active contours (GAC) have been
successfully used for this task. Most of these methods use photometric information such as
intensity, color or texture to segment an object. In the GAC framework, an image based energy
functional, typically a function of the image intensity moments, is minimized to separate an object
from the background. More specifically, a closed curve C, represented implicitly as the zero level
set of a signed distance function [7,8], is evolved so that it minimizes an image based energy
functional. In this work, we propose to minimize a novel functional which represents the distance
between the probability distribution function (pdf) inside and outside the curve C, i.e., the distance
between the pdf of the object and the background. This will allow us to combine statistical and
geometric information into one dynamic segmentation framework based on the theory of curve
evolution.

The contents of this note is as follows. In Section 2, we review some of the key metrics for
distributions, analyze their properties, and describe a possible classification. Next in Section 3, we
describe some of the necessary ideas in curve evolution theory and level sets which will need for
image segmentation. Accordingly, in Section 4 we describe our geometric statistical segmentation
scheme, for which we perform some experiments on real data in Section 5. Finally, in Section 6
we draw some conclusions and directions for future research.

2. Metrics

We consider bounded distributions fi(x), i = 1, 2, with x ∈ X ⊂ Rk and k ∈ {1, 2, 3}, or
with X being a discrete set (finite). These may represent power spectral or probability densities
of multi-dimensional random processes or variables. We assume that they are either integrable
or summable, depending on the nature of their support set. In visual tracking these distributions
typically characterize the spatial/texture profile of parts of an image. In order to identify and
track objects based on visual information, one needs a natural distance measure that may capture
relevant changes, at different parts of the viewing field.

Although a wide range of distance measures are available to metrize spaces of functions, when
it comes to non-negative distributions, it is often of essence to acknowledge their structure as
a non-negative cone. Two main alternative possibilities are appropriate and will be considered
herein. They originate in statistics and prediction theory, respectively.
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2.1. Fisher metric, Hellinger discrimination and Bhattacharyya distance

Let for now X be a discrete finite set and let

pi(x) := fi(x)∑
Xfi(x)

be considered as probability densities on X. The relative information between p1 and p2 ([9], see
also [10])

S(p1‖p2) :=
∑
X

p1 log

(
p1

p2

)

has been introduced as an appropriate measure for discriminating between the two. Alternatively,
S(p1‖p2) also represents the degradation of coding efficiency when selecting an optimal code
based on a random source with probability distribution p2 when the actual distribution is in fact
p1. It is well known that X(p1‖p2) � 0 and vanishes only when p1 = p2. However, it is not a
metric.

The Kullback–Leibler divergence (as it is usually called in information theory) induces a
Riemannian metric on the manifold of probability densities on X. This is known as the Fisher
information metric

S(p‖p + �) � gFisher,p(�) =
∑
X

�(x)2

p(x)
(1)

(with
∫
X

f (x)dx = 1 and
∫
X

�(x)dx = 0 since both f , f + � need to be probability densities).
Consider the map

p(x) �→ u(x) :=2
√

p(x). (2)

Clearly, this maps the probability simplex (of non-negative functions on X which sum to 1) onto
the first orthant of the sphere

∑
X u(x)2 = 4, and in fact turns out to correspond to distances

defined on the probability simplex measured by the Fisher metric to Euclidean distances (e.g.,
see [11,12]).

Thus, it turns out that geodesics map to great circles, and distances in the Fisher metric on
the probability simplex correspond to lengths of arcs on the sphere. The so-called Bhattacharyya
distance [13]

B(p1‖p2) :=
∑
X

√
p1(x)p2(x)

is the cosine of the geodesic arc between the two image points under (2) of the two distributions.
The length of the geodesic arc defines a metric on the probability simplex, and so does the angle

D(p1, p2) :=arccos(B(p1‖p2)).

These are equivalent. Yet another alternative equivalent metric is the Euclidean distance between
the end points, which is what is known as the Hellinger discrimination [14]

H(p1, p2) :=
∑
X

(√
p1(x) −√

p2(x)
)2

.

The study of the differential structure induced by the Fisher information metric on probability
simplices is the subject of Information Geometry [11]. For our purposes we explore these and
their continuous counterparts
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d(f1, f2) := arccos
∫
X

√
f1∫
f2dx

√
f1∫
f2dx

dx (3)

and

h(f1, f2) :=
∫
X

(√
f1∫
X

f1
−
√

f2∫
X

f2

)2

. (4)

as distances between distributions fi(x), x ∈ X. In general, d(f1, f2) defines a pseudo-metric
since, due to normalization, it is insensitive to scaling.

2.2. Degradation of predictive variance and generalized means

In a manner completely analogous an alternative differential structure can be placed on distri-
bution functions that has its origin in prediction theory. This we explain next.

Consider initially the case where X = [−π, π ] and fi , i = 1, 2, represent power spectral
densities of discrete-time zero-mean stochastic processes ufi

(k) (i ∈ {1, 2} and k ∈ Z), and let
afi

(�) (� ∈ {1, 2, 3, . . .}) represent values for the coefficients that minimize the linear prediction
error variance

E

⎧⎨
⎩
∣∣∣∣∣ufi

(0) −
∞∑

�=1

a(�)ufi
(−�)

∣∣∣∣∣
2
⎫⎬
⎭ .

Thus, the optimal set of coefficients depends on the power spectral density function of the process,
a fact which is acknowledged by the subscript in the notation afi

(�). It is reasonable to consider as a
distance between f1 and f2 the degradation of predictive error variance when the coefficients a(�)

are selected assuming one of the two, and then used to predict a stochastic process corresponding
to the other spectral density function.

The ratio of the “degraded” predictive error variance over the optimal error variance

ρ(f1, f2) := E{|uf1(0) −∑∞
�=1af2(�)uf1(−�)|2}

E{|uf1(0) −∑∞
�=1af1(�)uf1(−�)|2}

turns out to be equal to the ratio of the arithmetic over the geometric means of the fraction of the
two spectral density functions, namely

ρ(f1, f2) =
(∫

X
f1(x)
f2(x)

dx
)

exp
(∫

X
log

(
f1(x)
f2(x)

)
dx
) ,

see [15]. The derivation is based on classical least-variance prediction theory. Obviously, the
above ratio is always greater than or equal to 1 (see also e.g., [16]). But then, the logarithm

log ρ(f1, f2) =: δ(f1, f2)

represents a measure of dissimilarity between the “shapes” of f1 and f2 and, can be viewed, as
analogous to “divergences” of Information Theory (such as the Kullback–Leibler relative entropy
discussed earlier). Indeed,

δ(f1, f2) = log

(∫
X

f1(x)

f2(x)
dx

)
−
∫
X

log

(
f1(x)

f2(x)

)
dx (5)

vanishes only when f1/f2 is constant on [−π, π ] and is positive otherwise.
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If we consider the distance δ(f, f + �) between a nominal power spectral density f and a
perturbations f + �, and if we eliminate cubic terms and beyond, we are led (modulo a scaling
factor of 2) to the Riemannian pseudo-metric

gf (�) :=
∫
X

(
�(x)

f (x)

)2

dx −
(∫

X

�(x)

f (x)
dx

)2

(6)

on density functions. It is a pleasant surprise to realize that, geodesic paths fτ (τ ∈ [0, 1]) con-
necting spectral densities f0, f1 and having minimal length∫ 1

0

√
δ(fτ , fτ+dτ ) =

∫ 1

0

√
gfτ

(
�fτ

�τ

)
dτ

can be explicitly computed [15]. These turn out to be logarithmic intervals (also referred to as
exponential families),

fτ (x) = f 1−τ
0 (x)f τ

1 (x) for τ ∈ [0, 1] (7)

between the two extreme points. Furthermore, the length along such geodesics can be explicitly
computed in terms of end points

dgeodesic(f0, f1) :=
√∫

X

(
log

f1(x)

f0(x)

)2

dx −
(∫

X

log
f1(x)

f0(x)
dx

)2

. (8)

Clearly, the latter expression is the “standard-deviation” of the difference

log(f1) − log(f0).

This is a pseudo-metric, since this too does not account for constant multiplicative factors.
It is interesting to compare the differential structure on power spectral density functions with

the corresponding differential structure of Information Geometry introduced earlier. Direct com-
parison reveals that the powers of f (x) in (6) and in the Fisher information metric (1) are different.
The latter, in case X ⊂ Rk , can be written in the form

gFisher,f (�) =
∫
X

�(x)2

f (x)
dx (9)

(with
∫
X

f (x)dx = 1 and
∫

�(x)dx = 0 since both f , f + � need to be probability densities).
Thus, it is curious and worth underscoring that in either differential structure, geodesics and
geodesic lengths can be computed explicitly in analytic form. Such cases are rare indeed.

It is rather straightforward to extend the above concepts to instances where X is a subset of
Rk , with k > 1, or a discrete set. In particular, the analog of (8) is again a pseudo-metric.

3. Curve evolution and level sets

As we alluded to above, we will use the above metrics on distributions to propose novel
algorithms for image segmentation and tracking. This will be based on proposing an energy
functional formed from such metrics, and minimizing the function via gradient descent. Since the
boundary of the object we wish to extract may be defined by a planar curve, this leads naturally
to the notion of curve evolution. This will be briefly described in this section together with the
corresponding level set implementations. Details about such methods may be found in [7,8].

The level set methods of Osher and Fedkiw [7] and Sethian [8] offer a natural and numeri-
cally robust implementation of such curve evolution equations. Level sets have the advantage of
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being parameter independent (i.e. they are implicit representations of the curve) and can handle
topological changes naturally. The basic idea of the level set approach is to embed the contour
C as the zero level set of a graph � : R� → R, and then evolve the graph so that this level set
moves according to the prescribed flow. In this manner, the level set may develop singularities
and change topology while � itself remains smooth and maintains the form of a graph. Typically,
� is chosen to be a signed distance function.

More precisely, let C(s, t) : S1 × [0, τ ) → R2 be a family of curves satisfying the following
evolution equation:

�C

�t
= βN, (10)

where N denotes the unit inward normal. Then as we will show below, we can embed this family
of curves in a two dimensional surface, and then solve the resulting equations of motion using a
combination of straightforward discretization, and numerical techniques derived from hyperbolic
conservation laws and Hamilton–Jacobi theory.

The embedding step is done in the following manner: The curve C(s, t) is represented by the
zero level set of a smooth and Lipschitz continuous function � : R2 × [0, τ ) → R. Assume that
� is negative in the interior and positive in the exterior of the zero level set. (In what follows
below C(t) refers to the point-set defined by the parametrized curve C(s, t).) We consider the
zero level set, defined by

{X(t) ∈ R2 : �(X, t) = 0}. (11)

We have to find an evolution equation of �, such that the evolving curve C(t) is given by the
evolving zero level X(t), i.e.,

C(t) ≡ X(t). (12)

By differentiating �(X(t), t) = 0 we obtain

∇�(X, t) · Xt + �t (X, t) = 0. (13)

Note that for the zero level, the following relation holds:

∇�

‖∇�‖ = N. (14)

In this equation, the left side uses terms of the surface �, while the right side is related to the
curve C. Combining equations (10)–(14) gives

�t + β(κ)‖∇�‖ = 0 (15)

and the curve C, evolving according to (10), is obtained by the zero level set of the function �,
which evolves according to (15).

4. Image segmentation

Our main point is to explain how the earlier distances between distributions may be used in a
segmentation scheme. As explained in the previous section, we consider objects as represented
by closed curves enclosing their boundary. We use the level set methodology [7,8] which is based
on implicit representations of contours. Thus, a curve C is represented as the zero-level set of a
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higher dimensional function, typically a signed distance function φ : R2 → R. The advantage of
this representation is that it allows for natural breaking and merging of curve topologies.

Differentiating between the interior and exterior of curves, which represent objects, can be
done in a variety of ways. Typically, the intensity or color may be used to differentiate an object
from its background. However, this is not always possible and one has to rely on more subtle
cues. Indeed, it is often the case that a probability or spectral distribution of various photometric
features that are important. Thus, the idea is to map the interior of a curve into a distribution
function Pin and, similarly, map the exterior into a second distribution function Pout. These may
be chosen to represent histograms of various photometric parameters as they occur in the respective
domains (e.g., probability density functions pi , i = 1, 2 as in Section 2.2), or may represent the
spectral power of spacial variations of such photometric parameters in the two domains (e.g.,
spectral density functions fi , i = 1, 2 as in Section 2.2). Then, the task of segmentation amounts
to drawing a curve for which the distance between Pin and Pout is maximal. Similarly, the task
of tracking an object amounts to re-drawing a curve in subsequent frames in such a way so that
the distance between Pin and Pout remains maximal. Thus, the rôle of a distance metric between
distributions is evident.

Below we explain how such distributions can be obtained in simple cases, and then how to
determine the steepest-decent perturbation of a curve in the direction of maximizing the dis-
tance between Pin and Pout. This leads to a partial differential equation which performs tasks of
segmentation and tracking.

Let us begin with the simplest case where x ∈ R2 specifies the coordinates in the image plane of
a pixel. Let I : R2 → Z be a mapping from the image plane to the space of a certain photometric
variable such as intensity, a color vector, a texture vector, etc. Define Pin (and similarly Pout)
via

Pin(z) =
∫
ω

K(z − I (x))dx∫
ω

dx
=
∫
ω

K(z − I (x))dx

Ain
, (16)

which is the non-parametric kernel density estimate of the pdf of z for a given kernel K . Typ-
ical choices for K are the Dirac delta function δ(·) and the Gaussian kernel given by K(y) =

1√
2πσ 2

exp (−y2/2σ 2). The rest of the derivation is independent of the choice of the kernel K .

For the case of curve evolution, Pin is the density of the region inside the curve C. Thus, ω is the
region enclosed by C, and Ain is the area of ω. Writing (16) in terms of the level set function φ,
we get

Pin(z) =
∫
� K(z − I (x))H(−φ(x))dx∫

� H(−φ(x))dx
, (17)

where H is the Heaviside step function and � is the whole image domain. Similarly, Pout(z) can
be written as

Pout(z) =
∫
� K(z − I (x))H(φ(x))dx∫

� H(φ(x))dx
. (18)

A analogous formalism may be used to generate bounded distributions which represent spectral
content of spacial variabilities in the two domains. Thus, in general, z ∈ Z is a vector and may
include spacial frequencies as well. Then, as a distance functional

d(Pin, Pout), (19)
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we may select any of B(Pint‖Pout), H(Pint‖Pout), δ(Pint‖Pout), or dgeodesic(Pint‖Pout) that we
introduced earlier.

For concreteness, we outline the steps for the case of the Bhattacharyya distance B(Pint‖Pout)

(following [17]). Computing the first variation of the distance functional we get

∇φB = 1

2

∫
Z

(Pin(z)Pout(z))
−1/2

(
�Pin(z)

�φ
Pout(z) + Pin(z)

�Pout(z)

�φ

)
dz,

where

�Pin(z)

�φ
= δε(φ)

Ain
(Pin(z) − K(z − I (x))),

�Pout(z)

�φ
= δε(φ)

Aout
(K(z − I (x)) − Pout(z))

and δε(φ) denotes a Dirac delta function at φ(x) = ε. Combining the above, we obtain the
following partial differential equation:

�φ(x,t)
�t = −Bδε(φ)

2

(
1

Ain
− 1

Aout

)
− δε(φ)

2

∫
Z

K(z − I (x))
(

1
Aout

√
Pin(z)
Pout(z)

− 1
Ain

√
Pout(z)
Pin(z)

)
dz.

(20)

Throughout, Ain and Aout signify the areas inside and outside the curve, respectively. The first
term in the above partial differential equation determines the “global” direction in which the entire
curve moves, whereas the second term determines the “local” evolution direction.

5. Experiments

To test the feasibility of our distribution distance approach to image segmentation, we applied
the flows to some medical imagery. Specifically, we employed the Bhattacharyya statistical flow
given by Eq. (20) using the Dirac delta function kernel as explained above. In both cases presented
in this section, the photometric variable employed was intensity. In principle, the flow may be
applied to textures, color, and in fact to any type of vector-valued imagery.

The results of our experiments are shown in Figs. 1 and 2. In both sequences, we show an
initial active contour on the left hand side and the progressive evolution from left to right.
In Fig. 1, the active contour extracts the left ventricle from a magnetic resonance (MR) cardiac
image. In Fig. 2, we show how the contour can be used to segment the (hip) bone from a computed

Fig. 1. Active contour capturing left ventricle in MRI image.
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Fig. 2. Active contour capturing bone in CT image.

tomographic (CT) image. The convergence was very fast and clearly very accurate, taking less
than a second on a simple Dell laptop.

6. Concluding remarks

In this work, we have described some common metrics on the space of distributions as well as
the novel one from [15]. These metrics may be used to define statistically based energy functions
on photometric image domains to be used to formulate an interesting class of segmentation and
tracking algorithms. Indeed, one can segment an image in the geometric active contour framework
by minimizing such an energy which is constructed from the distance measure between the pdf
inside and outside the evolving contour C.

We demonstrated the utility of this methodology on some real images following [17]. The
method is capable of separating regions even with the same mean and variance but differing
only in the third and higher order moments. In future work, we will investigate and compare
some of the other metrics for visual tracking as well as for segmentation in noisy and cluttered
domains. We believe that by adding statistics to the geometric active contour method, one can
utilize both geometric and statistical information in order to forge much more robust and versatile
segmentation and tracking schemes.
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