Gas Phase Nanomaterial Integration

Lead P.I. Heiko O. Jacobs*

University of Minnesota - Electrical Engineering

Jesse Cole, En-Chiang Lin and Chad Barry University of Minnesota - Electrical Engineering

Abstract: This letter reports on a new gas phase printing approach to deposit nanomaterials into addressable areas on a surface with 50 nm lateral accuracy. Localized fringing fields that form around conventional resist patterns (PMMA and SiO₂) with openings to a silicon substrate are used to direct the assembly of nanomaterials into the openings. Directed assembly was observed due to a naturally occurring inbuilt charge differential at the material interface which was further enhanced by corona charging to yield a field strength exceeding 1 MV/m in Kelvin Probe Force Microscopy (KFM) measurements. The assembly process is independent of the nanomaterial source and type - an evaporative, plasma, and electrospray source have been tested to deposit silicon and metallic nanoparticles. The results suggest a potential route to form nanolenses on the basis of charged resist structures - a 3 fold size reduction has been observed between the structures and the assembled particles. When combined with the nanolens effect, continued assembly resulted in threedimensional deposition of tower structures. Applications range from the integration of functional nanomaterial building blocks to the elimination of liftoff steps in semiconductor processing.

1. Introduction: The ability to print, deposit, or assemble nanomaterials in two and three dimensions will enable the fabrication of a whole range of novel devices. There is a distinction to be made between the first generation devices that are formed by patterning films and nanomaterials using conventional lift-off and etching techniques and the second generation devices that require a localized order, placement, and formation of interconnects on a single nano-component (nanoparticle or nanowire) basis. Current examples of the second generation devices that require and/or localized order of single interconnects components include single nanocomponent transistors^[1-3], light emitting diodes, lasers^[4], sensors^[5], passive photonic networks^[6], or nanoparticle based media for data storage^[7]. New technologies that can

deliver and integrate single components at precise addressable locations on a surface are needed to enable the manufacturing of the second generation devices. Most recent research has focus on concepts that are based on directed self-assembly and template assisted assembly^[8,9], exploring a variety of different forces including hydrophobicity/hydrophilicity^[10], magnetic interactions^[11], electrospinning^[12], microfluidics^[13], and electrostatics or coulomb forces^[14-21]. Interestingly most of these concepts, except those using electrostatics^[14-18] and electrospinning^[12], are exclusive to the assembly from the liquid phase. Liquid phase concepts considering solution chemistry as the nanomaterial source are important; however, an equally large amount of functional nanomaterials are formed using gas phase methods. The semiconductor industry for example uses gas-phase synthesis and deposition techniques exclusively when high-performance materials (conductors, semiconductors, and insulators) are needed. While the materials are often considered to be of better quality there are a number of limitations: patterning by etching and lift-off wastes materials, the resolution is limited by the resist pattern, and randomness is observed in the deposition patterns if discrete nanoparticles or nanowires are deposited.

This communication presents a new directed assembly process that can be attached in a modular form to existing^[14,16,22,23] gas phase systems. The approach is different from prior nanoxerographic printing methods that use continuous dielectric film layers. The primary aim of the approach is to direct single nanoparticles into addressable regions on a surface with sub-100 nm control over the position. It is an additive process that directs the material into target locations, conserving material and eliminating lift-off or etching steps. The process works at atmospheric pressure and intermediate vacuum (10⁻⁴ torr) and employs a carrier gas that transports charged nanomaterials from a reactor into an assembly module. It combines Coulomb force directed assembly^[16-18] with topographically patterned materials that can be formed by conventional lithography.

Figure 1. Illustration of the sample and assembly module. A carrier gas delivers charged nanoparticles and ions. A global field E_G directs charged particles of selected polarity towards the charged sample surface establishing an electrometer current. A potential ΔV is present between the electret and substrate. The potential gives rise to local fringing fields E_F that direct nanoparticles into the openings. As electrets we used SiO₂ or PMMA resist patterns with openings to a Si substrate. The patterns can be generated by any number of lithography methods. In our experiments we used standard photolithography for large scale features (>10 µm) and electron beam (e-beam) or nanoimprint lithography for small scale features (< 1 µm). The large scale features were 15 µm square holes in 100 nm thick thermally grown silicon dioxide on a p-type silicon substrate. The holes were formed by standard lithography and reactive ion etching and not treated any further. The high resolution samples consisted of 100 nm – 1µm wide holes and lines in a 60-80 nm thick layer of PMMA (2% 950K in Chlorobenzene) that was spin coated onto a n-type silicon wafer. The patterns were defined using electron beam lithography and developed in a 3:1 solution of IPA (isopropyl alcohol): MIBK (methyl isobutyl ketone) for 40 seconds.

2. System Design: Figure 1 illustrates the gas-phase nanomaterial deposition concept. A global (E_G) and localized (E_F) electrostatic fringing field is used to direct the assembly of charged nanomaterials into micro or nanometer sized openings. The assembly occurs inside a 1 cm tall insulating channel with inlet and outlet on either side that holds two 1cm x 1cm squared top and bottom copper electrodes. The fringing field is formed using a charged, patterned thin film on top of a silicon chip. The surface of the electret is at a different electrostatic potential than the silicon chip. Electrostatic field lines are present not only inside the electret but also outside, affecting the nanoparticle trajectories. The line integral $\int E_F dl = \Delta V$ relates the strength of the fringing field (E_F) with the potential difference (ΔV) between the charged electret surface and the substrate. The externally biased electrodes select and direct incoming particles of a desired polarity towards the chip surface. Both electrodes are connected to an electrometer (Keithley 6517A) to monitor the current and charge that arises when charged nanomaterials or ions deposit on the surface. In this Faraday cup arrangement, image charges flow from the ground through the electrometer into the sample or electrode plate to the location of assembled material. As a result, the electrometer measures the accumulated charge and subsequent current of the assembled particles or ions regardless of where they deposit on the surface or whether they become neutralized by the image charges. The deposition rate onto the plates inside this assembly module depends on the volume number concentration of charged nanomaterials and ions, gas flow, actual potential difference between the two plates, and pressure. It can be adjusted ranging from 3 pA at ultra low concentrations to 1 nA at high concentration.

As a nanoparticle source we have tested three different systems, an evaporative^[16], electrospray^[22], and plasma^[23] system, to create metallic and semiconducting nanoparticles (10-50 nm in size). The evaporative and electrospray system outlets are connected to the assembly module through a 1 cm diameter, 15-20 cm long Tygon tube. A mixture of CO₂ and compressed air with flow rates of 300 and 800 sccm, respectively, are used as carrier gases in the electrospray system to transport the nanomaterials into the assembly module. A 1500 sccm flow of argon is used in the evaporative system.

Figure 2. (top) Atomic force microscopy topographical images of the nanostructured PMMA and (bottom) corresponding surface potential images. a) Sample charged during the electron beam lithography process. b) Corona charged sample.

Both SiO₂ and PMMA on silicon exhibited an inherent built-in potential ΔV that can be changed by additional surface treatments. The potential ΔV that gives rise to the fringing fields is the key parameter in the self-assembly process. We have directly measured these potentials as a function of processing conditions using Kelvin Probe Force Microscopy (KFM)^[24]. KFM is an atomic force microscopy based tool that can detect variations in the surface potential distribution with 100 nm scale lateral resolution and 5 mV

sensitivity. Figure 2 illustrates an example of the change in surface potential difference between PMMA thin films and exposed silicon areas after different processing steps: (a) electron beam lithography and (b) corona charging. Figure 2a shows a 60 nm thick PMMA film on top of an n-type silicon wafer with a native oxide after e-beam exposure, development in MIBK, rinsing in IPA, and blow drying under a stream of dry nitrogen. The film contains 100 nm diameter holes and a 500 mV potential difference. As a qualitative statement, we rarely observed charge or potential differentials between dissimilar surface regions that are zero. The observation of a charge differential is the norm rather than the exception and has been used as a material contrast mechanism since 1997.^[25] The charge differential between the patterned PMMA thin films and the underlying native oxide varied with the processing conditions. Silicon without native oxide did not show a strong charge differential (recorded values were smaller than 100 mV) which leads to the conclusion that the native oxide plays an important role. Our current hypothesis is that the PMMA is highly negatively charged during e-beam exposure yielding a positive image charge in the silicon and native oxide layer underneath that could remain partially present after developing the PMMA in MIBK. We were able to remove >90% of the charge by dipping the chip in a 2% solution of HF in water for 30 seconds which supports this hypothesis. However, other mechanisms such as charging by contact and friction when rinsing the dissimilar surfaces (PMMA and native silicon) with MIBK, IPA, and blow drying under a stream of dry nitrogen cannot currently be excluded.

Moreover the recorded potential difference can be reversed or enhanced by a number of different methods including a previously published concept^[15,16] in which externally biased conformal electrodes are used to establish an electrical contact with the electret surface to reverse the potential. We tested this approach and obtained a potential difference of 500 mV for the 60-80 nm thick PMMA film. These potentials show greater stability suggesting that the charge is embedded inside the PMMA film.

Figure 3. Inline corona charger. A high voltage is applied to an insulated needle positioned 3mm away from a grounded metal tube. The induced electric field creates a corona region where ions are repelled from the needle and carried away by the carrier gas to the assembly module.

3. Charging Technique: Figure 3 shows a new charging method that was used to create the 2V potential difference in Figure 2b. The approach combines patterned electrets on conducting substrates with corona charging. A homebuilt corona charger loosely based on work by Whitby et al.^[26,27] – was used and connected to the particle assembly module. Argon gas was flown (1000 sccm) through the charger and ionized using a positive DC corona discharge by applying a positive (2.5kV) potential between the stainless steel needle and metal encasement. A fraction of the argon ions are carried away by the gas flow into the assembly module. We measured these ions inside the assembly module using the electrometer which recorded negative 48 nC of accumulated charge on the positively biased (100 V) top plate and a positive 360 nC of charge on the negatively biased (-100 V) bottom plate after 20 minutes of charging. A partial amount of the positive Ar ions are trapped on or inside the insulating electret surface whereas the conducting silicon surface remains less affected. This approach was very successful; it vielded high potential differences exceeding 2V (fig. 2b) between the nanostructured PMMA layer and semiconducting substrate. The observed 2V potential difference for the corona charged samples exceeds to the best of our knowledge any previously reported values for PMMA thin films of similar thickness. We attribute the broadening in the highly corona charged samples to be dominated by repulsive Coulomb forces and charge diffusion instead of tip related convolution. The charge retention time varied greatly with electret material, charging method, humidity, and storage container. Qualitatively, thermally grown silicon oxide did not retain its charge as well as PMMA and frequently lost most of its charge within less than 5 hours. Electric

contact charged PMMA yielded superior retention times but lower charge differentials than corona charged samples. All electrets (SiO₂ and PMMA), independent of the charging methods, retained a sufficiently large charge differential to conduct successful assembly experiments for several hours.

4. Nanoparticle Assembly Results: Figure 4 shows the first assembly attempt using a 30 µm pitch that illustrates the importance on balancing the strength of global and local fields. In theory perfect assembly could be accomplished without any particles depositing on the resist structures if the local fields are strong and the global field is zero. The assembly would be largely independent of the pitch or layout of the pattern. The problem, however, is that the assembly process would not proceed very fast; a small global field is needed to direct nanomaterials to the surface and the superposition of the two contributions has to be considered. Particles can and will end up in undesired areas on the resist structures if the empty areas exceed a certain threshold. In the illustrated experiment we used a patterned SiO₂ substrate positively charged by electric contact charging with a flat gold coated PDMS stamp.^[15] The surface potential difference was measured by KFM to be $\Delta V=300$ mV. A global electric field strength E_G of 20kV/m (+200V top electrode, -200V bottom electrode) was used to initially direct the incoming particles.

Figure 4. (a) Conceptual picture and (b) experimental result illustrating the effect of the global potential on the size of the empty areas. A 10 μ m wide empty belt is visible. Holes are 15 μ m wide.

The field on the silicon dioxide surface can be approximated to be $E_s = \Delta V / (\pi r) - E_G$ considering simple parallel lines and half circular field lines with radius r. This is a crude estimate which is only valid for a single step potential but it provides important insights into the basic principle. For example it allows us to calculate a turning point $r_t = \Delta V / (\pi E_G)$ where the local field on the PMMA surface is equal to the global field. Beyond this turning point particles will deposit on top of the resist structures. In the given case, the calculated value for r_t is ~5 µm; the actual experimental values ranged from 5 to 7 µm. Another distinctive element is that the 15 µm openings are partially empty resulting in focused assembly towards the center. The positively charged gold nanoparticles shown in Figure 4 were 10-100 nm in size and generated by evaporation, nucleation, and condensation within a tube furnace and carried to the particle assembly module in a 1.5 liter/minute flow of argon.^[16] Figure 5 shows high resolution patterns where the focusing effect becomes much more prevalent. The pitch has been reduced when compared to Figure 4. As long as r_t is larger than the actual pitch of the patterns we find no particles on the PMMA coated areas. The openings create attractive funnels for particles to assemble into the holes which are largely independent of the pitch. Figures 5a and 5b depict 10-40 nm silver nanoparticles created in the evaporative furnace system and assembled into ~100nm sized holes in corona charged PMMA. By analyzing 130 holes we derived the standard deviation from the center location to be ~ 25 nm. The assembly parameters were as follows: 1500 sccm argon gas, atmospheric pressure, 1080 °C furnace temperature, 200 V global applied potential, 3 nC recorded charge accumulation, and 10 minute assembly duration. Figure 5c shows gold colloids that have been assembled into the center of 300 nm wide trenches. A full width at half maximum resolution of ~75 nm was found by analyzing the 770 particles assembled in the three central lines of figure 5c. The gold colloids were assembled using an electrospray system^[22] that has been published previously. A 14μ M suspension of 50nm colloidal gold particles in water (BBInternational) was electrosprayed as received from the manufacturer without any alterations. The experimental parameters were as follows: a mixture of 300 sccm CO₂ and 800 sccm compressed air carrier gas, atmospheric pressure, ~100 nA electrospray current, 200 V global applied potential, 270 nC recorded charge accumulation, and 1.5 hr. assembly duration. The longer assembly time for this process can be attributed to low solution concentration and low charge concentration on the particles due to the presence of a Polonium 210 neutralizer^[22]. Figure 5d shows 40 nm silicon nanoparticles that have been created in a constricted, filamentary, capacitively-coupled, low-pressure plasma system^[23]. Particles in this system are charged and we were able to extract them from the flow. There is ~ 6 orders of magnitude lower pressure in this system than in the evaporation and electrospray system. While we have been able to assemble the particles, the repeatability is not as consistent when compared to systems that deliver particles at atmospheric pressure. The primary reason points to a specific design problem. The plasma generated particles enter a lower pressure chamber at high speeds $(50 - 70 \text{ m/s})^{[28]}$ and reach a nanoparticle assembly module with greater variations in the kinetic energy distribution. The estimated retained energy is at least one order of magnitude higher than the thermal energy in an atmospheric pressure system.

Figure 5. Nanoparticle assembly into holes and lines. a,b) Silver nanoparticles focused into the center of ~100nm holes from the evaporative furnace system. c) 50nm colloidal gold particles focused along the central area of 300 nm wide lines from the electrospray system. d) 40nm cubic silicon particles assembled into 100nm holes from a capacitively coupled plasma system.

Figure 6. Representative images of nanoparticle deposits limited to Au as a function of deposition time increasing from 2 minutes (A,B,C) to 15 minutes (D) to 30 minutes (E,F) at constant 10W arc discharge power. Particles deposit into openings in 80nm thin PMMA ebeam resist (A,B) or 0.5μ m thick Shipley 1805 photoresist (D,E,F) with a minimal lateral resolution of 60 nm. Particles do not deposit on the resist. Scale bars: 100nm in (A inset), 1 μ m in (B), 1 μ m in (C, E insets), and 100 μ m in (F).

Figure 6 depicts representative electron micrographs of gold nanoparticles that are deposited onto a silicon substrate electrode that was partially shielded using a 80 nm thick e-beam patterned PMMA layer (A,B) and 500 nm thick Shipley 1805 photoresist (C,D,E,F). The text structure (A) and interconnected square structures (B) were developed in 120 seconds which illustrates that the gold nanoparticles can be focused with sub 100 nm lateral resolution without finding any particles on the resist itself. This is guite remarkable. The insulating surfaces appear to self-equilibrate to a sufficiently high potential for the nanoparticle flux to be directed to the grounded regions. The focusing effect and the small standard deviation in the location of the deposits become apparent using 1 µm circular openings (C,D,E). Here the particles initially deposit into an area that is approximately 7 times smaller than the opening but spread out over time yielding tower like structures that can be several micrometers tall (D). Continued deposition causes the tops of towers to broaden (E). These towers contain several hundred layers of 10-20 nm particles. Thin $< 1 \mu m$ deposits (A,B) are very uniform over large areas while thick $>2\mu m$ deposits (F) begin to show some level of variations over mm sized areas.

In conclusion, we have developed a new gas-phase integration process to assemble nanomaterials into desired areas using localized fringing fields. We expect this process to work with any material that can be charged including organic and inorganic, metallic, semiconducting, and insulating materials. An interesting focusing effect has been observed that shows assembly at a resolution greater than the underlying pattern. The lateral placement accuracy currently 25nm standard deviation for the evaporation system - is defined by the level of control of the focusing effect as well as the minimal feature size of the underlying patterns, presently 100 nm. The resist does not carry particles in a belt surrounding the patterns. The size of the empty resist areas depends on the ratio between local and global field strength and has been larger than 10 µm. The process offers selfaligned integration and could be applied to integrate single crystal silicon nanoparticle transistors^[2] or other nanomaterial devices on desired areas on a surface. It could also be extended to externally biased surface electrodes that could be programmed to enable the integration of more than one material type.

5. Acknowledgements: We acknowledge support of this work by NSF CMMI-0755995.

6. References:

[1] M. H. Devoret, R. J. Schoelkopf, Nature 2000, 406, 1039.

[2] Y. Ding, Y. Dong, S. A. Campbell, H. O. Jacobs, A. Bapat, U. Kortshagen, C. Perrey, C. B. Carter, *Proceedings of 2005 NSF DMII*

Grantees Conference, Scottsdale, Arizona, January 3-6 2005. [3] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C. M. Lieber, Nature (London, United Kingdom) 2006, 441, 489.

[4] S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y.
 Feng, S. Charbonneau, *Science* 1996, 274, 1350.

[5] F. Patolsky, G. Zheng, C. M. Lieber, *Analytical Chemistry* 2006, 78, 4260.

[6] M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. Yang, *Science (Washington, DC, United States)* **2004**, *305*, 1269.

[7] H. Brune, M. Giovannini, K. Bromann, K. Kern, *Nature* **1998**, *394*, 451.

[8] Y. Xia, Y. Yin, Y. Lu, J. McLellan, Advanced Functional Materials 2003, 13, 907.

[9] Y. Cui, M. T. Bjoerk, J. A. Liddle, C. Soennichsen, B. Boussert, A. P. Alivisatos, *Nano Letters* 2004, 4, 1093.

[10] K. Kimura, H. Yao, S. Sato, *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry* 2006, *36*, 237.
[11] B. B. Yellen, G. Friedman, *Advanced Materials* 2004, *16*, 111.

[12] D. Li, G. Ouyang, J. T. McCann, Y. Xia, *Nano Letters* **2005**, *5*,

913.

[13] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, *Nature* (London) 2001, 409, 66.

[14] H. O. Jacobs, C. Barry, Application: US

US Patent 2004-982179

2005123687, **2005**.

[15] H. O. Jacobs, G. M. Whitesides, Science 2001, 291, 1763.

[16] C. R. Barry, N. Z. Lwin, W. Zheng, H. O. Jacobs, *Applied Physics Letters* 2003, 83, 5527.

[17] C. R. Barry, J. Gu, H. O. Jacobs, Nano Letters 2005, 5, 2078.

[18] T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, L. Samuelson, *Applied Physics Letters* **2001**, *78*, 3708.

[19] P. Mesquida, A. Stemmer, Advanced Materials (Weinheim, Germany) 2001, 13, 1395.

[20] N. Naujoks, A. Stemmer, *Microelectronic Engineering* 2005, 78-79, 331.

[21] H. Fudouzi, M. Kobayashi, N. Shinya, *Journal of Nanoparticle Research* **2001**, *3*, 193.

[22] A. M. Welle, H. O. Jacobs, *Applied Physics Letters* **2005**, *87*, 263119.

[23] A. Bapat, C. R. Perrey, S. A. Campbell, C. B. Carter, U. Kortshagen, J. Appl. Phys. 2003, 94, 1969.

[24] H. O. Jacobs, A. Stemmer, Surface & Interface Analysis 1999, 27, 361.

[25] H. O. Jacobs, H. F. Knapp, S. Muller, A. Stemmer, Ultramicroscopy 1997, 69, 39.

[26] K. T. Whitby, Review of Scientific Instruments 1961, 32, 1351.

[27] F. J. Romay, B. Y. H. Liu, D. Y. H. Pui, Aerosol Science and Technology **1994**, 20, 31.

[28] Y. Dong, A. Bapat, S. Hilchie, U. Kortshagen, S. A. Campbell, *J. Vac. Sci. and Technol. B* **2004**, *44*, 1923.