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Abstract— We introduce an apparently original method for
moving-average parameter estimation, based on covariance fit-
ting and convex optimization. The proposed method is shown by
means of numerical simulation to provide much more accurate
parameter estimates, in difficult scenarios, than a related existing
method does. We derive the new method via an analogy with a
covariance fitting interpretation of the Capon beamforming from
array processing. In the process, we also point out some new facts
on Capon beamforming.

I. INTRODUCTION AND PRELIMINARIES

Let {y(k)} be a moving-average (MA) time series of order

n:

y(k) = c0e(k)+ c1e(k−1)+ · · ·+ cne(k−n), k = 1, 2, · · ·
(1)

where {e(k)} is the driving white noise sequence,

E[e(k)e(k̄)] =

{
1 if k = k̄
0 else

(2)

and

c0 + c1z + · · ·+ cnz
n �= 0 for |z| ≤ 1 (3)

(as is well-known, the “minimum-phase” condition in (3)

ensures that (1) is a unique description of the power spectrum

of {y(k)} [1]).

Our problem is to obtain estimates of the MA parameters

{cp} from N observations of {y(k)}. For the sake of simplic-

ity we assume that {y(k)} is a scalar sequence; however, note

that the discussion in this paper can be readily extended to

vector sequences by using results from [2]. We also assume

that the MA order, n, is prespecified.

The maximum likelihood estimation (MLE) of {cp} requires

making assumptions on the distribution of {y(k)}, and even

under the Gaussian assumption it leads to a highly nonlinear

problem. Consequently, a host of alternative computationally

simpler methods have been proposed for MA parameter esti-

mation (see e.g., [1], [3]). Of these methods, the covariance

fitting approach of [4], [5] (see also [3]) is somewhat unique

in that it has, in its most refined form, an accuracy comparable

with that of the MLE, and yet it obtains parameter estimates

from the solution of a convex problem that can be reliably and

efficiently computed in polynomial time.

In this paper we introduce a new method for MA parameter

estimation that, similarly to the method of [4], [5], is based

on a covariance fitting criterion whose minimization leads to

a convex optimization problem. The main difference between

the proposed method and that in the cited references lies in a

novel form of the fitting criterion. The inspiration for using this
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new form of covariance fitting criterion comes from a recent

letter ([6]) as well as from one of the possible derivations of

the Capon beamforming method in array processing [7], [8]

(also [3]) - see the next section for details. Compared with the

basic form of the method in [4], [5], the method proposed here

is shown via Monte-Carlo simulations to provide much more

accurate MA parameter estimates in difficult cases (where the

roots of the polynomial in (3) lie close to the unit circle).

II. MAIN RESULTS

A. The basic method of [4], [5]

Let

r̂p =
1

N

N∑
k=p+1

y(k)y(k − p) = r̂−p p = 0, 1, 2, · · · (4)

denote the standard sample covariances of {y(k)}. Also, let

{rp} denote the theoretical covariances of {y(k)}. Two convex

parameterizations of {rp} have been derived in [4], [5] (see

also the references therein): the “trace parameterization” and

the “Kalman-Yakubovich-Popov lemma - based parameteri-

zation.” These two parameterizations are equivalent in most

respects, but the trace parameterization is easier to describe

and thus it will be the one used in what follows. In this

parameterization, the covariances {rp} of the MA sequence

in (1) have the following expressions:

rp = trp(Q) p = 0,±1, · · · ,±n; Q ≥ 0 (5)

where the (n+1)× (n+1) matrix Q is positive semidefinite

(Q ≥ 0) but otherwise arbitrary, and trp(Q) denotes the sum of

the elements on the pth diagonal of Q (with the main diagonal

corresponding to p = 0, and so forth).

Making use of (5), the basic form of the method of [4], [5],

which we refer to as the basic method (BM), can be described

by a two-step procedure:

Step 1. Solve the convex minimization problem

min
Q≥0

n∑
p=−n

(r̂p − rp)
2; {rp = trp(Q)} (6)

Step 2. Obtain estimates of {cp} from the solution of Step 1

by using a spectral factorization algorithm.

The problem in Step 1 can be easily reformulated as a

semi-definite program (SDP) that can be solved reliably and

efficiently in polynomial time using public-domain software

[9], [10]. The spectral factorization problem in Step 2 can

also be solved efficiently by means of any of several available

algorithms (see, e.g., [11] for a recent account). Therefore

BM is a computationally appealing method. However, from
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an estimation accuracy viewpoint, the parameter estimates

obtained with BM may be statistically rather inefficient.

The approach employed in [4], [5] to improve the statistical

efficiency of BM relies on a somewhat involved weighted

covariance fitting criterion. Here we take a simpler route, as

will be explained in what follows. Compared with the BM, or

its enhanced version in [4], [5], which rely on fitting {rp} to

{r̂p}, the new method (NM) is based on fitting the theoretical

covariance matrix

R =

⎡
⎢⎢⎢⎣

r0 r1 · · · rn
r1 r0 · · · rn−1

...
. . .

. . .
...

rn · · · r1 r0

⎤
⎥⎥⎥⎦ (7)

to an estimate of it, let us say R̂, obtained from the available

observations. A possible expression for R̂ is the standard

Toeplitz sample covariance matrix:

R̂T =

⎡
⎢⎢⎢⎣

r̂0 r̂1 · · · r̂n
r̂1 r̂0 · · · r̂n−1

...
. . .

. . .
...

r̂n · · · r̂1 r̂0

⎤
⎥⎥⎥⎦ (8)

Another commonly used R̂ is the following non-Toeplitz

sample covariance matrix:

R̂nT =
1

N − n

N∑
k=n+1

⎡
⎢⎣

y(k)
...

y(k − n)

⎤
⎥⎦ [

y(k) · · · y(k − n)
]

(9)

There is compelling evidence, obtained from numerical studies

of a diversity of estimation problems, which suggests that in

small-or-medium-sized samples the use of R̂nT can lead to

more accurate parameter estimates than the use of R̂T. We will

show in the numerical example section that the same is usually

true in the MA parameter estimation problem considered here,

in the sense that the NM based on R̂nT is more accurate

than the NM that uses R̂T; we will also show that NM is

much more accurate than BM, which can use only the Toeplitz

covariances.

B. Capon and Pisarenko methods

The main inspiration for the NM has come from a covari-

ance fitting-based derivation of the Capon beamformer in array

processing. In the said derivation, the theoretical covariance

matrix R of the observed data is modeled (using real-valued

variables, for analogy with the estimation problem discussed

in this paper) as:

R = σ2aaT + Γ (10)

where σ2 is the signal power, which is the unknown parameter

of main interest, a is a given vector, and Γ is an unknown

residual covariance matrix (which is usually a nuisance quan-

tity). The Capon beamforming method for determining σ2 can

be obtained as the solution to the following covariance fitting

problem [7], [8]:

max
σ2

σ2 subject to R− σ2aaT ≥ 0 (11)

where in practice R must be replaced by R̂.

Along similar lines to the Capon formalism, in the so-called

Pisarenko harmonic analysis [3], one seeks to decompose a

given Toeplitz covariance R into the sum of a singular Toeplitz

matrix and a matrix that corresponds to the background white

noise. The variance ν2 of the white noise can be obtained as

the solution to

max
ν2

ν2 subject to R− ν2I ≥ 0 (11a)

where I denotes the identity matrix. Clearly the solution of

the above optimization problem coincides with the smallest

eigenvalue of R, and the residual matrix Γ in the decompo-

sition

R = ν2I+ Γ (11b)

is a singular Toeplitz matrix that corresponds to a finite number

of spectral lines.

C. The new method

It follows from the discussion in the previous sub-section

that the basic rationale in Capon beamforming as well as

in Pisarenko harmonic analysis can be seen as seeking a

decomposition of the given or estimated covariance R̂ into

the sum of a covariance matrix corresponding to a component

that is postulated as being present, and a residual matrix which

accounts for noise, uncertainty, estimation errors, or signals of

a particular type. Reference [6] (Problem 1) explores this idea

for decomposing Toeplitz matrices into one corresponding to

an MA noise-component plus a singular one, for the purpose

of identifying possible spectral lines in the residual. Inspired

by the Capon and Pisarenko rationales and by the approach in

[6], we explore a similar decomposition from which we seek to

estimate the MA parameters of the underlying process. More

specifically, we propose to estimate the MA covariances {rp}
(and thus the MA parameters {cp}, see Step 2 of BM) by

solving the following covariance fitting problem:

max
Q≥0

r0 subject to R̂−R ≥ 0; {rp = trp(Q)}
(12)

where R̂ is either R̂T or R̂nT; we denote the resulting two

versions of NM as NMT (based on R̂T) and NMnT (based on

R̂nT). An equivalent, but perhaps intuitively more appealing,

form of (12) is as follows:

min
Q≥0

tr(R̂−R) subject to R̂−R ≥ 0; {rp = trp(Q)}
(13)

Similarly to (6), this is a convex problem (namely a SDP) that

can be efficiently solved in polynomial time using publicly

available software [9], [10].

Several remarks on the NM are in order:

(i) The trace criterion in (13) can be replaced by other related

criteria, for instance by

min
Q≥0

λmax(R̂−R) subject to R̂−R ≥ 0; {rp = trp(Q)}
(14)

where λmax denotes the maximum eigenvalue. The so-obtained

problems, such as (14) above, are also convex and therefore

they can be efficiently solved as well. However, we have ob-

served in a number of numerical simulations that the statistical

accuracies of NM and of the modified NMs (such as (14))

are quite similar to one another. Therefore, for conciseness

reasons, we will focus on NM.

Interestingly, for the Capon beamforming problem in (11),

we show in the Appendix that (11) (with R replaced by R̂),
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or equivalently

min
σ2

tr(R̂−σ2aaT ) subject to R̂−σ2aaT ≥ 0 (15)

has the same solution as the following alternative problems:

min
σ2

λmax(R̂− σ2aaT ) subject to R̂− σ2aaT ≥ 0

(16)

and

min
σ2

det(R̂− σ2aaT ) subject to R̂− σ2aaT ≥ 0

(17)

where det(·) denotes the determinant. While this apparently

new result on Capon beamforming is not strictly related to the

MA parameter estimation problem discussed here, at least it

lends some theoretical support to our observation that NM and

certain modifications of it, such as (14), have similar statistical

performances.

(ii) Evidently BM cannot make use of covariances {r̂p} for

p > n, whereas NM can be readily extended to use longer

covariance sequences. However, we have observed empirically

that the so-obtained extension of NM does not necessarily

have better accuracy than NM. A heuristic explanation of this

behavior is as follows: an indirect effect of increasing the

dimension of R̂ and R in (13) is to decrease the “weight”

of the covariances {r̂p} and {rp} for p = 0, · · · , n (which

are the parameters of main interest) in the fitting criterion;

furthermore, the covariance estimates with lags larger than

n carry “information” on the MA parameters only via their

correlation with the covariance estimates for lags 0, · · · , n,

and this correlation is not exploited adequately in the fitting

criterion used by NM.

(iii) We might think of reversing the positions of R̂ and R in

(13) to obtain a different version of NM, viz.:

min
Q≥0

tr(R−R̂) subject to R−R̂ ≥ 0; {rp = trp(Q)}
(18)

However, somewhat similarly to what we said in (ii) above, we

have observed empirically that this modification of NM may

provide less accurate parameter estimates than (13). Heuris-

tically, we can try to explain this behavior in the following

way: for the sake of discussion, let R̂ = R̂T in (13) and

(18); then (13) implies r̂0 > r0, whereas for (18) we must

have r0 > r̂0; when r0 > r̂0, the conditions for {rp}np=1

to belong to the set of MA(n) covariances are weaker than

the corresponding conditions when r0 < r̂0; consequently, for

(18) the minimizing {rp}np=1 may be closer to {r̂p}np=1 than

for (13); this fact may explain why (18) has been observed in

some of our simulations to behave somewhat similarly to BM.

Finally, we remark on the fact that while the condition R̂−
σ2aaT ≥ 0 in the Capon beamforming problem (see (11))

is easily motivated, the similar condition R̂ − R ≥ 0, used

in the NM for MA parameter estimation, is more intriguing.

However, “the proof of the pudding is in the eating”: the NM

works well, and it provides more accurate parameter estimates

than the BM in difficult scenarios, as we show in the next

section.

III. NUMERICAL ILLUSTRATION

For MA sequences with roots well outside the unit circle

(see (3)), the sample covariances {r̂p}np=0 belong to the set

of valid MA(n) covariances, with a high probability. In such

cases, BM and NM give very similar results (the solution to

the covariance fitting problem is likely to be {rp = r̂p}np=0

for both BM and NM).

In this section we consider a “difficult example” (see [4]):

an MA(3) for which the polynomial in (3) has roots at 1
0.95

and 1
0.98e±iπ/4 . The corresponding MA coefficients have the

following values:

c0 = 1 c1 = −2.3359 c2 = 2.2770 c3 = −0.9124 (19)

We will use BM, NMT and NMnT to estimate {cp} from sam-

ples of {y(k)} of varying length: N = 100, 200, · · · , 1000.

For each method and each value of N , we estimate the average

mean squared error (AMSE) of the parameter estimates, viz.

AMSE =
1

n+ 1

n∑
p=0

E(ĉp − cp)
2 (20)

by using 1000 Monte-Carlo simulation runs. The obtained

results are shown in Fig. 1.
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Fig. 1. The estimated AMSE of BM, NMT and NMnT versus N .

Fig. 2 shows the theoretical spectrum of the considered

MA(3) sequence, viz. |C(eiω)|2 (where C(·) is the polynomial

in (3) and ω ∈ [0, 2π] is the frequency variable), along with

the mean and standard deviation of the spectra estimated via

BM and NMnT for N = 1000. As can be seen from these

figures, NMnT provides slightly more accurate estimates than

NMT and significantly more accurate estimates than BM.

IV. CONCLUSIONS

We have proposed a computationally attractive MA parame-

ter estimation method based on the use of convex optimization

and of an original covariance fitting criterion. The new method

has been shown via numerical simulations to provide more

accurate parameter estimates than the basic version of an

existing competitive method.

APPENDIX: PROBLEMS (15), (16) AND (17) HAVE THE

SAME SOLUTION

First note (assuming that R̂ is nonsingular) that:

det(R̂− σ2aaT ) = det(R̂) det(I− R̂−1σ2aaT )

= det(R̂)(1− σ2aT R̂−1a) (A.1)

which implies immediately that the problems (15) and (17)

are equivalent. To show the same result for (15) and (16), let
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Fig. 2. The theoretical spectrum along with the mean, and the mean ±1
standard deviation curves for the spectra estimated via BM and NMnT (N =
1000).

R̂− 1
2 denote a symmetric square-root of R̂−1, and observe

that:

R̂− σ2aaT ≥ 0 ⇔
I− σ2R̂− 1

2 aaT R̂− 1
2 ≥ 0 ⇔

σ2 ≤ 1

aT R̂−1a
� σ̂2 (A.2)

and therefore that σ̂2 above is the solution to (15). The

previous calculation also implies that

R̂− σ2aaT = R̂− σ̂2aaT + (σ̂2 − σ2)aaT ≥ R̂− σ̂2aaT

(A.3)

for all values of σ2 that satisfy the constraint in (15) or (16).

It follows that λmax(R̂− σ2aaT ) ≥ λmax(R̂− σ̂2aaT ), under

the constraint in (16) on σ2, and hence that σ̂2 is the solution

to the problem (16) as well.
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