figure 4.1. Smoothing an image with a series of Gaussian filters. Note how
the information is gradually being lost when the variance of the Gaussian filter
increases from left to right, top to bottom.
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figure 4.2. Local neighborhood of pizels at a boundary (intensity discontinuity).
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figure 4.3. Least-squares (quadratic) error norm.

286



plz,0) ¥(z,0)

figure 4.4. Lorentzian error norm.
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figure 4.5. Lorentzian error norm and the Perona-Malik g stopping function.
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figure 4.6. Tukey’s biweight.
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figure 4.7. Huber’s minmaz estimator (modification of the L1 norm,).
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figure 4.8. Lorentzian, Tukey, and Huber 1-functions. (a) values of o chosen
as a function of g. so that outlier “rejection” begins at the same value for each
function; (b) the functions aligned and scaled.
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figure 4.9. Comparison of the Perona-Malik (Lorentzian) function (left) and
the Tukey function (right) after 100 iterations. Top: original image. Middle:
diffused images. Bottom: magnified regions of diffused images.
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figure 4.10. Comparison of edges (outliers) for the Perona-Malik (Lorentzian)
function (left) and the Tukey function (right) after 100 iterations. Bottom row
shows a magnified region.
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figure 4.11. Comparison of the Perona-Malik (Lorentzian) function (left) and
the Tukey function (right) after 500 iterations.
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figure 4.12. Lorentzian (Perona-Malik) penalty function, P(l), 0 <1< 1.
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figure 4.13. Cliques for spatial interaction constraints (up to rotation) at a
site s. The circles indicate pizel locations and the bars indicate discontinuities

between pizels. The Chyst cliques are used for hysteresis and the Csupp cliques
are used for non-mazima suppression.
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figure 4.14. Anisotropic diffusion with spatial organization of outliers. Left:
input image. Middle: line process for Perona-Malik (bottom - thresholded).
Right: Perona-Malik line process with spatial coherence (bottom - thresholded).
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figure 4.15. Anisotropic diffusion with spatially coherent outliers. Left:
smoothed image. Right: the value of the line process at each point taken to
be the product, ls pls v, of the horizontal and vertical line process at s.
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figure 4.16. Edges obtained with Perona-Malik (left); and Perona-Malik with
additional spatial coherence in the line processes (right). Lower images show
details on the gondola.
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figure 4.17. Ezample of anisotropic diffusion (original on the left and processed
on the right).
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figure 4.18. Affine denoising, edge maps, and curvature computation for two
affine related images. The first row shows the two original noisy images (two
left figures). Gaussian random noise was added independently to each one of the
images after the affine transformation was performed. The subsequent images
on the same row show the results of the affine denoising algorithm. The second
row shows, on the left, affine invariant edges for the images after affine denois-
ing. The last two figures on the second row show plots of the affine curvature vs.
affine arc-length of the mid-range level-set for these images. The affine curva-
ture was computed using implicit functions. Although this is not the best possible
way to compute the affine curvature in discrete curves, it is sufficient to show
the qualitative behavior of the algorithm. The affine arc-length was computed
using the relation between affine and Euclidean arc-lengths described in the text.
The curve was smoothed with the affine geometric heat flow for a small number
of steps to avoid large noise in the discrete computations. Note that different
starting points were used for both images, and therefore the corresponding plots
are shifted.
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figure 4.19. Test of the importance of affine invariant denoising. The first
row shows the original image followed by the noisy one. The second row shows
the denoising results for the affine and Euclidean flows. The third row shows
plots of the affine curvature vs. affine arc-length of the mid-range level-set for
the original image and those obtained from the affine and Euclidean denoising
algorithms (second row images). The affine curvature was computed using im-
plicit functions. The affine arc-length was computed using the relation between
affine and Euclidean arc-lengths described in the text. In both cases, the curve
was smoothed with the corresponding affine and Euclidean geometric heat flows
for a small number of steps to avoid large noise in the discrete computations.
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figure 4.20. (a) Schematic description of the posterior diffusion algorithm.
(b) Toy ezample of the posterior diffusion algorithm. Two classes of the same
average and different standard deviation are present in the image. The first row
show the result of the proposed algorithm (posterior, diffusion, MAP), while the
second row shows the result of classical techniques (diffusion, posterior, MAP).
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figure 4.21. (Top row) Left: Intensity image of MRI data. Middle: Image
of posterior probabilities corresponding to white matter class. Right: Image
of corresponding MAP classification. Brighter regions in the posterior image
correspond to areas with higher probability. White regions in the classification
image correspond to areas classified as white matter; black regions correspond
to areas classified as CSF. (Bottom row) Left: Image of white matter poste-
rior probabilities after being anisotropically smoothed. Right: Image of MAP
classification computed using smoothed posteriors.
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figure 4.22. Comparison between isotropic and anisotropic diffusion of the
posterior, and the variable weight w;; (last row) for one of the classes in the
anisotropic case.
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figure 4.23. The two left images show manual gray matter segmentation re-
sults; the two right images show the automatically computed gray matter seg-
mentation (same slices shown).
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figure 4.24. 3D reconstruction of the human white matter from MRI, based on
posterior diffusion techniques.
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figure 4.25. Segmentation of SAR data (scalar and video).
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figure 4.26. Gray-level self-snakes. Note how the image is simplified while
preserving the main structures.
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Terzopoulos snakes

a- Geometric interpretation

b- Principles from dynamical systems
c- Level-sets
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figure 4.27. Connections between some of the basic PDE’s used in image
processing.
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