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Tunable Line Spectral Estimators Based on
State-Covariance Subspace Analysis

Ali Nasiri Amini, Member, IEEE, and Tryphon T. Georgiou, Fellow, IEEE

Abstract—Subspace methods for spectral analysis can be
adapted to the case where state covariance of a linear filter
replaces the traditional Toeplitz matrix formed out of a partial
autocorrelation sequence of a time series. This observation forms
the basis of a new framework for spectral analysis. The goal of
this paper is to quantify potential advantages in working with
state-covariance data instead of the autocorrelation sequence. To
this end, we identify tradeoffs between resolution and robustness
in spectral estimates and how these are affected by the filter
dynamics. The approach leads to a novel tunable high-resolution
frequency estimator.

Index Terms—Harmonic decomposition, spectral estimation,
state-covariance, subspace methods.

I. INTRODUCTION

THERE are numerous engineering applications that re-
quire estimating the power spectrum of a stochastic

process from a finite observation record. For instance, in
communications, radar, sonar, and geophysical seismology,
spectral analysis of a recorded signal/echo is essential for data
compression, speaker recognition, target identification, or the
identification of underlying geophysical morphology. To this
end, spectral estimation and analysis techniques occupied a
central role in signal processing research over the past three
decades. While traditional Fourier and periodogram-based
techniques remained the workhorse in most areas, their lim-
ited resolution capabilities stimulated research in nonlinear
methods. Indeed, over the past three decades, this research
has led to a wide spectrum of “high-resolution” methods and,
among them, subspace methods which offer high resolution
with low-computational complexity. This paper is about a new
formalism for spectral analysis and corresponding analogs of
subspace methods.

Standard nonlinear spectral estimation methods [1], [2]
typically rely on an estimated partial covariance sequence.
The power spectrum is then identified as being consistent with
such statistics while satisfying side conditions (e.g., maximum
entropy, composed of sinusoids, etc.). In this spirit, subspace
methods are based on a suitable eigendecomposition of the
estimated covariance matrix of the process, so as to identify
the dominant eigendirections which characterize embedded
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harmonics. The new formalism begins with estimating the
covariance of state vector of a linear filter. The dynamics of
such a filter, may be dictated either by sensing apparatus, or the
geometry of antenna array, or simply by “virtual dynamics,”
specified in an algorithmic stage. The filter can be also con-
ceived as a filter-bank made of several subcomponents.

The state-covariance can be treated and analyzed very much
like the usual covariance matrix in standard subspace methods
[3], [4]. The essence of the new framework is that it allows a
degree of freedom in tuning the statistics (state covariance),
via suitable choice of the filter, to affect the resolution when
estimating the power spectrum over different frequency bands.
The underlying idea is akin to beamspace methods for array
processing [5, p. 1062], with an important difference—the
state covariance has a known algebraic structure which can be
exploited.

In Section II, we briefly survey classical subspace spectral
estimation. In Section III we introduce the new setting for spec-
tral analysis which is based on state-covariances and we explain
how the concepts of the signal subspace and the noise subspace
carry over in this new framework. We show how the parameters
of the IS filter affect the frequency estimator and its resolution
over different frequency bands. The degree of freedom afforded
by the choice of such parameters allows to trade resolution in
different part of the spectrum.

A rigorous statistical analysis has been carried out in Sec-
tion IV to quantify relevant tradeoffs. More specifically, we
study the variability of frequency estimates of a time series
which consist of sinusoids in white noise. We derive an ex-
plicit expression for the variance of canonical angles between
estimated and true signal subspaces when the variance of
the estimated state-covariance is taken into account. Later in
Section V, we discuss and compare the performance of this
approach with more traditional subspace analysis. Finally, we
discuss a “suboptimal” IS filter design and demonstrate the
performance of relevant frequency estimator via simulation
studies. Proofs of the propositions and the lemmas are given in
Section VII.

II. SUBSPACE METHODS

Consider the following classical problem: estimate the power
spectral density function of a stationary stochastic process
from a finite observation record , where
it is known that consists of a number of complex sinusoids
(i.e., cisoids) embedded in white noise. More precisely, let

(1)
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where

and the following standard assumptions hold: s are indepen-
dent random variables uniformly distributed in ;
is zero mean white Gaussian noise with ;
and the number of complex sinusoids, i.e., , is known, where
“ ” denotes complex conjugate transpose. Note that if is
known, determining the remaining of the signal parameters
(i.e., phase and amplitude for each sinusoid) is a simple linear
regression problem [2, ch. 4]. Therefore, the challenging part
of the problem is estimating and we focus on this.

A popular class of techniques for estimating harmonics relies
on exploring the covariance structure of the stochastic process.
To this end, let be the partial covariance se-
quence of (i.e., ), and

...
...

. . .
...

(2)

the associated Toeplitz covariance matrix. Under the earlier hy-
pothesis on the composition of

(3)

where is identity matrix of appropriate dimension
and

...
...

...

At the same time a singular value decomposition (SVD) of
gives that

(4)

where is a unitary matrix and the above summands cor-
respond to splitting the contribution of the largest singular
values from the rest. It is easy to show [2, pp. 155–157], that

(5)

This range, which is a -dimensional subspace, is referred to
as the signal subspace while its complement is re-
ferred to as the noise subspace. Note that the signal subspace is
fully specified by . In fact,

(6)

is bijective (see [2, pp. 155–157]). In other words, the set of fre-
quencies, , can be determined uniquely from the signal sub-
space. Thus, estimating amounts to estimating corresponding
signal subspace.

The subspace methodology for estimating can be viewed
as a two-step approach: First a basis for the signal subspaces is

obtained via a SVD on the signal statistics in (4). Then the
frequencies are determined by .

In practice, we work with the sample covariance matrix ,
and, hence, signal and noise subspaces can only be approxi-
mated. Therefore, a set of frequencies that corresponds to the
estimated subspaces can not be found in general. The variety
in subspace algorithms (e.g., MUSIC, ESPRIT) stems from dif-
ferent approximation schemes that they use to fit a set of fre-
quencies to the estimated subspaces. In the sequel, we show a
natural extension of the concept of signal statistics and ac-
cordingly, the generalization of subspace methods for spectral
estimation.

III. STATE-COVARIANCE SUBSPACE METHODS

The basic idea in retrieving information from the structure of
extends to the case where is replaced by the state-covari-

ance of a known linear filter which is driven by the stationary
process (see [3]). Here we briefly sketch this idea.

Consider the linear filter:

(7)

where is a scalar input and the complete state is available
at the output. In particular, assume and
is a controllable pair, is a stable matrix (i.e., its eigenvalues
are inside the unit disk), and the following holds:

(8)

Equation (8) is a normalization condition that causes no loss in
generality but simplifies a number of derivations. We refer to
this system as an input-to-state filter (IS filter). Its frequency
response is

and the eigenvalues of , denoted by , are referred
to as the modes of the filter.

For an input as in (1), the value of the state vector at
steady state is given by

(9)

where denotes the response to the additive noise . If

(10)

(9) becomes

(11)

Since is wide-sense stationary so, is . The state-
covariance can be written as

(12)

where . Equation (12) follows from
the fact that and are independent random vectors,
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has zero mean, and the normalization in (8) implies that
. On the other hand a SVD of gives

(13)

The two summands in (13) correspond to splitting the contribu-
tion of the largest singular values from the rest. In the sequel,
the singular values of are denoted by
and their corresponding singular vectors by . It is easy
to verify that

In complete analogy with (3) and (4), (12) and (13) imply

This range is again the signal subspace. It is proven in [4] that

is injective. Hence, estimating the signal subspace allows for
estimating as well.

In practice, should be estimated from the sample data. To
this end, the sample state process , i.e.

is obtained using (7) and zero initial condition. This initial con-
dition assumption has a transient effect on . However, after
a certain time constant, denoted by , this effect becomes neg-
ligible. Therefore, state-covariance matrix can be estimated as

(14)

where . It can be shown that (14) is a consistent
estimator of the state-covariance (for details, see [6]). As in tra-
ditional subspace methods, working with a sample state-covari-
ance requires approximation techniques to fit a set of frequen-
cies to the estimated signal subspace. Analogs of MUSIC and
ESPRIT algorithms have been developed in [4]. For instance, a
scheme analogous to the ESPRIT algorithm is outlined in the
following proposition.

Proposition 1: Suppose is a row vector and is a
matrix such that

(15)

then and are unique and eigenvalues of are precisely
for .

Proof: The proof is given in [4, p. 36].
The frequencies can be retrieved as the angles of the eigen-

values of . In practice, since only an estimate of the signal
subspace is available, an estimate of the matrix can be
obtained by a least squares solution of

(16)

It turns out that IS filters with identical modes lead to identical
frequency estimators. In fact, as stated below, the state space
matrices of such filters relate through a unitary transformation.

Proposition 2: Suppose and define IS filters
with and having identical eigenvalues. Then there exists
unitary matrix such that

(17)

Proof: See Section VII.
It follows that and with

and denote the corresponding quantities for . By sub-
stituting these transformed objects in (15), cancels out. There-
fore, the frequency estimator only depends on the modes of the
filter.

To estimate spectral lines one needs to consider the following:

(18)

(19)

where in the first, one needs to estimate the signal subspace and
in the second, to fit spectral lines to it. The classical framework
of Toeplitz covariance matrices is a special case and corresponds
to the choice

...
. . .

...

... (20)

In this case, all of the filter modes are at the origin and the
state covariance is precisely given in (2), while the choice of

in (14) gives the classical estimator of the Toeplitz
covariance matrix. The main point of this paper is to show that a
well designed IS filter can improve the performance of the fre-
quency estimator.

Remark 1: To get some intuition on how the IS filter parame-
ters affect the frequency estimation we consider the case ,
i.e., when there is only one cisoid . The
state process vector is given by

The summands correspond to the signal and the noise, respec-
tively. The signal and noise power can be defined, respectively,
as

Intuitively large signal-to-noise ratio (SNR) must lead to the
small variance of the error in estimating . Note that the noise
power is not affected by the choice of IS filter since the normal-
ization in (8) keeps the noise contribution constant. Thus, the
estimation error may be reduced by increasing
with a suitable selection of the IS filter modes.
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An expression for , derived in the Section VII,
is

(21)

where are the modes of the IS filter. It is
evident that if then the corresponding summand in
the above expression has a bandpass shape around and the
Q-factor is determined by . Furthermore, it is easy to verify
that . This integral bound highlights
the main tradeoff between different frequency bands, where
increasing the gain over one frequency interval nec-
essarily reduces elsewhere. Thus it is expected that
placing the IS filter modes close to improves the perfor-
mance of the frequency estimator around at the expense
of the performance elsewhere. There is a price to be paid by
placing modes of the filter close to unit circle.

Remark 2: IS filters with modes close to the unit circle has
a large time constant which adversely affects the variance of .
To mediate the transient effects we select in (14) such that

, where is a sufficiently small constant. We refer
to as the transient error constant. Large reduces in
(14), which in turn leads to large variance in the estimated state-
covariance. Next we present a statistical performance analysis
that guides the design methodology to balance these tradeoffs.

IV. STATISTICAL PERFORMANCE ANALYSIS

We analyze the effect of the IS filter on the frequency esti-
mator performance. In particular, first we derive an expression
for the variance of the error in , and then use it to evaluate the
error in the estimated frequencies.

A. Statistical Analysis of the Estimated Subspace

To evaluate the statistical properties of the estimated sub-
spaces, a notion of distance between subspaces is needed. A
natural notion of the distance between subspaces is defined via
the so-called canonical angles. Consider the “angle operator”
between and

where is a unitary matrix. The singular values of are
the sines of the canonical angles between subspaces spanned by

and (see [7, p. 43] for details). We use the second-order
statistics of to evaluate the error in . To compute the sta-
tistics of , we introduce some notation and derive an approx-
imation of which is linear in . This approximation follows
analogous steps as in [8] which deals with Toeplitz covariance
matrices.

The second-order statistics of , i.e., , denoted by
where . We

should point out that also depends on the IS filter and the
length of the sample state process . The autocorrelation
function of can be expressed as

(22)

where the two summands correspond to the signal and the noise
contributions and

if
if .

The following lemma gives a linear approximation of in terms
of .

Lemma 1: For the small perturbation, i.e.,
, the following holds

where .
Proof: See Section VII.

This lemma is the key to deriving , which is given in the
following proposition.

Proposition 3: For

(23)
Proof: See Section VII.

The large sample assumption guarantees the approximation
in Lemma 1. Extensive Monte Carlo simulations in [6] and
numerical examples in the next section show that (23) gener-
ates accurate values even for moderately sized samples. An
insightful comparison of (23) with an analogous expression in
[9] for antenna array processing is given in the Appendix.

B. A Performance Measure for IS Filter Design

The performance of the frequency estimator depends on the
actual frequencies, their amplitudes and the noise power (i.e., )
which are not known a priori. However, in many applications
there is a priori knowledge of the range of the unknown fre-
quencies, or there is a particular interest in a specific frequency
band. In such cases the IS filter can be tuned to improve the per-
formance in selected frequency bands. We define a convenient
performance measure to be used in the IS filter tuning as

(24)

where

(25)

and . This is defined to capture the performance
of the frequency estimator in retrieving a single cisoid at the
particular frequency when the signal-to-noise ratio is equal to
SNR. Below we explain the intuition behind this definition.

In retrieving a single cisoid at frequency , it is natural to
quantify the performance by . The variance
of the error in the signal subspace, which is given in (23), is
a scaler quantity when . Therefore, it is used in the
denominator of (24) to represent the error in the estimated
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Fig. 1. Comparing performance of the frequency estimators based on G and
G .

signal subspace. The numerator , defined in (25), is the
rate of changes in the signal subspace due to small changes in
the . The factor is the sensitivity of the signal subspace
to the frequency changes at the particular frequency . Thus,
it is reasonable to scale the error in the estimated signal sub-
space by a factor to evaluate the error in the frequency
estimates. As we see in SectionV, well approximates

. Thus, can be used as a convenient
performance measure in the tuning of the IS filter.1

The derivative in (25) which is a function of the IS filters
has been calculated in Section VII. The performance measure
depends on the sample data characteristics (i.e.,
and ) and the IS filter modes. In Section V we show how the
IS filter modes can be designed to increase .

V. NUMERICAL ANALYSIS

It has been discussed in Remark 1 that placing the modes of
the IS filter close to , for a particular , increases in
the frequency band around . Intuitively this should enhance
the performance of the frequency estimator in this frequency
band. This is highlighted in the following numerical examples.
Throughout this section we use the extension of the well-known
ESPRIT algorithm as stated in (16) to retrieve frequencies from
the estimated signal subspace. It should be noted that using other
techniques such as MUSIC produces similar results (see [6]).

Example 1: Consider the case of retrieving a single com-
plex sinusoid with the frequency embedded in noise when

, , and . We study three dif-
ferent frequency estimators built upon three IS filters of order

. The first IS filter has all of its modes at the origin,
thus, it corresponds to the classical ESPRIT. The second IS filter

has one mode at with multiplicity 10. The third one
has two modes at and each with multi-

plicity 5. Note that is obtained as 10, 83, and 55 to satisfy
, respectively , , and . For explanation on

computing corresponding to a set of prescribed modes
see the Section VII-F.

1The exact error in the frequency estimate depends on the specific technique
(e.g., MUSIC, ESPRIT) which is employed to identify frequency from the es-
timated signal subspace. However, these techniques have similar statistical per-
formances with only slight differences [2, p. 143] Therefore, instead of ana-
lyzing each technique separately, we resort to this rather general perturbation
analysis.

Fig. 2. Comparing performance of the frequency estimators based on G and
G .

Fig. 3. Comparing the theoretical expression in (23) with Monte Carlo
simulation results; � = (! ; 1).

For a number of we evaluated the perfor-
mance of these three frequency estimators by numerical Monte
Carlo study. For each we simulated 1000 realizations.
The frequency estimates based on applying , , and
were computed and the square root of the mean squared error
(RMSE) of these estimates over the realization set have been
evaluated. In Figs. 1 and 2 we have illustrated these results
and compared them with the corresponding and the
Cramer-Rao lower bound (CRLB). The results confirm that

is a reasonable performance criterion, since its be-
havior agrees with the RMSE. Also, as expected, and
outperform (i.e., classical ESPRIT) in the frequency bands
around their modes. Note that almost achieves CRLB if the
sought frequency resides close to . We also estimated

for the three IS filters in these simulations to
verify the theoretical result in (23). The theoretical result and
simulation result are shown and compared in Fig. 3.

This example suggests that a well designed IS filter can be tai-
lored to specific applications to improve the performance within
the selected frequency bands. Here we focus on designing the
IS filter to optimize the performance in a specified frequency
band, e.g., . This is an abstraction of practical
situations when some a priori knowledge is available about the
sought frequencies. Such a priori information may be available
from a fast but not accurate preprocessing or from a prior esti-
mate in a tracking problem.2

2See [11] where IS filters have been applied for remote estimation of tissue
temperature.
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The space of design parameters is all of the combinations of
inside the unit circle. Searching the whole space of de-

sign parameters for an optimal IS filter would be an immense
task. Therefore, we resort to a suboptimal design by limiting
our search to IS filters with single mode at with mul-
tiplicity . We choose the minimum of in the frequency
band of interest as the design objective (other possibilities are

and ). More precisely, our choice for
is

(26)

Note that for IS filter with a single mode at the performance
measure decreases symmetrically from its maximum at

. This implies that the angle of (i.e., ) should be
chosen as . Consequently the minimum of

in the frequency interval of interest is .
Therefore, the design of the suboptimal IS filter reduces to a
search for the optimal and can be summarized in these steps:

1) ;
2) ;
3) Follow Section VII-E to derive with modes at

.

It should be noted that depends on the SNR which is un-
known in practice. Furthermore, when we face multiple cisoids
with different amplitudes, each of them has its own SNR. In
such cases we should rely on a rough estimate of the SNR or the
average SNR. Fortunately is practically constant for a wide
range of the SNR as we see in the following example. Thus, only
a rough assessment of the SNR suffices to determine the ap-
propriate IS filter. The performance of the frequency estimators
built upon the suboptimal IS filters are evaluated and compared
with the classical ESPRIT algorithm in the next examples.

Example 2: We consider the case of retrieving three com-
plex sinusoids from a sample data of length where

, , , ,
, , , , and . Note that

the cisoids are well separated from each other in the frequency
domain compared to the resolution limit of the Fourier based
techniques . The frequency band of interest is chosen as

. The proposed algorithm is used to determine the
suboptimal IS filter corresponding to this frequency band. In
order to compute we plotted in Fig. 4
versus for three SNR levels corresponding to the three cisoids,
i.e., . Note that all of these curves attains their
maximum practically at . The suboptimal IS filter has
one mode at with multiplicity . Note that satis-
fying requires .

For a number of we evaluated the performance
of this frequency estimator by numerical Monte Carlo study.
For each we simulated 1000 realizations. The frequency es-
timates based on applying the classical ESPRIT and the sub-
optimal IS filter were computed. The RMSE of these estimates
over the realization set have been evaluated and illustrated in
Fig. 5. Since these cisoids are separated with the
CRLBs for them are well approximated by (see
[2]). Note that when the cisoids are within the frequency band of

Fig. 4. f(! ) versus r; ! = 1:75, SNR = 64 = 18 dB, SNR = 16 =
12 dB, SNR = 4 = 6 dB.

Fig. 5. Comparison of the frequency estimator based on the suboptimal IS
filter and the classical ESPRIT algorithm.

interest, i.e., , the performance of the designed fre-
quency estimator is very close to the CRLB.

Example 3: Subspace methods are well known for their
ability to resolve closely spaced sinusoids. In this example
we study the problem of resolving two closely spaced cisoids
from a sample data of length where ,

, , , ,
and . Similar to the previous example the frequency
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Fig. 6. Comparison of the frequency estimator based on the suboptimal IS
filter and the classical ESPRIT algorithm.

band of interest is chosen as . Since the SNRs in
this example are close to the previous example, the suboptimal
IS filter remains the same.

For several values of we evaluated the perfor-
mance of this frequency estimator by numerical Monte Carlo
study. For each we simulated 1000 realizations. The fre-
quency estimates based on applying classical ESPRIT and the
suboptimal IS filter were computed (the smaller frequency es-
timates is assigned to and the other one is assigned to ).
The RMSE of these estimates over the realization set have been
evaluated and illustrated in Fig. 6. Since the cisoids are closely
spaced the CRLB depends on the actual phase difference be-
tween cisoids (see [12, pp. 413–416]). The CRLB plotted in
Fig. 6 corresponds to the case of zero phase difference (i.e.,

). However, in simulations phases are random variable
uniformly distributed over . The improvement is clear es-
pecially in the frequency band of interest the RMSE reduced by
a factor of .

VI. CONCLUDING COMMENTS

We have explained how the IS-filtering can be used to esti-
mate the spectral content of signals. This amounts to a gener-
alization of the classical subspace techniques. This generaliza-
tion introduces tuning parameters that can be used to improve
the spectral estimators. In order to analyze various tradeoffs a
statistical performance analysis has been carried out. This leads
to a design methodology that uses prior information or prepro-
cessing for tuning the spectral estimator. Numerical studies have
shown advantages of the proposed algorithms as compared to
standard high-resolution algorithms.

VII. PROOFS AND DERIVATIONS

A. Proof of Proposition 2

Since both pairs and are controllable, share
the same eigenvalues, and , are column vectors, they relate
through a similarity transformation

where is an invertible matrix. (To see that this is so, simply
note that they can be both brought into the same canonical form,
e.g., a control canonical form, by such a similarity transforma-
tion.) Thus, we have

If we multiply by and from the left and right, respectively,
we have

The last equation is a Lyapanov equation, and since is stable
and it has a unique solution. Also
which implies that the unique solution is the identity and

.

B. Proof of (21)

Normalization in (8) implies that

where . Since is a stable
matrix

Thus and we have that

If we set , we obtain

C. Proof of Lemma 1

Below, we repeatedly use the following identities:
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The following holds:

Neglecting the higher order terms, which is reasonable for large-
samples, we get

and finally

D. Proof of Proposition 3

Note that is equal to and that

Since , then

Hence, the problem reduces to estimating . In sub-
sequent calculations we use the fact that and are in-
dependent random variable with zero mean, and also (see [13])
that, for any four complex-valued Gaussian random variables

at least one of which has zero mean

Let be any column of , i.e., , then
, which follows from the fact that .

Hence

It follows that

Now can be expanded using
the aforementioned result for four complex Gaussian random
variables. The other fact that allows further simplification is that

. Thus, can be written as

This gives the expression claimed in the proposition.

E. Derivation of

We derive in terms of the IS filter parameters, i.e.,
and . To this end, we define
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Using this notation, we have

and

By inserting the above in

(27)

we get the expression for in terms of the IS filter
parameters.

F. Determining

We want to specify a pair corresponding to an IS filter
with modes at prescribed locations. Let for
and denotes the multiplicity of the corresponding mode. Con-
sider the square matrix with the following Jordan form

...

...
. . .

. . .

...

, and , where “;”
denotes vertical concatenation. The pair is controllable
with eigenvalues of at the prescribed locations but it does not
satisfy the normalization condition in (8). A suitable similarity
transformation can generate the desired from . Let

be the solution of the following discrete-time Lyapunov equa-
tion then satisfies
(8) and gives the desired .

APPENDIX I
STATISTICAL PERFORMANCE ANALYSIS FOR ARRAY

PROCESSING

The statistical properties of the subspace methods, when they
apply for direction of arrival (DOA) estimation, have received
considerable attention in the literature. Examples of the reported
works are Kaveh and Barabell [14], Wang and Kaveh [9], Stoica
and Nehorai [15]. Here we consider DOA estimation by means
of a uniform linear array (ULA) of sensors. ULA assumption
corresponds to the Toeplitz state-covariance case, and the di-
mension of the covariance matrix, i.e., , is number of the sen-
sors.

The statistical analysis for array processing involves an as-
sumption that simplifies the analysis as compared to harmonic
retrieval. It is assumed that the output of the array is sampled
properly so as snapshots, which is denoted by in this paper,
are independent and identically distributed. Thus, the autocorre-
lation function of , i.e., , is zero for as well as .

This simplifies Proposition 3 to the following (see [6, ch. 3]).3

Let the canonical angles between and are denoted by
and denotes the number of snapshots

(28)

It is interesting to compare this result to the earlier work
on the performance of the subspace methods. In [9, pp. 1204,
1205], the largest canonical angle between true signal subspace
and its estimate is used to describe the distance between them.
The mean-square error of the cosine of this angle from the per-
fect value (i.e., 1.0) is then used to evaluate the quality of the es-
timated signal subspace. For the case of two targets in spatially
white noise, approximate closed-form expression is derived in
terms of the source and the array parameters. It is shown in [9,
p. 1205] that if and

If we set in (28) to compare the results, we get

There is a meaningful similarity between these two results.
However, (28) considers all of the canonical angles not only
the largest one, and also it is applicable for the case of more
than two sources.
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