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Abstract

We consider the problem of approximating a (nonneg-
ative definite) covariance matrix by the sum of two
structured covariances –one which is diagonal and one
which has low-rank. Such an additive decomposition fol-
lows the dictum of factor analysis where linear relations
are sought between variables corrupted by independent
measurement noise. We use as distance the Wasserstein
metric between their respective distributions (assumed
Gaussian) which induces a metric between nonnegative
definite matrices, in general. The rank-constraint ren-
ders the optimization non-convex. We propose alter-
nating between optimization with respect to each of the
two summands. Properties of these optimization prob-
lems and the performance of the approach are being
analyzed.
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1 Introduction

Consider a zero-mean Gaussian random vector x taking
values in Rn×1 and with covariance Σ. We assume
that x is consistent with the basic assumptions of
factor analysis and of errors-in-variables models (see
e.g., [1, 5, 7]), namely that

x = x̂+ x̃

where x̂, x̃ are both zero-mean independent (Gaussian)
random vectors in Rn×1 with

E(x̂x̂) = Σ̂, rank(Σ̂) = r < n

E(x̃x̃′) = D is diagonal

E(x̂x̃′) = 0,

where E denotes expectation. The entries of x̃ represent
independent “measurement noise”, while the rank defi-
ciency of the covariance of the “noise-free” component x̂
indicates that linear relations are satisfied by its entries.
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Minneapolis, MN 55455; {ningx015, tryphon}@umn.edu.

Factor analysis aims at identifying consistent decompo-
sitions of Σ into Σ̂ + D with the above properties and
with r small, so as to reliably identify linear relations
from observational data and empirical statistics.

Since the covariance Σ is often approximated by

1

N

N∑
k=1

xkx
′
k,

where x1, . . . , xN represent independent vector-
measurements of x, it is common to estimate Σ̂ and D
via optimization of a likelihood function or, via min-
imization of some “distance” between Σ and the sum
Σ̂ +D of the required form (see, e.g., [4, 3]). It should
be noted that logarithmic distances (Kullback-Leibler,
Thompson) require that Σ is invertible. However, when
the number N of available samples is small (smaller
than n) this requirement is not satisfied. Herein, we
explore an alternative distance between covariance
matrices which is induced by the Wasserstein distance
(Section 2) of their corresponding probability distribu-
tions and is not limited in this respect. This provides
a metric between covariances (Section 2) which is
amenable to tools from convex analysis when seeking
decompositions of a sample covariance in accordance to
the factor analysis model (Sections 3 and 4).

2 Optimal transport

The Monge-Kantorovich transportation problem seeks
an optimal transference plan for moving a given
mass/probability distribution px to another distribu-
tion py (see [11]). These can be thought as marginals
of two jointly distributed random variables x, y, in
which case the transportation cost can be written as
E (cost(x− y)). The transference plan relates to a
choice of a compatible joint distribution, having the
given marginals, which minimizes the cost. We will only
be concerned with a quadratic cost E

(
∥x− y∥2

)
which

induces the so-called Wasserstein distance between the
two marginals, namely

W2(px, py) := inf
p(x,y)

{√
E (∥x− y∥2) |∫

x

p(x, y)dx = py(y),

∫
y

p(x, y)dy = px(x)

}
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where p(x, y) is a joint distribution (possibly, measure).
If x, y are jointly distributed zero-mean and Gaus-

sian with covariances Σx and Σy, respectively, and
cross-covariance Cxy = E(xy′), then

E(∥x− y∥2) = tr(Σx +Σy − Cxy − C ′
xy).

Hence, the Wasserstein distance can be obtained by
solving the following optimization problem:

(2.1) min
C

{√
tr(Σx +Σy − 2C) |

[
Σx C
C ′ Σy

]
≥ 0

}
.

The minimal value of (2.1) can be readily expressed as√
tr(Σx +Σy − 2(Σ

1
2
y ΣxΣ

1
2
y )

1
2 ) =: d(Σx,Σy)(2.2)

(see [9, 6, 8]). This defines a metric between covariances
that are not restricted to be invertible (as is the case
with e.g., the Thompson metric).

3 Factor analysis

We now consider the additive decomposition of Σ ≥
0 into a sum of two covariances as postulated by
Factor Analysis –one having low-rank and another being
diagonal, both of the same size as Σ:

min
Σ̂,D

{
d(Σ, Σ̂ +D) | D ≥ 0 diagonal,(3.3a)

Σ̂ ≥ 0, rank(Σ̂) = r
}

= min
Σ̂,D,C

{√
tr(Σ + Σ̂ +D − 2C) |(3.3b) [

Σ C

C ′ Σ̂ +D

]
≥ 0, D ≥ 0,

D diagonal, Σ̂ ≥ 0, rank(Σ̂) = r
}
.

The square of the objective function is linear and all
constraints except for the rank are convex. Interest-
ingly, when either of D, Σ̂ is set to zero, the above mini-
mization problem can be solved efficiently. We consider
each of these two cases separately first.

3.1 Approximation with a diagonal matrix
Starting with Σ ≥ 0, we formulate the problem

min{d(Σ, D) | D ≥ 0, D diagonal}(3.4)

= min
D,C

{tr(Σ +D − C − C ′) | D diagonal,[
Σ C
C ′ D

]
≥ 0} .

This is convex and can be solved efficiently [2]. Next,
we analyze the structure of the minimizers.

Proposition 1. Given Σ ≥ 0, let Dopt be a minimizer
of (3.4). Then, there exists a matrix Λopt ≥ 0 with
[Λopt]ii = 1, for i = 1, . . . , n, such that

Σ = ΛoptDoptΛopt.(3.5)

When Σ > 0, Dopt and Λopt are uniquely defined.

Note that any covariance Σ can be expressed as
Σ = D1Λ1D1, with D1 diagonal and Λ1 a correlation
matrix, i.e., a covariance with ones on the diagonal.
Observe that a complementary factorization also exists
(3.5) and relates to the solution of (3.4).

Proof. [Proof of Proposition 1:] Let

Σ =
[
U V

] [E 0
0 0

] [
U ′

V ′

]
be the eigen-decompositon of Σ and E > 0. Then

[
Σ C
C ′ D

]
≥ 0 ⇒

 E 0 U ′C

0 0 V ′C

C ′U C ′V D

 ≥ 0.

Then, V ′C = 0 while (3.4) becomes

min
D,C

{
tr(D − C − C ′) + tr(E) | V ′C = 0,(3.6) [

E U ′C
C ′U D

]
≥ 0, D diagonal

}
.

Let

[
Λ11 Λ12

Λ′
12 Λ22

]
≥ 0 and W be multipliers for the

first two constraints of (3.6) with Λ11 of the same size
as E. The corresponding Lagrangian is

L = tr(D − C − C ′) + tr(E) + tr(WV ′C)

− tr

([
Λ11 Λ12

Λ′
12 Λ22

] [
E U ′C

C ′U D

])
= tr

(
2

(
(−I − [Λ′

12 W/2]

[
U ′

V ′

]
)C

)
+ (I − Λ22)D

)
+ tr((I − Λ11)E).

Then

[Λ′
12 W/2]

[
U ′

V ′

]
= −I ⇒ Λ12 = −U ′

[Λ22]ii = 1, ∀i = 1, . . . , n.

The dual problem to (3.6) is

max
Λ11,Λ22

{
tr ((I − Λ11)E) |

[
Λ11 −U ′

−U Λ22

]
≥ 0,

[Λ22]ii ≤ 1,∀i = 1, . . . , n

}
.(3.7)
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Clearly, the optimal value is obtained when Λ11 =
U ′Λ†

22U where Λ†
22 denotes the Moore-Penrose pseudo

inverse of Λ22 which coincides with the inverse when
Λ22 is invertible. Let Λ22 = Λopt be a minimizer of
(3.7). Since (3.6) is strictly feasible, the duality gap
between (3.7) and (3.6) is zero. The following condition
is satisfied[

U ′Λ†
optU −U ′

−U Λopt

] [
E U ′Copt

C ′
optU Dopt

]
= 0,

where (Dopt, Copt) is a minimizer of (3.6). Then,

ΛoptC
′
optU = UE ⇒ ΛoptC

′
optUU ′ = Σ

ΛoptDopt = UU ′Copt.

Thus, (3.5) holds.
If Σ is invertible, then U is an orthogonal matrix

and Λ22 in (3.6) is also invertible. By substituting
Λ11 = U ′Λ−1

22 U into (3.6), we see that the optimal value
of Λ22 is the minimizer of the following problem

min
Λ22

{
tr(Λ−1

22 Σ) | Λ22 ≥ 0, [Λ22]ii = 1,∀i = 1, . . . , n
}
.

The latter is strictly convex and therefore it has a unique
minimizer. 2

We note that (3.4) has a solution even when Σ is
singular. However, in this case, the solution may not

be unique. To see this, take Σ =

[
1 1
1 1

]
. Then, any

diagonal D ≥ 0 with tr(D) = 1 is a minimizer of (3.4).

3.2 Approximation with a low-rank matrix
Given Σ ≥ 0, as noted earlier, the problem

min{d(Σ, Σ̂) | Σ̂ ≥ 0 with rank(Σ̂) = r}(3.8)

= min
Σ̂,C

{
tr(Σ + Σ̂− C − C ′) |

[
Σ C

C ′ Σ̂

]
≥ 0,

rank(Σ̂) = r

}
is not convex. Yet, as we show below, a solution can be
readily obtained from the spectral decomposition of Σ.

Lemma 3.1. Let Σ, Σ̂ ≥ 0 and of equal size, and let Π̂
denote the orthogonal projection onto the range of Σ̂.
The following holds:

d(Σ, Σ̂) = d(Π̂ΣΠ̂, Σ̂) + tr
(
(I − Π̂)Σ

)
.(3.9)

Proof. Clearly,

d(Σ, Σ̂) = tr(Σ + Σ̂− 2(Σ̂
1
2ΣΣ̂

1
2 )

1
2 )

= tr(Π̂ΣΠ̂ + Σ̂− 2(Σ̂
1
2 Π̂ΣΠ̂Σ̂

1
2 )

1
2 )

+ tr((I − Π̂)Σ)

= d(Π̂ΣΠ̂, Σ̂) + tr
(
(I − Π̂)Σ

)
. 2

Proposition 2. Let Σ ≥ 0 with eigenvalues σ1 ≥ . . . ≥
σn and corresponding eigenvectors v1, . . . vn. Then,

min{d(Σ, Σ̂) | Σ̂ ≥ 0 with rank(Σ̂) = r} =

n∑
k=r+1

σk

and the minimum is attained for Σ̂ =
∑r

k=1 σkvkv
′
k.

Proof. Let Π̂ denote the orthogonal projection to the
range of the optimizer Σ̂opt. From Lemma 3.1,

d(Σ, Σ̂opt) = d(Π̂ΣΠ̂, Σ̂opt) + tr
(
(I − Π̂)Σ

)
≥ tr

(
(I − Π̂)Σ

)
=

n∑
k=r+1

σk.

The above holds with Σ̂opt as in the statement. 2
4 Stationarity conditions

Next we consider the more general problem (3.3). Since
any feasible Σ̂ can be expressed as

Σ̂ = FF ′ with F ∈ Rn×r,

we can replace (3.3) by

min
F,D

tr
(
Σ+ FF ′ +D − 2(Σ

1
2 (FF ′ +D)Σ

1
2 )

1
2

)
.(4.10)

Using variational analysis and assuming that FF ′ +D
and Σ are invertible, we obtain the following necessary
conditions for FF ′ and D to correspond to a minimizer
of (4.10): (

Σ
1
2

(
Σ

1
2 (FF ′ +D)Σ

1
2

)− 1
2

Σ
1
2

)
F = F(4.11a)

[Σ
1
2

(
Σ

1
2 (FF ′ +D)Σ

1
2

)− 1
2

Σ
1
2 ]ii

{
= 1 if [D]ii > 0

≤ 1 if [D]ii = 0.

(4.11b)

Unfortunately, the objective function in (4.10) is not
convex in F and D. (To see this, specialize to the case
where D and F are scalars.) Due to this, no general
approach is available for solving (4.11) directly. In
the following we reformulate the problem so as to take
advantage of the special cases in Sections 3.2 and 3.1,
and obtain candidate solutions by alternating descent.

5 Reformulation and alternating descent

We begin with a reformulation of Problem (3.3b).

Lemma 5.1. Let Σ ≥ 0 and (Σ̂opt, Dopt) be a minimizer
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of (3.3b). Then (Σ̂opt, Dopt) is also a minimizer of

min
Σ̂,D,C1,C2

{
tr(Σ + Σ̂ +D − 2(C1 + C2)) |(5.12)  Σ C1 C2

C ′
1 D 0

C ′
2 0 Σ̂

 ≥ 0, D ≥ 0,

D diagonal, Σ̂ ≥ 0, rank(Σ̂) = r

}
.

Proof. For C = C1 + C2, Σ C1 C2

C ′
1 D 0

C ′
2 0 Σ̂

 ≥ 0 ⇒
[
Σ C

C ′ D + Σ̂

]
≥ 0.

Hence, the optimal value of (3.3b) is no larger than that
of (5.12). Now, for any triple (Σ̂, D,C) that satisfies[

Σ C

C ′ D + Σ̂

]
≥ 0,

let C1 = C(D + Σ̂)−1D and C2 = C(D + Σ̂)−1Σ̂. Then Σ C1 C2

C ′
1 D 0

C ′
2 0 Σ̂

 ≥ 0.

Thus, if (Σ̂opt, Dopt, Copt) minimizes (3.3b), then

(Σ̂opt, Dopt) minimizes (5.12) with corresponding C1

and C2 computed as above. The minimal values in
(3.3b) and (5.12) are identical. 2

In view of the above, we observe the following. If
(Σ̂opt, Dopt), C1,opt and C2,opt are minimizers of (5.12),

we can fix the value for Σ̂ to this optimal value Σ̂opt and
then Dopt, C1,opt and C2,opt can be recovered by solving

min
D,C1,C2

{
tr(Σ + Σ̂opt +D − 2(C1 + C2)) |(5.13)  Σ C1 C2

C ′
1 D 0

C ′
2 0 Σ̂opt

 ≥ 0, D ≥ 0 diagonal

}
.

Alternatively, since Σ C1 C2

C ′
1 D 0

C ′
2 0 Σ̂

 ≥ 0 ⇒

D 0 0
0 Σ− C1D

−1C ′
1 C2

0 C ′
2 Σ̂

 ≥ 0,

if we fix D = Dopt and C1 = C1,opt, we can recover

Σ̂opt from Σ−C1,optD
−1
optC

′
1,opt via truncated eigenvalue

decomposition (see Proposition 2).
Thus, we seek candidate solutions for (3.3b) and

(5.12) by alternating between (3.4) and (3.8) for D and
Σ̂, respectively. In summary, we start from an initial
pair Σ̂(0) and D(0). In the k-th iteration for k ≥ 1:

i) obtain D(k), C1,(k) and C2,(k) via (5.13) with Σ̂opt

replaced by Σ̂(k−1),

ii) obtain Σ̂(k) by truncating the eigenvalue decompo-

sition of Σ− C1,(k)D
−1
(k)C

′
1,(k).

Since the objective function is reduced in each iteration
and the function is bounded from below by zero, the
algorithm converges (but not necessarily to a globally
optimal point).

Example 1: We highlight the algorithm on an aca-
demic example. We take Σ > 0 of size 50 × 50 in the
form

Σ = FF ′ +D,

where F is 50 × 5 and D is a diagonal matrix. The
entries of F are taken as independent samples from the
standard Gaussian distribution (mean zero and variance
one) while the diagonal entries of D are independently
and uniformly sampled from the interval [0, 10]. The
seeds in Matlab that we used to generate this example
for F and D are 100 and 123, respectively. We compute
Σ̂(0) by truncating small eigenvalues of Σ. The initial
D(0) is set to be the zero matrix. Figure 1 displayes

the values d(Σ, Σ̂(k) + D(k)) in each iterations on a
logarithmic scale.

2 4 6 8 10
10

−10

10
−5

10
0

10
5

Figure 1: log
(
d(Σ, Σ̂(k) +D(k))

)
vs. k

Example 2: We conclude with an academic factor-
analysis problem. Consider

X = FU + V,

where F ∈ R20×5, U ∈ R5×50 and V ∈ R20×50.
The entries of F and U are taken as independent
samples from a standard Gaussian distribution, and
each column of the noise-component V is taken from
a multivariable Gaussian distribution with zero-mean
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and diagonal covariance D. The entries [D]ii of the
noise covariance are themselves sampled from a uniform
distribution on [σ, 2σ]. Then, the diagonal entries of
FUU ′F ′/50 have mean 5 while the diagonal entries
of V V ′/50 have mean 3σ/2. Thus, the signal-to-noise
ratio (SNR) is approximately 10/3σ. We thus obtain a
sample covariance matrix and re-scale it to a correlation
matrix Σ.

Next, we approximate Σ as a sum of a singular co-
variance with rank 5 and a diagonal “noise”-covariance
following our approach and we compare with two other
standard techniques. In particular, we compare with
a maximum-likelihood-based method proposed in [4].
This is the basis of the Matlab routine factoran. We also
compare with the “total-least-squares” which is based
on the eigen-decomposition of Σ and retention of the
corresponding “dominant” subspace. One should note
that in this last method the structure of the noise co-
variance (diagonal) is not taken into account at all.

We denote by Σ̂Tran, Σ̂ML and Σ̂TLS the estimated
low-rank covariance matrices in these three methods, re-
spectively. We assess the performance of each using the
gap distance between the true and estimated covariance
matrices (this is the angle between their range spaces).
To this end, let Πtrue denote the orthogonal projection
onto the range of F , and let ΠTran, ΠML and ΠTLS

denote the projection onto the range of the respective
low-rank approximations of XX ′. The gap metric be-
tween corresponding range spaces is ∥Πestimate−Πtrue∥.
where Πestimate represents the projection onto the range
space of an estimated low-rank approximate covariance.
The gap represents the sign of the principle angle be-
tween the two subspaces (see, [10, page 93]). We choose
a range of values for σ between 1/2 and 10 so that
the SNR is between 1/3 to 20/3. In each instance we
run 100 simulations, compute the corresponding low-
rank matrices and evaluate the gap distances to the
subspace corresponding to the scaled F (“true”). The
average gap distance in these 100 simulations is tabu-
lated in Figure 2 for each of the three methods. We
observe that the optimal-transport-based approach and
the maximum-likelihood-based one have similar perfor-
mance and that they are better than the total-least-
squares method, especially in high SNR cases. In
general, the transportation-based approach appears to
have a slight advantage over the maximum-likelihood
method.

0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

 

 

‖ΠTran− Πt ru e‖

‖ΠML− Πt ru e‖

‖ΠTLS− Πt ru e‖

Figure 2: ∥ΠTran−Πtrue∥, ∥ΠML−Πtrue∥ and ∥ΠTLS−
Πtrue∥ vs. SNR
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