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Remarks on Control Design With Degree Constraint

Tryphon T. Georgiou and Anders Lindquist

Abstract—The purpose of this note is to highlight similarities and differ-
ences between two alternative methodologies for feedback control design
under constraints on the McMillan degree of the feedback system. Both
sets of techniques focus on uniformly optimal designs. The first is based on
the work of Gahinet and Apkarian and that of Skelton et al., while the other
is based on earlier joint work of the authors with C. I. Byrnes.

Index Terms— control, linear matrix inequalities (LMIs), McMillan
degree constraint, weighted entropy.

I. INTRODUCTION

The McMillan degree of a feedback system is often of key impor-
tance in analysis, design, and implementation. At the analysis and de-
sign stages, numerics are adversely affected by large degrees. Similarly,
for a feedback controller, a large dimension could lead to computational
delays as well as to problems in implementation and robustness. Fi-
nally, a high order dynamical response may be undesirable to a human
who is called to operate a piece of machinery. Thus, it is of interest to
explore effective control design techniques that are capable of incorpo-
rating degree constraints.

Gahinet and Apkarian [11], and Skelton et al. [19] have introduced
a technique for feedback design that allows such a constraint on the
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Fig. 1. Feedback loop.

degree of the controller. Their approach relies on expressing perfor-
mance and robustness by linear matrix inequalities. These inequalities
involve matrices of parameters that specify a class of controllers, while
an added rank condition bounds their dimension. On the other hand,
historically, H1-control theory [9] casts feedback design as an ana-
lytic interpolation problem. Based on this formulation, our recent work
together with C. I. Byrnes on analytic interpolation with degree con-
straint (see, e.g., [4] and [5]) is especially relevant and provides an al-
ternative handle on McMillan degrees in feedback design. The authors
have been repeatedly asked to explain possible contact points between
these two alternative formalisms and sets of techniques. The purpose
of the present note is precisely to address this issue and explain similar-
ities and differences between the two approaches. We have chosen to
contrast the two by working out explicitly the paradigm of sensitivity
minimization in a single-input–single-output setting.

Consider the feedback interconnection in Fig. 1 and let d represent
an external disturbance whose effect on the output is to be minimized.
When the dynamical system is linear, this can be formulated as a stan-
dard H1-minimization problem. The controller is chosen to ensure
internal stability and minimize the gain of the sensitivity function

S =
1

1� PK
(1)

over selected frequency bands. Throughout,P;K represent the transfer
functions of plant and controller and deg(P );deg(K) represent their
respective McMillan degrees. In the standard H1-control formalism
the performance is encapsulated in a weighting function W (s) and
the design specifications cast in the form of ensuring a bound on the
weighted norm

kWSk1 <  (2)

subject to internal stability.
Typically, deg(K);deg(S) depend on deg(P ) and deg(W ) (and,

in fact, they depend on the sum of these two McMillan degrees). Aside
from the resulting “inflation” of the degree for the controller, the choice
of the weight W (s) is a delicate task since it is not at all transparent
how it affects feasibility of the performance specification (2). Indeed,
small changes in the desired bandwidth of the system and the desired
“shape” of S(s) (dictated by our choice of W (s)) may render the
performance specification unattainable. Although the task of choosing
weights in H1-design is somewhat intuitive and more accepted than
that of choosing design parameters in, say, linear quadratic problems,
it is far from straightforward and often a challenging task [10], [23].

Starting from a state–space formalism to H1-control problems [8]
and via a clever use of the bounded real lemma, Gahinet and Apkarian
[11] (see also [19]) expressed the conditions for the existence of a con-
troller that guarantees performance and has a given McMillan degree,
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Fig. 2. Standard feedback interconnection.

in the form of a linear matrix inequality (LMI) with a rank constraint.
Typically, weighting functions are incorporated into the plant descrip-
tion (“inflating” the degree of the “new” plant accordingly). With that
in place, a case which is particularly appealing is when, in our context,
deg(K) = deg(P ). Then the approach in [11], [19] leads to a set of or-
dinary LMIs. Requiring further degree reduction is a highly nontrivial
problem in general.

An alternative viewpoint is to consider the totality of sensitivity func-
tions of a given degree that meet a possibly conservative bound, and
then select a particular one within this class. This hinges upon an effec-
tive parametrization of sensitivity functions of a given degree. Such a
parametrization is in place for the precise class of sensitivity functions
that do not exceed in dimension the sum of unstable plant poles and
non-minimum phase plant zeros [4]. Each such solution is the unique
minimizer of a suitably weighted entropy functional (10). The central
object of interest is therefore the sensitivity function and its dimension
(or, more generally, the transfer function of any closed loop mapping).
Provided the plant is strictly proper and we select the sensitivity func-
tion within this class, it also holds that deg(K) < deg(P ) (see e.g.,
[17]). To determine such controllers by the approach in [11] and [19],
one needs to impose a rank condition, thus destroying the LMI struc-
ture of the problem.

Next, in turn, we compare the two methodologies and illustrate how
they apply on a first-order single-input–single-output example. This
example is sufficiently simple to allow for analytic expressions that
clearly display the similarities and differences between the two, without
blurring the picture.

II. LMI-BASED DESIGN

We begin by explaining the pertinent formalism and key findings in
[11], [19]. Assume the standard setting of a dynamical system G with
two sets of inputs and outputs d; u and z; y, respectively, as in Fig. 2,
and transfer function

G(z) =
D11 D12

D21 D22

+
C1

C2

(zI � A)�1(B1 B2)

with (A;B2; C2) stabilizable and detectable, andD22 = 0.The search
for dynamic controllers

K(z) = DK + CK(zI � AK)
�1
BK

having input y, outputu, dimensiondeg(K), and ensuring anH1-gain
from d to y less than , proceeds as follows. Determine a pair of sym-
metric matrices X;Y of dimensions deg(P )� deg(P ) satisfying

X I

I Y
� 0 (3)

and
B2

D12

?
X 0

0 2I
�

A B1

C1 D11

�
X 0

0 I

A B1

C1 D11

0
B2

D12

?

> 0 (4)

C 02

D021

?
Y 0

0 2I
�

A B1

C1 D11

0

�
Y 0

0 I

A B1

C1 D11

C 02

D021

?

> 0 (5)

where M? denotes any matrix whose rows form a basis of the left
null space of a matrix M . The previous conditions are linear matrix
inequalities and can be easily solved by standard methods.

For any such solution (X;Y ), we have X > 0; Y > 0 and, hence

rank
X I

I Y
= rank(Y � 

2
X
�1) + deg(P ): (6)

Now, compute a factorization

NM
�1
N
0 = Y � 

2
X
�1

with M a k � k invertible matrix, and form the positive–definite
matrices

Ŷ :=
Y N

N 0 M

X̂ =2Ŷ �1
:

For each such X̂ there is a ball of controllers defined by

DK CK

BK AK
= K0 +R

1=2
leftLR

1=2
right

with L any matrix having norm kLk < 1. The center K0 and the radii
Rleft andRright can be computed as in ([19, p. 174]) and the dimension
of the controller is deg(K) = k. Clearly

deg(K) � rank(Y � 
2
X
�1) (7)

i.e., generically,deg(K) � deg(P ). If one desires a controller of lower
dimension, one needs to choose (X;Y ) so that Y � 2X�1 has lower
rank, which destroys the LMI structure of the solution set.

The class of all controllers of dimension deg(K) is the union of all
(possibly overlapping) controller balls obtained by varying X;Y over
the solution set of the earlier LMIs together with the rank constraint.
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Fig. 3. Feedback loop of Fig. 1 in the standard form.

We illustrate this with a simple example, to which we return in the next
section using a different approach.

Consider once again the sensitivity minimization problem with

P (z) =
1

z � 2

and the feedback loop redrawn in Fig. 3 in the standard form. Then, the
parameters of the nominal system G(z) are

A B1 B2

C1 D11 D22

C2 D21 D22

=

2 0 1

1 1 0

1 1 0

:

The linear matrix inequalities (4)–(5) become

( 0 1 )
x 0

0 2
�

2 0

1 1

�
x 0

0 1

2 1

0 1

0

1
> 0

( 1 �1 )
y 0

0 2
�

2 1

0 1

�
y 0

0 1

2 0

1 1

1

�1
> 0

yielding, together with the positivity condition,

0 < x < 
2
� 1 and 0 < y <

2

3
:

Inequality (3) now implies that  > 2. Let us choose

 =
5

2
:

At this point x; y are independent of each other, and in general (7) will
require a controller of degree deg(K) = 1. If we want controllers of
degree deg(K) = 0, i.e., constant gain, we need to take the lower
bound in (7) to be zero, i.e.,

xy = 
2 =

25

4
:

Fig. 4. Range of admissible values for the pair (x;K).

This gives

3 < x < 
2
� 1 =

21

4
:

For each value of x in this range, we compute

K0 = �
2x

1 + x

Rleft =
x2 � 3x

x + 1

Rright =
2 � (x+ 1)

x + 1
:

Hence, the range of controller gains for a given x is

K0 �R < K < K0 +R

where

R : =
x(x� 3)(2 � (x+ 1))

(x+ 1)

=

2
5

x(x� 3)(21
4
� x)

x + 1
:

Fig. 4 displays the range of controller gains over each admissible value
of x. The dashed–dotted curve represents K0 and the solid curves rep-
resent K0 �R as functions of x. A typical interval of admissible con-
troller gains for x = 3:2 is highlighted with a thick vertical line (the
center indicated with a circle and the end points with an asterisk). Then,
the union of all control-gain intervals over the admissible range of x is

�1:8 < K < �1:4: (8)

This range is indicated by dashed lines accross the values of x in Fig. 4.
Figs. 5 and 6, display the range of sensitivity functions (by showing
their respective Bode plots) that can be obtained by choosing K in
the admissible ranges corresponding to values x = 3:2 and x = 5:2,
respectively, for comparison.
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Fig. 5. Range of sensitivity shapes for x = 3:2.

Fig. 6. Range of sensitivity shapes for x = 5:2.

III. ENTROPY-BASED DESIGN

We continue by explaining a formalism based on analytic interpola-
tion with degree constraint developed over the last decade by the au-
thors together with several co-workers; see, e.g., [4], [5], and the refer-
ences therein.

It is well known thatH1-control problems in the most general form
discussed in Section II, can be cast as analytic interpolation problems
[18], [1]. In fact, using the Youla–Kucera parametrization of stabilizing
controllers for (A;B2; C2) (see [9]), the standard control problem in
Fig. 2 can be brought into the form of a so-called four-block interpola-
tion problem of selecting Q so as to minimize or bound

kT1 � T2QT3k1

where Ti; i = 1; 2; 3, and Q are H1-matrix functions of compatible
dimension, Ti, i = 1; 2; 3, obtained from the problem data, while Q

specifies the controller. The class of possible functions T = T1 �

T2QT3 is constrained at the singularities of the Tk’s, k = 2; 3, where
the value of T is independent of Q and agrees with T1, giving rise
to “tangential interpolation” constraints. In turn, analytic interpolation
constraints of a most general nature can be cast as moment constraints
[15], [1], and the theory of analytic interpolation with degree constraint
can be extended to cover the generalized moment problem [7]. While
most of the theory can be carried out in considerable generality (incor-
porating degree constraints, e.g., see [3], and also [13], and [14]), we
restrict our attention to the scalar sensitivity shaping problem.

For disturbance attenuation one needs to prescribe the gain of the
sensitivity function of the feedback system over different frequency
bands according to specification. This was formulated by Zames [22] as
an optimization problem. A stable and stably invertible transfer func-
tion W1 is selected, and the controller K is chosen to minimize the
H1 norm of the “weighted sensitivity”W1S. This choice of controller,
namely

Kopt := arginffkW1Sk1 : K stabilizingg

yields a lower bound

opt = inf
Kstabilizing

kW1Sk1

on the norm of the weighted sensitivity, where S is given by (1). The
optimal weighted sensitivity, whenever it is attained (e.g., see, [22] and
[9]), turns out to be an all-pass function. In fact, because internal sta-
bility can be expressed in the form of the interpolation conditions

S(zi) = 1; i = 1; . . . ; � and S(pj) = 0; j = 1; . . . ; �

(9)

where z1; . . . ; z� are the nonminimum phase zeros of the plant P (z)

and p1; . . . ; p� are the unstable poles [20], it can be shown that

W1Sopt = opt
�

�

where � is a Schur polynomial of degree n = � + � � 1 and �(z) =
zn�(z�1).

Such optimization problems are often very sensitive to the problem
data [21] and, therefore, one could focus instead on stabilizing con-
trollers in the bigger class

K := fKstabilizing : kW1Sk1 < g

with  > opt. The so-called “central solution” in this class of subop-
timal controllers

KME = argmax
K2K

�

��

log(2 � kW1(e
i�)S(ei�)k2)d�

is easily computed in a state–space formalism [16]. This is known as the
maximum entropy solution, and the corresponding weighed sensitivity
function again takes the form

W1SME = 
�

�

where � is a Schur polynomial of degree n and � is a polynomial of
degree at most n.
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It turns out that there is an efficient characterization of all admis-
sible sensitivity functions of degree not exceeding n, which of course
includes the maximum entropy one, in terms of a weighted entropy
functional

�

��

W2(e
i�) log(2 � jW1(e

i�)S(ei�)j2)d� (10)

with

W2 =
�

�

2

(11)

where

� (z) =

�

j=1

z � �z�1j

�

j=1

z � �p�1j

and � ranges over the class Sn of all monic Schur polynomials of de-
gree at most n [5]. For each � 2 Sn, the corresponding optimization
problem has a unique solution

K� = argmax
K2K

�

��

W2(e
i�) log(2 � jW1(e

i�)S(ei�)j2)d�

and the weighed sensitivity function again takes the form

W1S� = 
�

�

where � 2 Sn and deg � is also bounded by n.
These polynomials can be computed via convex optimization [4],

[5]. In fact, the map

' : Sn ! Sn : � 7! �

is a homeomorphism onto its image A := '(Sn) [6], and � can
be computed from the interpolation conditions once � is determined.
Furthermore

j�j2 � j�j2 = �j�j2 (12)

on the unit circle, for some � > 0. The correspondence ' provides
a complete and smooth parametrization of all solutions in terms of
� 2 Sn. The roots of � can be given the interpretation as being ei-
ther transmission zeros of 1


S� thought as the scattering function of a

passive circuit or, as being spectral zeros of an associated spectral den-
sity [4].

The weighted entropy functional in (10) suggests that the polyno-
mial � in (11) can be thought of as a “tuning parameter” in controller
design. For example, � can be chosen to yield large values for jW2j

in a frequency range where low sensitivity is desired. This added de-
gree of freedom does not increase the degree of W1S�. This may often
permit a choice of W1 of low degree, or simply the choice W1 � 1.
The McMillan degree of the controller K� is bounded by

degK� � degP + degW1 � 1

provided the plant P is strictly proper.

We illustrate this approach on the elementary example discussed in
Section II, where

P (z) =
1

z � 2
:

Of course, all computations can be done by hand and the full power
of convex optimization is not needed. Nevertheless, this example high-
lights the differences with the approach of Section II.

Since P has a nonminimum-phase zero at z = 1 and an unstable
pole at z = 2, the interpolation conditions (9) are S(1) = 1 and
S(z) = 0. Consequently, the sentitivity function must take the form

S(z) =
z � 2

z � a

where we must have �1 < a < 1 for S to be analytic in jzj � 1. It is
easy to see that

opt = inf
�1<a<�1

jSj1 = 2:

We select  = 5=2 as before, and write

S�(z) = 
�(z)

�(z)
= 

2

5
z � 4

5

z � a
:

As �(z) ranges over

S1 = fz � r : �1 � r � 1g

the polynomial �(z) ranges over

A = z � a :
1

5
� a �

3

5
:

This can be readily verified from (12) without the need to solve the
optimizaton problem. Indeed, substituting �; � and � in (12) and elim-
inating �, we obtain that

r

1 + r2
a2 � a+

1

5

r

1 + r2
+

8

25
= 0:

The value a as a function of r is plotted in Fig. 7 and represents a
smooth and complete parametrization of all sensitivity functions of de-
gree 1 (and controllers of degree 0). In general, (12) represent quadratic
equations which are difficult to solve directly. In view of (1),

K = (1� S�1)P�1 = a� 2

is of degree zero. Consequently,the range of constant gains that satisfy
kS�k1 <  lie in the interval

�1:8 � K � �1:4 (13)

in bijective correspondence with elements in � 2 S1. (This can also be
verified directly, e.g., by computing k(z�2)=(z�2�K)k1 over the
range of K). Comparing (8) and (13), we see that the current approach
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Fig. 7. a as a function of r.

Fig. 8. Complete range of sensitivity shapes under the degree constraint.

yields the closed interval of admissible controllers. Fig. 8 shows Bode
plots of S� for � = z � r and r 2 [�1; 1] at intervals of 0.25 apart.

A comparison of Figs. 5, 6, and 8 reveals a fundamental difference
between the approach in Section II and that of Section III. In Section III
we parameterize all solutions of degree one in terms of the tuning pa-
rameter r, and consequently the whole range of possible sensitivity
functions are depicted in Fig. 8. In the approach of Section II, the range
of sensitivity functions will depend on the particular solution of the
LMIs (4)–(5) and the rank condition (7). The choice x = 5:2 (Fig. 6)
yields a very narrow subclass of possible sensitivity functions and con-
trollers and the choice x = 3:2 (Fig. 5) a somewhat wider. However,
as is clear from Fig. 4, no choice of x will yield the complete class of
sensitivity functions depicted in Fig. 8 and the corresponding interval
of controllers given in (13). In this respect, note the difference of scale
in Figs. 5 and 8.

IV. CONCLUDING REMARKS

It is important to point out that, in Section III, the range of values
for the controller and the closed-loop sensitivity function is provided
at the outset via the parameterizing set Sn and the smooth mapping
'. By way of contrast, in Section II, each particular solution of the
LMIs (4)–(5) yields only a subset of possible controllers. Moreover,
for the sensitivity shaping problem in particular, the controller degree
is larger than that obtained in Section III if one wants to avoid im-
posing the rank condition (7); i.e., insisting on solving only LMIs. The
framework of Section III handles in the same way interior as well as
boundary points and provides a complete parametrization. This is not
the case for the LMI-based approach and in fact, the radii for the balls
of controller gains shrink to zero as the solutions of the LMIs tend to
boundary values.

Of course, essentially any solution obtained by the complete param-
eterization of Section III corresponds to a solution that can also be ob-
tained using the techniques in Section II for a suitable choice of X .
The methodology of Section II has been fully developed in [19] for
multivariable problems as well. The basic framework in [4] and [5]
extends to the matricial setting, e.g., see [3], [14]. Detailed studies of
various robust control problems using this formalism have been carried
out in [17], [2] and a general methodology for multivariable problems
is currently under development. The question as to which approach
is most suitable for tuning and selection of controllers remains to be
established.
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A Theoretical Study of Different Leader Roles in Networks

Wei Wang and Jean-Jacques E. Slotine

Abstract—We study synchronization conditions for distributed dynamic
networks with different types of leaders. The role of a “power” leader spec-
ifying a desired global state trajectory through local interactions has long
been recognized and modeled. This note introduces the complementary no-
tion of a “knowledge” leader holding information on the target dynamics,
which is propagated to the entire network through local adaptation mech-
anisms. Different types of leaders can coexist in the same network. For in-
stance, in a network of locally connected oscillators, the power leader may
set the global phase while the knowledge leader may set the global fre-
quency and the global amplitude. Knowledge-based leader-followers net-
works have many analogs in biology, e.g., in evolutionary processes and
disease propagation.

Index Terms—Adaptation, group cooperation, leaders, networks,
synchronization.

I. INTRODUCTION

Recent results in the theoretical study of synchronization and group
cooperation [10], [13], [22], [5], [24], [30], [32], [28], [33] have greatly
helped understand distributed networks in the natural world and emu-
late them in artificial systems. In these networks, each element only
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gets local information from a set of neighbors but the whole system
exhibits a collective behavior. Examples of such networked systems
pervade nature at every scale, including for instance neural networks,
pacemaker cells, flashing fireflies, chirping crickets, and the aggregate
motions of bird flocks, fish schools, animal herds and bee swarms. For
diffusion-coupled networks with arbitrary size and general structure,
explicit conditions on the coupling strengths can be derived for syn-
chronization to occur, based on network connectivity and uncoupled
element dynamics [28], [33].

In a network composed of peers, the phase of the collective behavior
is hard to predict, since it depends on the initial conditions of all the
coupled elements. To let the whole network converge to a specific tra-
jectory, a “leader” can be added [10], [13]. Here, the leader is an el-
ement whose dynamics is independent from and thus followed by all
the others. Such leader–followers network occurs in natural aggregate
motions, with the leader specifying “where to go.” We will refer to this
kind of leader as the power leader. A synchronization condition for a
dynamic network with a power leader was derived in [28] and [33], and
will be briefly reviewed here (Section II).

The main goal of this note is to introduce a different type of
leader, which we shall refer to as a knowledge leader (Section III). In
this case, the network members’ dynamics can all be different. The
knowledge leader is the one whose dynamics properties are fixed (or
changes comparatively slowly), with the followers obtaining dynamic
knowledge from the leader through local adaptation mechanisms.
In this sense, a knowledge leader can be understood as the one who
indicates “how to go.” Such knowledge leaders may exist in many
natural processes. For instance, in evolutionary biology [21], [23],
the adaptive model we describe could represent genotype–phenotype
mappings. Similar mechanisms occur in infectious-disease dynamics
[16]. Knowledge leaders may also exist in animal aggregate motion as
a junior or injured member with limited capacities. Using Lyapunov
analysis, we shall derive conditions of synchronization and also for
dynamics convergence for networks with knowledge leaders.

Both types of leaders may coexist (Section IV), and be located any-
where in the network. In a circuit of electronic oscillators, the power
leader may be a local clock setting global phase while the knowledge
leader sets global frequency or amplitude, for instance. Both types of
leaders can be virtual (as, e.g., in [13] in the case of power leaders) and
may be used for instance to coordinate behaviors in groups of robots
of different types.

II. POWER LEADER

Consider the dynamics of a coupled network containing one power
leader and n power followers

_x0 = f(x0; t)

_xi = f(xi; t) +
j2N

Kji(xj � xi)

+ iK0i(x0 � xi): (1)

Here, vector x0 2 m is the state of the leader whose dynamics is
independent, and xi the state of the ith follower, i = 1; . . . ; n. The
vector function f represents the uncoupled dynamics, which is assumed
to be identical for each element. For notational simplicity, the cou-
pling forces are set to be diffusive, where all coupling gains are sym-
metric positive definite, and the couplings between the followers are
bidirectional with Kji = Kij if both i; j 6= 0 � Ni denotes the set of
peer-neighbors of element i, which for instance could be defined as the
set of the followers within a certain distance around element i � i is
equal to either 0 or 1, representing the connection from the leader to the
followers. In our model, the network connectivity can be very general.
Thus,Ni and i can be defined arbitrarily. An example is illustrated in
Fig. 1(a).
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