The meaning of Distances in Spectral Analysis

$46^{\text {th }}$ IEEE Conference on Decision \& Control
Plenary presentation

Tryphon Georgiou

Electrical \& Computer Engineering
University of Minnesota

Meaning of distances

- maximal separation $\left(L_{\infty}\right)$
- energy-like content (L_{2})
- integral of flow-rate (L_{1})

Power spectra

Periodogram, Blackman-Tukey, Levinson, Durbin, Burg, ...

Spectral analysis

Signals vs. power densities

time-signals

$\left(u_{1}-u_{2}\right)$ "error signal"
power distributions

$\left(f_{1}-f_{2}\right)$ is not a "signal"

Communications

Speech analysis/coding

Medical diagnostics

Noninvasive temperature sensing

Temperature field
with E. Ebbini \& A.N. Amini
In IEEE Trans. on Biomedical Engineering, 2005

Medical diagnostics

Radar (SAR)

http://www.sandia.gov/radar/images/3dsar.gif

Quantitative analysis

\nearrow
different
methods

How can we compare power spectra?

Quantitative analysis

How can we compare power spectra?

How can we compare power spectra?

Question:
what is a natural notion of distance between power spectral densities?

Plan of the talk

Metrics based on
prediction theory
some parallels with information geometry
transport geometry

Case studies \& applications

Setting

$\ldots u_{-1}, u_{0}, u_{1}, u_{2}, \ldots$

$f_{1}(\theta)$

$$
\ldots u_{-1}, u_{0}, u_{1}, u_{2}, \ldots
$$

$f_{2}(\theta)$

What is it we would like to have?

- metric
- meaningful \& natural
candidates?
Kullback-Leibler, Bregman, Itakura-Saito, Makhoul,..
convex functionals
perceptual qualities

Linear prediction

One-step-ahead prediction: $u_{\text {present }}-\hat{u}_{\text {present|past }}$
with $\hat{u}_{\text {present|past }}:=\sum_{\text {past }} \alpha_{k} u_{k}$

$$
E\left\{\left|u_{\text {present }}-\hat{u}_{\text {present } \mid \text { past }}\right|^{2}\right\}=\text { variance of prediction error }
$$

Szegö's theorem

One-step-ahead prediction:

least error variance $=\exp \left\{\frac{1}{2 \pi} \int \log f(\theta) d \theta\right\}$

G. Szegö
it is a geometric mean...

$$
\exp \left\{\frac{1}{3}\left(\log f_{1}+\log f_{2}+\log f_{3}\right)\right\}=\sqrt[3]{f_{1} f_{2} f_{3}}
$$

Degradation of prediction error variance

Use f_{2} to design a predictor (assuming $\left.u_{f_{2}, \text { time }}\right)$.

Then compare how this performs on $u_{f_{1}, \text { time }}$ against the optimal based on f_{1}.

Degradation of prediction variance

arithmetic over geometric mean (≥ 1)

Riemannian metric

$$
\begin{aligned}
& f_{1}=f, \\
& f_{2}=f+\Delta
\end{aligned}
$$

$$
\delta(f, f+\Delta)=\frac{1}{2 \pi} \int\left(\frac{\Delta}{f}\right)^{2} d \theta-\left(\frac{1}{2 \pi} \int\left(\frac{\Delta}{f}\right) d \theta\right)^{2}
$$

variance-like: (mean square) - (arithmetic-mean) ${ }^{2}$

Geodesics

Paths $f_{\mathbf{r}}(\mathbf{r} \in[0,1])$ between f_{0}, f_{1} of minimal length $\int_{0}^{1} \sqrt{\delta\left(f_{\mathbf{r}}, f_{\mathbf{r}+d \mathbf{r}}\right)}$

each point represents a different power spectral density

Geodesics

The geodesics are exponential families:

$$
\begin{aligned}
f_{\mathbf{r}} & =f_{0}\left(\frac{f_{1}}{f_{0}}\right)^{\mathbf{r}}, \quad \mathbf{r} \in[0,1] \\
& =\exp \left\{(1-\mathbf{r}) \log \left(f_{0}\right)+\mathbf{r} \log \left(f_{1}\right)\right\}
\end{aligned}
$$

Geodesic distance: metric

The path-length is

$$
d\left(f_{0}, f_{1}\right):=\sqrt{\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\log \frac{f_{1}}{f_{0}}\right)^{2} d \theta-\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left(\frac{f_{1}}{f_{0}}\right) d \theta\right)^{2}}
$$

variance-like distance on logarithms: (mean square) - (arithmetic-mean) ${ }^{2}$ scale-insensitive, "shape" recognizer

In IEEE Trans. on Signal Processing, Aug. 2007

Information geometry - parallels

$f \leadsto \mathbf{p}$: probability density

$$
I=E_{\mathbf{p}}\left\{\left(\partial_{\lambda} \log \mathbf{p}_{\lambda}\right)^{2}\right\} \quad \delta \lambda^{2}
$$

R. Fisher

Fisher information metric

$$
I=\sum \frac{\Delta^{2}}{\mathbf{p}}
$$

C.R. Rao

Information geometry - parallels

Expected "message-length increase":

R. Leibler

$$
H\left(\mathbf{p}_{1} \mid \mathbf{p}_{0}\right)=\left(-\sum \mathbf{p}_{1} \log \left(\mathbf{p}_{0}\right)\right)-\left(-\sum \mathbf{p}_{1} \log \left(\mathbf{p}_{1}\right)\right)
$$

Fisher information metric

$$
\begin{aligned}
& \mathbf{p}_{0}=\mathbf{p} \\
& \mathbf{p}_{1}=\mathbf{p}+\Delta
\end{aligned}
$$

$$
I=\sum \frac{\Delta^{2}}{\mathbf{p}}
$$

Information geometry - parallels

Geodesics: great circles

$$
\mathbf{p} \mapsto \sqrt{\mathbf{p}} \in \text { Sphere }
$$

Geodesic distance: Arclength
Battacharyya distance

Information vs. prediction-based

$$
\begin{array}{rll}
\sum \frac{\Delta^{2}}{\mathbf{p}} & \text { vs. } & \int\left(\frac{\Delta}{\mathbf{f}}\right)^{2}-\left(\int \frac{\Delta}{\mathbf{f}}\right)^{2} \\
\mathbf{p} \mapsto \sqrt{\mathbf{p}} & \text { vs. } & \mathbf{f} \mapsto \log \mathbf{f} \\
\text { great circles } & \text { vs. } & \text { logarithmic families }
\end{array}
$$

Information geometry - parallels

Ability to differentiate decreases

$$
\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right) \mapsto \mathrm{M}\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)
$$

Chentsov's theorem:
Stochastic maps are contractive
under Fisher metric
and
Fisher metric is the unique Riemannian metric with this property

What is the analog for power spectra?

addititive noise
$f \mapsto f+f_{\text {noise }}$
multiplicative noise
$f \mapsto f \star f_{\text {noise }}$
continuity of moments (second-order statistics)
$f \mapsto$ integrals of f

Transport geometry

Monge-Kantorovich problem minimize cost of transferring mass

$$
\int \operatorname{cost}(x \rightarrow y) \times \operatorname{mass}(d x, d y)
$$

G. Monge

L. Kantorovich

Transport for power spectra

Transport-based metric

distances do not increase
under additive noise
and multiplicative noise with power ≤ 1

+ continuity of statistics

metric $=\min \left(\right.$ cost of $\operatorname{transport}\left(\hat{f}_{0}, \hat{f}_{1}\right)+$ normalization $)$
with Johan Karlsson (KTH) \& Mir Shahrouz Takyar

Prediction-based

 geometry
Transport geometry

applications

Fitting geodesics

K.F. Gauss

Least squares: The theory of motion of heavenly bodies, Gauss, K.F.

Tracking with geodesics

Time

with Xianhua Jiang

Voice \& sounds

John Weissmuller's MGM Tarzan Yell

http://www.complxmind.com

Images \& more

Geometric active contours

$$
\frac{\partial}{\partial t} \text { Curve }=\nabla_{\text {Curve }} \operatorname{metric}\left(f_{\text {inside }}, f_{\text {outside }}\right)
$$

with Romeil Sandhu and Allen Tannenbaum

Images \& more

with Romeil Sandhu and Allen Tannenbaum

Concluding thoughts

Metrics
in spectral analysis

- Operational significance
- Effect of natural transformations

Thank you for your attention

thanks to
Xianhua Jiang

Allen Tannenbaum \& Anders Lindquist
National Science Foundation, AFOSR, and Hermes-Luh endowment

