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Ricci curvature: An economic indicator for market
fragility and systemic risk
Romeil S. Sandhu,1* Tryphon T. Georgiou,2 Allen R. Tannenbaum1

Quantifying the systemic risk and fragility of financial systems is of vital importance in analyzing market effi-
ciency, deciding on portfolio allocation, and containing financial contagions. At a high level, financial systems
may be represented as weighted graphs that characterize the complex web of interacting agents and
information flow (for example, debt, stock returns, and shareholder ownership). Such a representation often
turns out to provide keen insights. We show that fragility is a system-level characteristic of “business-as-usual”
market behavior and that financial crashes are invariably preceded by system-level changes in robustness. This
was done by leveraging previous work, which suggests that Ricci curvature, a key geometric feature of a given
network, is negatively correlated to increases in network fragility. To illustrate this insight, we examine daily
returns from a set of stocks comprising the Standard and Poor’s 500 (S&P 500) over a 15-year span to highlight
the fact that corresponding changes in Ricci curvature constitute a financial “crash hallmark.” This work lays the
foundation of understanding how to design (banking) systems and policy regulations in a manner that can
combat financial instabilities exposed during the 2007–2008 crisis.

INTRODUCTION
As a result of the 2007–2008 financial crisis, much attention has been
devoted to understanding the fragility of financial systems (1). A re-
cently accepted model is one in which these interconnected systems
are represented as weighted graphs whereby the nodes denote an
economic agent and the edge links characterize dependencies and cor-
relations among such agents (for example, returns, debt, and de-
rivative exposure) (2–5). In turn, systemic risk (6) can be taken as a
network’s inability to handle default of one or more agents, resulting
in cascading failures and triggering the onset of a financial contagion;
that is, in a given financial network, one must be able to attribute a
proper measure of risk to specific institutions (nodes) and, more im-
portantly, to their interrelationships (edges) that are often deemed “too
big to fail.” The need for such a conceptual and quantitative indicator
is especially evident in the context of the emergency aid that was pro-
vided by the U.S. Federal Reserve Bank (FED) during the 2007–2008
crisis (7). As shown in Fig. 1, there is a series of indirect “hidden”
exposures that unraveled during this time period. Understanding how
to account for these indirect linkages as opposed to direct exposure is
at the core of this work. At the same time, quantifying fragility in the
context of financial systems may provide not only a measure of
preventing (combating) financial contagions but also novel insights into
designing downside protection (value-at-risk) measures.

The goal of this paper is to demonstrate that Ricci curvature may
serve as a quantitative indicator of the systemic risk in financial net-
works and the fragility of financial markets. Curvature, in the broad
sense, is a measure by which a geometrical object deviates from being
flat. Hence, it has been characterized in various ways in Riemannian
geometry (8). In the context of networks, “flatness” is to be understood
to reflect the connectivity and interdependence between distant nodes.
The proper generalization of curvature and of flatness for discrete
spaces, such as networks that are modeled as weighted graphs, is a

very recent development (9–13). From this new vantage point, we ex-
amine in this study the topology of stock correlation networks con-
structed from the Standard and Poor’s 500 (S&P 500) over a 15-year
span, and we show that curvature is a “crash hallmark” and a possible
economic risk indicator. Although the initial analysis herein is restricted
to correlation networks, one may naturally apply our analysis to
information-based quantities that pertain to the banking ecosystem
(2, 3) or more complex financial instruments (14), which can be a sub-
ject of future research. On the other hand, we use the evolution of the
stock market as a data platform to primarily illustrate an interesting con-
nection between Ricci curvature and a well-established notion of entropy.
We now revisit several key papers that are related to the present work.

First, we note that this study is a follow-on and a complementary
effort of previous work where we showed that an increase in Ricci
curvature is negatively correlated to an increase in system-level fragility.
This is expressed as DRic × DF ≤ 0 and was explored in the context of
gene regulatory networks with application in differentiating stages of
cancer (15), and is revisited in this work for the sake of completeness.
We note that recent advancements have also explored the concepts of
fragility on weighted graphs (and the construction thereof) (16–19). In
particular, Demetrius et al. (16, 20) formally defined “robustness” in
terms of the rate function from the theory of large deviations and
showed that this is positively correlated to entropy using the Fluctuation
Theorem. The insight in this connection is to link robustness to the abil-
ity of a network to dissipate disturbances. The key difference in our ap-
proach is that Ricci curvature serves as a proxy for robustness/fragility at
the edge level of any weighted graph as compared to entropy, which is
formulated as a nodal attribute; that is, unlike entropy, which, by con-
struction, exhibits “loss of information” due to a weighted contraction of
edge dependencies, Ricci curvature preserves such geometric quantities.
Similar to the findings of Demetrius et al. (16, 20), Ricci curvature quan-
tifies the ability of the network to dissipate locally along edges. It further
allows us the freedom to construct various possible nodal measures.

In the context of financial networks, various works seek to examine
the fragility of interactions (edges) to better characterize market
complexity (2, 14, 21–23) (a complete review is beyond the scope of
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this work, but we highlight several recent studies). Recently, Battiston
et al. (2) proposed the concept of DebtRank to analyze systemic risk due
to debt obligations for general banking environments (3), further ex-
pounding on the need to understand the instability of complex derivatives
(14) to more tacit areas of corporate control in economic networks (24).
The main thrust and motivation in these works is “feedback centrality,”
for which we now introduce the concept of Ricci curvature as a feedback
measure. With respect to stock correlation networks, Mantegna (4) first
illustrates the hierarchical arrangement of stocks through minimum
spanning trees (MSTs). This was followed by several works of Onnela
et al. (5, 25, 26), which leverage the concept of MST to exploit the under-
lying return dynamics. In particular, the authors show that during crash
periods, the tree structure “shrinks and tightens” compared to normal
market behavior and those stocks that serve as “leaves” of the tree cor-
relate to diversification with respect to portfolio construction pioneered
by Markowitz (27). This study seeks to cast existing work on correlation
networks in the context of curvature, fragility, and uncertainty, while
also paving the way to analyze more interesting financial networks
commonly seen in interbank lending markets that will be considered
in future research.

RESULTS

We now present results that link curvature to the fragility of the finan-
cial stock market by first providing a definition of robustness, intro-

ducing curvature, and then unifying such concepts through entropy.
We then supplement these findings with empirical results that illus-
trate curvature as a crash hallmark and its relation to entropy, and
recast the problem of global minimum variance (GMV) portfolios
and leptokurtic distributions commonly used to model asset returns
in the context of curvature.

Robustness and fragility
Here, we provide a precise definition of robustness (and, hence, fra-
gility). Given a network, one can consider a random perturbation
that results in a deviation of some observable. More formally, let qd(t)
denote the probability that the mean deviates by more than d from the
original value at some time t. Under standard assumptions (19, 20),
qd(t)→ 0 as t→ ∞, and the relative rate at which the system “relaxes”
and returns to its unperturbed state measures its fragility (for example,
longer decay rates are analogous to more fragile states) and is given by
the following rate function

R :¼ lim
t→∞

" 1
t
logqd tð Þ

! "
ð1Þ

Therefore, a large R means a fast return to the original state (ro-
bustness), and a small R corresponds to a slow return (fragility). In
thermodynamics, it is well known that entropy and rate functions
from large deviations are very closely related (19). The Fluctuation

Fig. 1. Systemic risk as a complexity problem: How to account for multiple indirect risk exposures in a financial ecosystem. Understanding
indirect counterparty risk has gained increasing importance with the recent global financial crisis combined with the continuous rise of complex financial
instruments. This paper proposes a new metric for characterizing instability with respect to agent-to-agent information in the context of a global network,
and we illustrate the method by characterizing market fragility from a feedback perspective resulting from well-known “herding” phenomena during
periods of financial crisis.
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Theorem (19, 20) is an expression of this fact for networks and may
be expressed in terms of fragility DF := −DR as

DSe % DF ≤ 0 ð2Þ

where Se denotes network entropy defined in “Details on network
entropy” under Materials and Methods.

Revisiting curvature
Wenowpresent an intuitive discussion of Ricci and sectional curvature
(for formal details, see “Details on Ricci curvature” under Materials
and Methods). Accordingly, let X be a Riemannian manifold. One
may consider the following surfaces as concrete examples: a sphere,
a saddle (hyperbolic paraboloid) surface, and a flat planar surface. Let
us denote the vertices of a geodesic triangle on each of the respective
surfaces by x0, x1, x2 (Fig. 2). Note that a geodesic triangle is one in
which each of its sides is a curve whose length is the shortest distance
between the given points. Locally, such geodesic curves exist. Now, let
xm be the midpoint of the geodesic curve connecting points x0 and x1.
If X possesses nonnegative sectional curvature (a sphere or a flat pla-
nar surface), then the following equation holds for all sufficiently small
triangles

dðx2; xmÞ2 ≥
1
2
dðx2; x0Þ2 þ

1
2
dðx2; x1Þ2 "

1
4
dðx0; x1Þ2 ð3Þ

where d is the distance on X. This inequality illustrates that under positively
curved spaces (sphere), triangles are “puffier” thanEuclidian triangles (planar
surface), as shown in Fig. 2 (A andB). IfXhas a negative sectional curvature,
triangles are “skinnier” than thenormalEuclideancounterpart, asdepicted in
Fig. 2C. By taking the average of sectional curvatures of a Riemannian
manifold, one arrives at a Ricci curvature (for further details, see “Details
on Ricci curvature” under Materials and Methods).

This said, given that we are working on a graph, one needs an ap-
propriate discrete notion that captures the above behavior. Here, we

used a neat notion of a Ricci curvature, obtained from the work of
Ollivier (9, 10, 29). The idea is motivated from the notion that the dis-
tance between two small (geodesic) balls is less than the distance be-
tween their centers in a positively curved space (and greater than the
distance between the centers in a negatively curved one).

In particular, if we let (X, d) be metric space equipped with a family
of probability measures {mx : x ∈ X}, we define the Ollivier-Ricci cur-
vature k(x, y) along the geodesic connecting nodes x and y via

k x; yð Þ ¼ 1"
W1ðmx; myÞ
dðx; yÞ

ð4Þ

where W1 denotes the Wasserstein-1 distance (30–38) and d is the
distance on X. This is the discrete analog of the preceding character-
ization of Ricci curvature. Here, mx and my play the role of “geodesic
balls”; thus, the distance between “centers” d(x, y) is being compared
to the distance between the balls mx and my (via the Wasserstein-1 dis-
tance). The precise definition ofW1 is given in “Details onWasserstein
distance” under Materials and Methods, and we note that d here is
taken to be the “hop” distance on a graph (that is, the shortest path
between vertices). For the case of weighted graphs, we set

dx ¼ ∑
y
wxy and mxðyÞ :¼ wxy=dx

where dx is the sum taken over all neighbors of node x and where wxy

denotes the weight of an edge connecting node x and node y (wxy = 0 if
d(x, y)≥ 2). A practical example of setting up the problem to compute
Ricci curvature on a graph is shown in fig. S1. In addition, the measure
mx may be regarded as the distribution of a one-step random walk
starting from x, with the weight wxy quantifying the strength of inter-
action between nodal components or the diffusivity across the corres-
ponding link (edge). The Wasserstein-1 distanceW1 may be computed
as a linear program that allows for an efficient, highly parallelizable

Fig. 2. An intuitive understanding of curvature. (A to C) We compare geodesic triangles, which are triangles in which each side is connected by the
shortest (geodesic) curve for three different surfaces: (A) sphere, (B) planar surface, and (C) hyperbolic paraboloid. From the bottom row, we can see that
such triangles on a sphere are puffier than their Euclidean planar surface counterparts (due to great circles being geodesics as opposed to straight lines).
As we move toward negatively curved space, such triangles become skinnier. This behavior is noted by measuring the length of the (geodesic) curve
connecting the midpoint xm to x2.
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algorithm (see “Details on Wasserstein distance” under Materials and
Methods).

The question of how the curvature discussed above relates to the
robustness (and, hence, fragility) of a dynamical system remains. The
main ingredient that links these quantities is entropy, which is dis-
cussed next.

Entropy, curvature, and fragility
Here, we present a key result from Lott and Villani (11) that shows the
deep connection between curvature and entropy. Accordingly, let (X,
d, m) denote a geodesic space and set P(X) := {m ≥ 0 : ∫x dm = 1}.
Then, it can be shown that X has a nonnegative Ricci curvature if and
only if for every m0, m1 ∈ P(X), there exists some geodesic mt path with
respect to the Wasserstein-2 metric (see Materials and Methods) con-
necting m0 and m1, such that

SeðmtÞ ≥ tSeðm0Þ þ ð1" tÞSeðm1Þ for 0 ≤ t ≤ 1 ð5Þ

where Se := −H(m) = ∫mlog mdm is the Boltzmann entropy. To illustrate
this concept in an intuitive manner, we revisit the sphere (a positively
curved space) for which we would like to “transport” a region defined
by a set of points located on the northern hemisphere to its respective
region on the southern hemisphere, such that it requires minimal
work (shortest path). This is shown in fig. S2. Here, geodesics between
any two points are great circles. Moreover, one can see by transporting
along these great circles that there is an expansion or “spreading” of
this region that encapsulates all individual points being transported.
The gist of Eq. 5, as noted by Lott and Villani (11), is that if we con-
sider such points to be gas particles with prescribed initial and final
configurations (regions/densities), then entropy is concave along the
transport path.

The result of Eq. 5 may be generalized to include arbitrary Ricci
curvatures. Indeed, X has a Ricci curvature bounded from below by k
if and only if for every m0, m1 ∈ P(X), there exists some geodesic mt path
connecting m0 and m1, such that

SeðmtÞ≥ tSeðm0Þ þ ð1" tÞSeðm1Þ þ
ktð1" tÞ

2
Wðm0; m1Þ

2 for 0≤t≤1

ð6Þ

The latter equation indicates that entropy and curvature are posi-
tively correlated, which we express as DSe × DRic ≥ 0. Using the Fluc-
tuation Theorem, we can show that Ricci curvature and fragility are
negatively correlated, which we express as DRic × DF ≤ 0. In the next
section, we use these findings not only to empirically show that cur-
vature may serve as a “crush hallmark,” but also to show that entropy
and curvature are empirically related.

Market fragility and potential applications
This section provides empirical results of financial market fragility
using the S&P 500. We note that although more interesting networks
exist and recent studies show that correlation networks should be ta-
ken with caution in analyzing system risk (39), our motivation here
is to introduce the unstudied geometric (curvature) view of markets. In
turn, we believe that such work provides an exciting avenue and an
alternative perspective to understanding the complex nature of the
market.

Network construction. We obtained historical closing daily price
data from https://quantquote.com/. In particular, the publicly available
data set consists of stocks currently comprising the S&P 500 for a
15-year span from January 1998 to July 2013. We then filtered those
equities that do not have data for the entire period, resulting in a total
of 388 stocks and thereby allowing us to compute the correlation
values cxy over a specific time window denoted as T. Then, following
Onnela et al. (5), we constructed an MST using Prim’s algorithm in
MATLAB 2013a where the “distance” is defined to be ĉxy :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1" cxyÞ

p
.

This was done under the assumption that, at any given time, a partic-
ular stock must “interact” with another stock and that the MST pro-
vides this basic “skeleton” of the overall market. To examine the
topology of the market through a dynamic process, we added high-
valued links that satisfy a certain threshold, that is, cxy ≥ x, where
we chose x = 0.85 on the basis of previous literature (40, 41). This
can be akin to biological (cancer) network construction in which links
are established when two genes have been coexpressed at varying time
intervals of a metastatic and/or drug therapeutic study. Moreover, for a
given window tb ¼ ½tb0 ;…; tbT (, we constructed an unweighted network
N b through the above process. A new network at b + 1 is generated by
“sliding” the window of 1 day and repeating the process. Hence, ap-
proximately 4000 time-varying networks are generated.

Market fragility. We computed the Ricci curvature k(x,y) for all
possible direct and indirect pairs (approximately 75,000 pairs) over
two different time windows, T = {22,132} days, for stock correlation
networks representing the returns of the S&P 500. These time
windows were chosen to represent “short” and “long” time horizons
and may be altered (for example, 90 days); longer time windows have
the effect of smoothing the resulting data. Nevertheless, Fig. 3 presents
the average Ricci curvature.

Figure 3 shows that the market operates in a generally fragile be-
havior. As noted by a previous study (5), there is a topological market
reorganization that occurs during periods of financial crisis. This is
partly due to the establishment of more links in crash periods that
naturally arise from the well-known herding effect. Constructing
correlated graphs in a dynamic manner presents the market from a
feedback perspective (by analyzing curvature) as opposed to merely
an average correlation between any two given pairs of stocks. Specif-
ically, recent work shows that the lower bound of Ricci curvature
characterizes the number of triangles in a graph, and in turn, the
number of triangles characterizes the number of differing (redundant)
feedback pathways that exist (42). Similar to other man-made systems
(for example, aircraft), redundancy is a design characteristic that helps
ameliorate the effect of possible random perturbations. Here, in the
sense of networks, feedback and curvature are very closely linked.
Following this, Fig. 3 illustrates that even with two distinct time scales,
there is an increase in Ricci curvature and, thus, the market tends to
become more robust during periods of crisis. This is consistent with
previous analysis in which Onnela et al. (5) examined the shortest av-
erage path between equities during such time periods and uncovered
that the MST “shrinks.” Again, measuring Ricci curvature on these
stock correlation networks illustrates fragile market behavior and
the robustness of financial crashes.

Comparison of robustness measures. Although the intended
focus of the present work is to study the fragility and robustness of
financial (correlation) networks with respect to curvature, it is very
important to compare Ricci curvature to other accepted models char-
acterizing network fragility and robustness. To this end, Figs. 4 and 5
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plot curvature against global network entropy, shortest average path,
and graph diameter. One can see that there is a striking resemblance
in the structure of Ricci curvature and global network entropy (see
“Details on network entropy” under Materials and Methods for net-
work entropy computation). This is also seen numerically in Table 1.
We are uncovering information similar to that about entropy with two

very important caveats: First, the method proposed herein is compu-
tationally more tractable and is better behaved than entropy-based
techniques; we are simply using an algorithm based on linear pro-
gramming, which is capable of characterizing curvature between any
two nodes in a graph (not only those that are adjacent) to account for
possibly significant indirect effects. Second, Ricci curvature provides

Fig. 3. Average Ricci curvature over a 15-year span of the S&P 500. (A) Choosing a window of T = 22 days, we see that curvature captures several
financial crashes and show that, on average, market behavior is fragile. (B) We extended our analysis with a larger window of T = 132 days, and as one can
see, there is an increase in Ricci curvature compared to normal fragile market behavior during periods of known financial crisis.

Fig. 4. Comparison of network robustness measures over a smaller time window. (A to D) We compare Ollivier-Ricci curvature (A) to network en-
tropy (B), shortest average path (C), and graph diameter (D) for a shorter time scale of 22 days. As predicted, there is a notable resemblance between
network entropy and network curvature. Further analysis shows that decreases in graph diameter and shortest path length result in increases in graph
curvature.
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local geometric (edge) information about the network as opposed to
entropy, which is a nodal measure. In particular, one can visualize a
scenario in a more complex financial network where a particular fi-
nancial institution generally consists of normal risk exposures to other
institutions with only a few extremely (indirect) risky transactions. By
averaging such exposures, a nodal measure may not properly address
the localized fragility of such relationships. This type of scenario has
been shown by studying transcriptional networks of varying cancer
tissues wherein a single gene may participate in both robust and fragile
interactions, yet is considered a “robust” gene (15). This being said,
Figs. 4 and 5 also illustrate that increases in Ricci curvature are cor-
related with a decrease in shortest average path and graph diameter.

This agrees with previous work on entropy, robustness, and such
measures (16) and is reflected in fig. S3.

GMV portfolios. We now shift our focus to the role that curvature
and entropy (measures of fragility) may play with respect to the clas-
sical Markowitz portfolio construction in the current setting. In the
classical case, given a set of N assets with average returns, denoted
as!r ¼ ½!r1; !r2;…;!rN (T, and the estimated covariance ∑r (both usually
computed from historical data), one is given the task of allocating N
asset weights w = [w1, w2,...., wN]

T to maximize the portfolio return

u ¼ wT!r, subject to some risk tolerance wT∑rw ≤ trisk with ∑
N

i¼1
wi ¼ 1

and wi ≥ 0 (no short selling). The efficient frontier portfolios (27)

Table 1. Comparison of network robustness measures. We provide the average Ricci curvature, average global network entropy, average shortest
path, and average graph diameter computed over a period of 1 year beginning with 1 January of each year with a window T = 22 days and a threshold
of x = 0.85. As seen in the graph, a correlation between curvature and well-known measures of fragility.

Measure Jan
1998

Jan
1999

Jan
2000

Jan
2001

Jan
2002

Jan
2003

Jan
2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Jan
2010

Jan
2011

Jan
2012

Curvature −0.297 −0.304 −0.285 −0.218 −0.0166 −0.256 −0.253 −0.214 −0.245 −0.218 −0.068 −0.141 −0.101 0.023 −0.0255

Entropy 0.941 0.862 0.909 1.123 1.505 1.193 1.022 1.128 1.066 1.316 2.159 1.745 2.105 2.688 1.282

Shortest
path

12.412 13.811 14.910 12.951 9.362 10.199 12.291 11.845 12.413 9.636 7.186 8.060 7.469 6.208 9.545

Diameter 31.361 34.726 38.210 33.186 25.500 27.397 31.250 29.929 31.494 25.064 21.044 22.480 20.964 17.770 25.144

Fig. 5. Comparison of network robustness measures over a larger time window. (A to D) We compare Ollivier-Ricci curvature (A) to network entropy
(B), shortest average path (C), and graph diameter (D) for a longer time scale of 132 days. As predicted, there is a notable resemblance between network
entropy and network curvature. Further analysis shows that decreases in graph diameter and shortest path length result in increases in graph curvature.
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can then be computed for varying levels of risk tolerance; in this
case, we are interested in the GMV portfolio. This can be stated as

minww
TSrw, subject to ∑

N

i¼1
wi ¼ 1 (full investment) and wi ≥ 0 (no

short selling). To relate risk and curvature, we propose the following
measure, which is simply a projection of Markowitz portfolio weights
from the minimum risk portfolio onto edge Ricci curvature

WK
port ¼ wTBw ð7Þ

where B denotes the n × n matrix whose entries are the Ricci curva-
ture between any two given equities [that is, entries are given by Bij =
1 − W1(mx, my)/d(x, y) for 1 ≤ i, j ≤ n, where mx and my are one-step
random walks on the graph defined in the “Market fragility and
potential applications” section and where d(x, y) is the hop distance].
We note that the above symmetric matrix B is not generally positive
definite (and, hence, does not define a metric) but is proposed here
to illustrate curvature and its connections to risk. In particular, the
weights w for the minimum variance portfolio are computed over a
132-day sliding time window (~6 months) using MATLAB 2013a.
Then, for this particular window in which weights were computed,
we construct an equivalent correlation network over the same time ho-
rizon to compute Ricci curvature between all pairwise stock relation-
ships. Figure 6 shows the measure WK

port computed in addition to the
minimum risk profile. One can see that a correlation exists between
an increase inWK

port and an increase in the minimum risk profile done
in classical finance; that is, curvature represents the ability to diversify
one’s assets to achieve a minimum risk during varying time periods.
Moreover, the above trend seemingly agrees with a previous analysis
that points out that diversification “melts away” during periods of
crisis (43). This is analogous to increases in curvature that are seen
in Figs. 3 and 6, and it will be interesting to compare such existing
measures (44) focused on estimating risk. On the other hand, we
have previously noted that higher Ricci curvature is also positively
correlated to the mean-reverting coefficient in an Ornstein-Uhlenbeck

sense (15). Thus, during times of financial crises where volatility
rapidly increases, there are opportunities to construct mean-reverting
portfolios (45) commonly used in statistical arbitrage (for example, a
perturbation in the portfolio will quickly return to some equilibrium).

Remarks on leptokurtic distributions
Because the thrust of the present work is to introduce curvature as an
economic indicator of systemic risk, we revisit the notion of leptokur-
tic distributions and their connection to Ricci curvature. In particular,
it has been argued that stock returns in the market should be modeled
as heavy-tailed distributions as opposed to the standard normal
distribution (46–48). This is done, in part, to better account for risk
management in the event of financial crash and relatable black swan
events. Accordingly, let us consider one such leptokurtic distribution,
namely, the Laplace distribution with a given mean q and variance φ
and a corresponding normal distribution with the same mean and var-
iance. It is well known that the entropies of Laplacian SLe and Gaussian
SGe distributions are given by the following

SGe ¼ 1
2
log 2peφ2$ %

ð8Þ

SLe ¼ 1þ log 2

ffiffiffi
φ
2

r! "
ð9Þ

Here, we see that SL increases more slowly than SG and, thus, a
Laplacian process is more fragile than the corresponding Gaussian
process using the Fluctuation Theorem (16, 19, 20). In short, the fat
tail phenomenon used to model market returns attempts to account
for an increase in market risk due to market fragility. Because we
have seen that DRic × DSe ≥ 0 (Ricci curvature is positively correlated
with entropy), Ricci curvature seems to be a suitable and unexplored
proxy to analyze systemic risk to date. Finally, we note that the above
distributions are rarely used in practice as opposed to other distributions

Fig. 6. Minimum risk Markowitz portfolio and Ricci curvature.We computeWK
port using weights from the minimum risk portfolio along with minimum

risk. (A and B) Regions of interest are highlighted for Ricci curvatureWK
port (A) and minimum risk (B) that can be obtained along the efficient frontier over a

given window T = 122 days with a threshold of x = 0.85.

R E S EARCH ART I C L E

Sandhu, Georgiou, Tannenbaum Sci. Adv. 2016; 2 : e1501495 27 May 2016 7 of 10

 on M
ay 27, 2016

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


(for example, Student’s t distribution) and are solely presented to mo-
tivate some of the concepts of the present work.

DISCUSSION

Given the 2007–2008 financial crisis and the current European debt
crisis, it has become imperative to greatly improve our understanding
of the fragility of interconnected networks. This work introduces a
new geometric or economic indicator for systemic risk that captures
local to global system-level fragility not only in financial markets but
also for broader economic networks that include the banking eco-
system. There are a number of nontrivial facts that arise that may pro-
vide an understanding of commonly accepted financial models and, in
turn, may uncover novel methodologies to account for systemic risk.
The examples shown in this work illustrate the financial stock market,
portfolio optimization, and heavy-tailed distributions in the geometric
context of curvature. Moreover, although we provided an analysis in
the context of stock correlation networks to elucidate market fragility,
there seems to be interesting connections of Ricci curvature not only
to the financial stability of various networks but also to the construc-
tion of market neutral strategies and possibly novel risk management
policies. For example, previous work has noted that Ricci curvature is
positively correlated with the mean-reversion coefficient in an Ornstein-
Uhlenbeck process, which is a well-known family of stochastic pro-
cesses that has been the basis for statistical arbitrage strategies (45).
In short, this work makes the first mention of connecting the broad
concept of curvature and statistical arbitrage and provides an in-
teresting research direction that has not been previously explored.

There are several limitations in the present study that can be the
subject of future research. In particular, although the data obtained re-
present stock correlation networks, it would be far more interesting to
investigate specific banking environments for which derivative exposure
has been argued to create instabilities (14). Understanding such types of
risks will undoubtedly assist in one’s understanding of some of the crit-
ical aspects of the 2007–2008 financial crisis. From a theoretical stand-
point, the current methodology is for undirected networks; future
research will seek to extend the present work toward directed graphs
or networks. Furthermore, one can define geometric flows, such as the
Ricci flow (that is, ddt d x; yð Þ ¼ "k x; yð Þd x; yð Þ), to combat and prevent
financial contagions; this has been suggested in related fields (49) to re-
move overload queues in wireless networks. From a financial perspective,
this is a particularly exciting research area because it may allow the FED
to develop a set of quantitative nonsubjective policies that regulate financial
risk exposure and provide an economic lending guide to provide emergen-
cy loans (that is, emergency funds to those institutions in a crisis period to
decrease instability, as opposed to a “shotgun” lending approach).

In summary, our future work will seek to establish such policies
that allow the market to be more cancer-like (more robust) (15), by
providing novel “drug targets” to contain financial contagions, such as
the 2007–2008 crisis that nearly brought down the financial system.

MATERIALS AND METHODS

Details on Ricci curvature
This section attempts to introduce some formal details on Ricci cur-
vature (29) [see the book of do Carmo (8) for all the rigorous math-

ematical details]. Let X be a Riemannian manifold (the generalization
of a smooth surface valid in any dimension). One can measure
distances on X and, thus, define the length of a given curve g. Geodesics
are curves that, locally, have the shortest distance between two given
points on the manifold X. Locally, such curves exist and will be critical
to introducing the concept of curvature.

Next, given a point x ∈ X, let Tx denote the tangent space at x, and
let ux, w D Tx be orthogonal unit vectors. Then, if we traverse the
manifold along the geodesic curve g at x in the direction of w, we
denote the endpoint of the traversal by y D X. A pictorial representa-
tion of this is given in fig. S4. There exists a set of tangent vectors at y;
however, we are only interested in the specific tangent vector, denoted
by uy D Ty, which would be the “same” as ux; that is, we want to com-
pare two tangent vectors that live in different vector spaces in a canon-
ical manner. This is done through parallel transport [see the book of
do Carmo (8) for details about this operation]. Here, we simply state
that uy is the parallel transport of ux.

Because of curvature, geodesics along ux and uy (denoted by
expx tux and expytuy, respectively; here, t denotes the curve parameter)
may converge toward one another or diverge from one another (see
fig. S5). With this in mind, we are able to define Ricci curvature
through sectional curvature (8, 29). Again, for uy, which is the parallel
transport of u = ux from point x to point y in the direction w, we have,
for sufficiently small e, d > 0

d expxeux; expyeuy
& '

¼ d 1" e2

2
K u;wð Þ þ O e3 þ e2d

$ %! "
ð10Þ

The term K(u,w) denotes the sectional curvature at x in the tangent
plane (u,w). Together, Ricci curvature is then simply obtained by aver-
aging K(u,w) over all directions u.

Details on Wasserstein distance
We next record the basic definition of the Lp Wasserstein distance
(46) from optimal transport theory. The Lp Wasserstein distance is
defined as

Wpðm1m2Þ :¼
&

inf
m∈Pðm1m2Þ

∫∫dðx; yÞpdmðx; yÞ
'1=p

ð11Þ

where X is a metric measure space equipped with distance d and
P(m1, m2) is a set of all couplings between the measures m1 and m2,
which are assumed to have the same total mass and finite pth mo-
ments. More precisely, a coupling between m1 and m2 is a measure m
on X × X, such that

∫ydmðx; yÞ ¼ dm1ðxÞ; ∫xdmðx; yÞ ¼ dm2ðyÞ

In other words, the marginals of m are m1 and m2. In this paper, we
only considered the cases p = 1, 2. For completeness, we also define
the Wasserstein distance (28) on discrete metric measure space X=
{x1,…,xn}. Let m1 and m2 denote two distributions having the same
total mass, and let d(x, y) be the distance between x, y D X (for
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graphs, taken as the hop metric). Then, W1(m1, m2) may be defined
as follows (39)

W1ðm1; m2Þ ¼ minm ∑
n

i; j¼1
dðxi; xjÞmðxi; xjÞ ð12Þ

where m(x, y) is a coupling (that is, distribution on X × X) subject to
the following constraints

mðx; yÞ ≥ 0 for x; y∈X

∑
n

i¼1
mðx; xiÞ ¼ m1ðxÞ for x∈X

∑
n

i¼1
m ðxi; yÞ ¼ m2ðyÞ for y∈X

The cost above finds theoptimal couplingofmovingmassdefinedby the
distributions m1 to m2 withminimal “work.”Clearly, the optimal coupling
mmay be found using linear programming [see the work of Evans (32)].

Details on network entropy
This section provides some key facts about network entropy. Accord-
ingly, consider a stochastic matrix f = (hxy) describing a Markov chain
that characterizes transition rates from state x to state y with hxy ≥ 0
and ∑

y
hxy ¼ 1 (along with its invariant distribution p = pf). Then,

network entropy may be defined as

Se ¼ ∑
x
pðxÞ!SðxÞ with !SðxÞ ¼ "∑

y
hxy loghxy ð13Þ

We note that in the above definition, the nodal entropy S(x) is the
summation only over edges y adjacent to x. This is particularly important
because it discounts information from nonadjacent vertices. Note that the
computation for n-step random walks (Markov processes) with n > 1 may
become computationally expensive (50). Thus, accounting for indirect
complex effects becomes computationally burdensome. As we have seen,
Ollivier-Ricci curvature can be formulated as a simple linear program and
is not restricted to direct incidences. Also, local (nodal) entropy “loses
information” with respect to edge information through a weighted con-
traction; this quantification of edge fragility is precisely what Ricci curva-
ture provides. These two important caveats motivate our proposal for
the use of curvature over entropy as a proxy for system-level fragility.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/5/e1501495/DC1
fig. S1. Example of setting up the problem.
fig. S2. Illustration of transporting regions on nonnegatively curved space.
fig. S3. Illustration of how shortest path relates to curvature or entropy.
fig. S4. Intuitive understanding of Ricci curvature (a different perspective).
fig. S5. Illustrating geodesic deviations on nonnegatively curved space.
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