
IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 8, AUGUST 2007 561

An Intrinsic Metric for Power
Spectral Density Functions

Tryphon T. Georgiou

Abstract—We present an intrinsic metric that quantifies dis-
tances between power spectral density functions. The metric was
derived by Georgiou as the geodesic distance between spectral
density functions with respect to a particular pseudo-Riemannian
metric motivated by a quadratic prediction problem. We provide
an independent verification of the metric inequality and discuss
certain key properties of the induced topology.

Index Terms—Information geometry, intrinsic metric, power
spectral density functions.

I. METRIC PROPERTY

THIS letter builds on a recent report [4] where the present
author introduced a natural pseudo-Riemannian metric

on power spectral density functions of discrete-time stochastic
processes, characterized geodesics, and computed geodesic
distances. The geodesic distance between two power spectral
density functions , with , and , was
shown to be

(1)
In the following, we will provide a direct verification that

provides a pseudo-metric on the cone of power spectral
density functions

for

As usual, denote Lebeague spaces of integrable and
square-integrable functions, respectively.

The only reason is a pseudo-metric and not a
metric is because it is insensitive to scaling, i.e.,

for any . Thus, it does not differentiate
between spectral densities which only differ by a constant
nonzero positive factor. Families of spectral density functions
related in this way are referred to as spectral rays and form a set

for
(2)

of equivalence classes. Thus, can be used to evaluate
distances on via comparing any two representatives on any
two given spectral rays. In fact, defines a metric on .
It can be readily modified to provide a metric on , as well if,
for instance, or the absolute difference
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of any other generalized means is added on to differentiate the
effect of scaling.

Before we proceed, we clarify how to evaluate on all
spectra in , including those that may vanish on a subset of
the frequency interval rendering noninte-
grable. Clearly, when neither argument of vanishes
and stays away from zero on for , then

and is well defined and finite.
However, if either for vanishes on , then
the integrals may diverge. However, since the root mean square
of any function and, hence, of , in particular, is al-
ways greater than or equal to its arithmetic mean (e.g., see [2])
it follows that:

(3)

Therefore, (1) gives either a nonnegative real value or has to be
assigned the value . In conclusion, we complete the defini-
tion of as follows. If

(4)

in which case the left hand side of (3) is finite, is
evaluated using (1). If, however, (4) fails then, for consistency
with (1), we assign

(5)

Clearly, failure of (4) can always be traced to at least one of
failing to satisfy (otherwise,

necessarily, .
Theorem 1: defines a pseudo-metric on and a

metric on .
Proof: By definition, . It is also

easy to observe that

(6)

To see this, note that and that (1)
is impervious to a sign change in front of the logarithms. Also,
in the case one of fails to be in , so
does the other, and again (both being

). Thus, (6) holds.
When , the root mean square of the function

is equal to its arithmetic mean, and this only happens
(see [2]) when the function is constant. Indeed,
implies

for all
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since is a constant. Thus, separates the elements
of .

We finally establish the triangular inequality. So, let us con-
sider for . We will show that

(7)

We first argue the case when . It suffices to show
that one of the left hand side terms is also infinity. Assume the
contrary, i.e., that

as well as

It readily follows that
which contradicts the assumption that

. Thus, at least one of is infinity and the
triangular inequality holds. Of course, if is finite and
any of takes the value , the triangular
inequality holds anyway.

We now argue the case when all three
and are finite. To this end we square both sides of (7)
and utilize

(8)

to simplify the resulting expression and deduce the following
inequality:

(9)

Thus, the two inequalities (9) and (7) are equivalent to one an-
other, and, therefore, in order to ascertain (7), it suffices to es-
tablish (9).

To this end, let and
rewrite (9) in the form

(10)

Since (10) is homogeneous in both and , scaling of either
leaves it unaffected. Therefore, if

and , the inequality (10) is equivalent to

(11)

with the side conditions

(12)

(13)

However, the validity of (11) follows trivially from the standard
inequality

after we expand the squares on both sides and use (12) and (13)
to simplify the resulting expressions. Thus, (11) with (12)–(13)
holds (10) (9) (7), and this completes the proof.

Remark: The definition of distinguishes two classes
of power spectral densities according to whether their logarithm
is square integrable or not. The first class,

, can be thought of as “interior” points lying
to within a finite distance from one another, and to within a finite
distance from constant nonzero power spectral densities. The
second class, with logarithms that fail to be square integrable,
contains power spectral densities which lie at an infinite distance
from any density in . On the other hand, power spectral
densities are traditionally differentiated according to whether
the underlying process is deterministic or not. More specifically,
a stochastic process is said to be nondeterministic (in the sense
of Kolmogoroff) if the variance of the one-step-ahead predic-
tion error cannot be made arbitrarily small. In turn, this property
is characterized by the log-integrability of the corresponding
power spectral density function (see [6] and [7]), i.e.,

Thus, it is interesting to observe that

and that finite neighborhoods in contain nondetermin-
istic power spectra only.

II. RIEMANNIAN GEOMETRY, GEODESICS,
AND INTRINSIC METRICS

We explain the geometric significance of recapitu-
lating some of the development in [4].

The starting point is a prediction problem and the degrada-
tion of the variance of the prediction error when the choice of
predictor is based on the wrong choice among two alternatives.
More specifically, let represent spectral density functions
of discrete-time zero-mean stochastic processes (

and ), and let represent
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values for the coefficients that minimize the linear prediction
error variance

Thus, the optimal set of coefficients depends on the power spec-
tral density function of the process, a fact which is duly ac-
knowledged by the subscript in the notation . Here, as
usual, denotes the expectation operator. It is reasonable
to consider as a distance between and the degradation of
predictive error variance when the coefficients are selected
assuming one of the two, and then used to predict a stochastic
process corresponding to the other spectral density function.

The ratio of the “degraded” predictive error variance over the
optimal error variance

turns out to be equal to the ratio of the arithmetic over the geo-
metric means of the fraction of the two spectral density func-
tions, namely (see [4])

Since

quantifies the dissimilarity between the “shapes” of the two
spectral densities. The same applies to . Both ex-
pressions are analogous to “divergences” of Information Theory
and in fact, coincides with a “gain optimized”
version of the Itakura-Saito distortion measure in the speech
processing literature (cf. [5, p. 371, Section C]).

Considering the distance between a nominal
power spectral density and a perturbations , and elimi-
nating cubic terms and beyond, leads (modulo a scaling factor of
2) to the Riemannian pseudo-metric in which is given
by the following quadratic differential form:

(14)

Interestingly, geodesic paths connecting spectral
densities and having minimal length

can be explicitely characterized [4]. They turn out to be loga-
rithmic intervals

for (15)

between the two extreme points. Furthermore, the length along
such geodesics is precisely as given in (1).

The closed form of the geodesic path allows us to verify di-
rectly that any two power spectral densities at a finite distance

from one another, can be connected with a path of the same
length. A topological space with such a property is said to be
a length-space and the metric is said to be intrinsic. The fact
that is intrinsic can be readily verified and this is done
below.

Proposition 2: is intrinsic on and .
Proof: By direct substitution into (1), we can verify that for

any such that , any , and with
defined as in (15),

, and even . It
readily follows that the length of the path

equals the distance between the end
points.

III. CONCLUDING THOUGHTS

The logarithmic map takes the geodesics in (15)
into straight lines inside a linear space. Thus, the -norm of the
difference between logarithms of power spectral densities, i.e.,

, presents an attractive alternative as a convenient
metric with properties similar to those of .

It has been pointed out by an anonymous referee that for-
mulae involving the Euclidean distance between logarithms of
eigenvalues of covariance pencils of multivariable Gaussian
distributions [1, p.236, item (9)] may point to discrete analogs
of (14).

Finally, it is interesting to compare the differential structure of
with an analogous differential structure introduced in Infor-

mation Geometry [1] for propability densities. Indeed, if
represent probability densities on , then

(16)

which is known as the Fisher information metric, is a natural
Riemannian metric (cf. [1, p. 28] and [3]). This metric can be
derived from the Kullback-Leibler divergence, in a way analo-
gous to the derivation of from , via eliminating higher
than quadratic terms. Direct comparison reveals that the powers
of in (14) and (16) are different. Thus, it is worth under-
scoring the fact that in either differential structure, geodesics
and geodesic lengths can be computed explicitly. Yet, while

maps geodesics (15) of into straight lines, the
-manifold of probability densities is curved [3].
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