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ABSTRACT 

 
This proceeding reviews recent progress in fluidic surface-tension-directed self-assembly 
involving liquid solder which has been applied to the self-packaging and self-mounting of 
discrete inorganic semiconductor device components at different length scales producing 
electrically interconnected devices and systems. Results included flip chip self-assembly with 
unique angular orientation and contact pad registration, parallel packaging and encapsulation, 
and the programmable self-mounting of various types of components ranging from 
phototransistors, to LEDs, to photovoltaic cells. We discuss recent challenges in extending the 
minimal component size below the 100 µm barrier where prior component delivery and agitation 
concepts have not worked. A new delivery system is presented to concentrate and effectively 
introduce the components which involves a liquid-liquid interface and energy cascade that drives 
the assembly process forward yielding a conveyor like assembly process. Recent applications 
include the tiling of curved and 3D surfaces with tiles of single crystal Si forming curved and 3D 
solar cells on plastic substrates.  
 
INTRODUCTION 
 
 The construction of man-made artifacts such as cell phones and computers relies on 
robotic assembly lines that place, package, and interconnect a variety of devices that have 
macroscopic (>1 mm) dimensions [1]. The key to the realization of these systems is our ability to 
integrate/assemble components in 2D/3D as well as link/interconnect the components to 
transport materials, energy, and information. The majority of these systems that are on the 
market today are heterogeneous in nature. Heterogeneous systems can be characterized as 
systems that contain at least two separate parts, thereby prohibiting monolithic integration. Such 
systems are typically fabricated using robotic pick and place. The size of the existing systems 
could be reduced by orders of magnitudes if microscopic building blocks could be assembled and 
interconnected effectively [2]. The difficulty is not the fabrication of smaller parts, but their 
assembly into an interconnected system. For components with dimensions less than 100 µm, 
adhesive capillary forces often dominate gravitational forces, making it difficult to release the 
components from a robotic manipulator [3]. As a direct result, heterogeneous integration using an 
extension of serial robotic pick and place and wire-bonding has not proven a viable solution. 

At the other extreme, nature forms materials, structures, and living systems by self-
assembly on a molecular length scale [4, 5].  As a result, self-assembly based fabrication strategies 
are widely recognized as inevitable tools in nanotechnology and an increasing number of studies 
are being carried out to “scale-up” these concepts to close the assembly gap between nanoscopic 
and macroscopic systems. Recent demonstrations of processes that can assemble micrometer to 
millimeter-sized components include: shape-directed fluidic methods that 



assemble trapezoidal parts on planar surfaces on the basis of gravity and complementary 3D 
shapes [6, 7], liquid-solder-based self-assembly that uses the surface tension between pairs of 
molten solder drops to assemble functional systems [8-10], capillary force-directed self-assembly 
that uses hydrophilic/hydrophobic surface patterns and photo-curable polymers to integrate 
micro-optical components, micro-mirrors and semiconductor chips on silicon substrates [11-13], 
and sequential shape-and-solder-directed self-assembly that combines 3D shapes to define a 
chaperone with solder directed assembly to effectively assemble electrically interconnected parts 
[14-19]. The sequential shape-and-solder-directed self-assembly process has been applied to  flip-
chip assembly with unique contact pad registration [16] as well as the packaging of light emitting 
diodes [14-16] and transponders that can be interrogated remotely [17]. Comparing more recent 
concepts [18, 19] with the pioneering work by Yeh and Smith [6, 7], there are a number of 
fundamental differences:  Recent methods do not require trapezoidal chips to prevent upside 
down assembly and asymmetric L or T shaped chip designs for angular orientation control. 
Instead they use simple shapes or openings in combination with solder coated areas to enable 
assembly in 3D or in 2D considering flip-chip assembly with unique angular orientation and 
contact pad registration. The openings are bigger than the components and act as guides for the 
solder directed self-assembly process. The solder drives the assembly into the aligned stable 
position and the driving force is surface tension, as opposed to gravity. Recent studies have also 
overcome the difficulty in assembling more than one component type through sequential 
methods that either use activation of selected receptors [20] or different sized openings [14-16]. 
Unique orientation no longer requires asymmetric three dimensional chips including triangular, L 
or T shaped parts that are not very common. While a number of applications have been 
demonstrated, scalability to smaller dimensions remains a challenge. Stauth et al. has 
successfully tested shape and solder directed self-assembly with 100 µm sized components [21], 
which are three times smaller than our previously reported parts [16].  This paper extends prior 
work [10, 14-16] in the area of shape and solder directed self-assembly to smaller scales. It reports 
on angular orientation control, flip-chip assembly, and recent progress in the assembly of ultra 
small chiplets with a side length of 20 µm. A new system employing a liquid-liquid interface will 
be presented to deliver and concentrate components with correct pre-orientation. 
 

Figure 1 
Self-assembly of dies using A) solder-based 
alignment alone, B) wells for size discrimination, 
and C) combined pedestals -, solder -, and IO - 
layouts that supports single-angle orientation and 
flip-chip contact pad registration. 
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Figure 1 illustrates the basic concept of solder directed self-assembly (Figure 1A) 
introducing alignment pedestals and contact pad layouts with increasing complexity. The layout 
shown in Figure 1B prevents assembly of more than one component type onto a single receptor, 
while the layout in Figure 1C enables flip-chip assembly with single-angle orientation and 
contact pad registration forming multiple contacts to the device: Components can only attach to 
the solder-coated areas if a correct angular pre-orientation condition is met. Components that 
arrive at the docking sites with an angular orientation that deviates by more than ±90° from the 
desired orientation will not find a sufficient overlap between the binding site (contact area) on 
the components and the solder-coated areas and therefore will not attach. Other components will 
be captured and aligned due to the reduction of the interfacial free energy. 

EXPERIMENTS WITH COMPONENTS 300 μm – 3 mm IN SIZE  
 

Figure 2 shows the sequential self-assembly procedure that we employ to batch-assemble 
differently sized components with a single-angle orientation. Following the large component 
assembly in Figure 2A, small components are assembled as in Figure 2B with complete 
differently sized component assembly shown in Figure 2C. When assembled in this order, large 
components will not assemble on the small docking sites due to the chaperone, while small 
components will be blocked from assembling on large docking sites by the previously assembled 
large components. The assembly was performed in a glass vial that was filled with ethylene 
glycol at a temperature of 150 °C so the solder was molten. Ethylene glycol was used to 
accommodate the higher melting point solder that is not compatible with a water-based assembly 
solution. We used both a low- (47 °C) and medium- (138 °C) melting-point (mp) solders (Y-
LMA-117 and LMA-281, Small Parts, Miami Lakes, FL) in our experiments; we did not observe 
a notable difference between the two. The ethylene glycol solution was made slightly acidic (pH 
~4.0) with hydrochloric acid to remove metal oxide from the surface of the solder drop; an oxide 
layer that — if sufficiently thick — blocked the wetting of the metal surface. Component 
transport and mixing was provided by hand agitation of the vial/drum to accomplish a tumbling 
motion across the surface, a motion that needs to be automated in future work. 

 

Through the course of this study we tested a number of different components including 
GaAlAs-LEDs, Si, glass, and SU-8 blocks with different pad layouts. Figure 3 represents a 
summary of the results. Figure 3A illustrates 1500 silicon chiplets, 300 µm on a side, which 
assembled onto a flexible polyimide surface with 98% coverage. With ~5000 components inside 

Figure 2 
Rotational agitation procedure showing a two-step 
process to integrate multiple types of chiplets on a 
single substrate. 
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the vials, the assembly took about 90 s to reach steady state and was completed in 3 minutes. The 
lateral and angular precision was ~15 µm and ~3°, respectively, and limited by non-uniformity of 
the components that were fabricated by dicing using a dicing saw. Figure 3B shows 
GaAs/GaAlAs light-emitting diodes that have been assembled on a silicon substrate. The insets 
show the LEDs under operation. Without alignment pedestals, two chiplets can occupy a single 
receptor which is considered a defect. This defect can be eliminated using alignment pedestals as 
illustrated in Figure 3C. The entire assembly contained 196 interconnected LEDs with a side 
length of 280 μm. The chiplets assembled with four stable orientations 0°, 90°, 180°, and 270°. 
Figure 3D introduces unique angle orientation self assembly to reduce the number of stable 
orientations to one. A single-type component 10 × 10 array was assembled to determine 
alignment accuracy.  The resulting accuracy of the self-assembly process was determined using 
the standard deviation which was 0.3° for the angular orientation and 19 µm for lateral accuracy. 
Figure 3E is an example of sequential batch assembly showing a 10×10 array that contains 900 
μm and 500 μm sized dies assembled using a two-step self-assembly sequence. The largest 
components were 2×1×1 mm glass blocks. The blocks assembled with unique orientation and 
attached to 7 contacts on the substrate that are visible from the top (Figure 3F). The smallest 
components were 280 µm on a side (Figure 3C). 
 

  

Figure 3 
Summary of self-
assembly results  
with varying 
docking site types 
using AlGaAs-
LEDs, Si, Glass, 
and SU-8 blocks. 
A) Simple solder-
directed assembly 
of silicon parts, B)  
simple solder-
directed assembly 
of LEDs, C) well 
assembly, D) 
unique-angle 
orientation 
assembly, E) 
sequential batch 
assembly using 
“two-step” 
docking sites, and 
F) flip-chip 
assembly of parts 
with multiple IO 
connections. 
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EXPERIMENTS WITH COMPONENTS 20 – 100  μm IN SIZE  
 

It should be possible to scale down solder directed self-assembly to handle much smaller 
components than what has been demonstrated in Figure 3. The surface free energy of liquid 
solder dominates thermal energy and Brownian motion down to the sub-1 μm scale. In practice, 
however, scaling has been challenging. The problem is a surface oxide that forms due to residual 
oxygen, blocking the self-assembly. To combat this problem, small amounts of acid are added 
(pH 2-4) to the assembly solution. The acid addition, however, leads to an oxidative dissolution 
of the solder, an issue which becomes increasingly important as the solder volume is reduced.  
There are a number of potential solutions to this problem. In this study we present a new 
component delivery mechanism to speed up the self-assembly process. The new surface tension 
directed self-assembly approach [22] eliminates the dependency on gravity and sedimentation 
that becomes increasingly ineffective in delivering highly scaled (< 100 μm) components to the 
substrate. Instead, the method uses a liquid-liquid-solid interface to define a progressing linear 
front for the self-assembly to take place in a conveyor belt-like fashion.  

Figure 4 illustrates the experimental strategy of surface tension directed self-assembly of 
ultra small dies at a liquid-liquid-solid interface [22]. The process uses a stepwise reduction of 
the interfacial energy to (i) move components from a suspension to the interface (55 mJ/m2), (ii) 
pre-orient the components within the interface to face in the right direction (90 mJ/m2), and (iii) 
assemble the components on molten solder through dipping (400 mJ/m2). To achieve this energy 
cascade it is necessary to correctly choose and/or adjust the surface energies. We tested a water-
oil interface and components made out of SU-8 and silicon (20 µm wide, 20 µm deep, 10 µm 
thick and 60 µm wide, 60 µm deep, 20 µm thick, respectively) with a gold coated contact on one 
face. The gold surface was treated with a mercaptoundecanoic acid (MUA) self assembled 
monolayer (SAM) in a 10 mM (ethanol) solution for 15 minutes to render it hydrophilic, while 
the silicon faces were treated to become hydrophobic using 3-glycidoxypropyltrimethoxysilane 
(GPTMS, Dow Corning Z-6040) by soaking with 200 mM GPTMS in ethanol for 15 minutes 
followed by a dehydration bake at 115°C for 5 minutes. The SU-8 surface was hydrophobic and 
needed no adjustments. These treatments yield the measured tabulated (Fig 4, bottom) contact 
angles and interfacial energies between the solids and liquids as determined using Young’s 
equation γs,l = γs –γl cos(θs,l) (29) where γs (usually not unknown) is the surface energy of the 
solid, γl (known) is the surface energy of the liquid, and θs,l is the measured contact angle 
(known). The surface energy of water, silicone oil, and solder (Y-LMA-117, mp. 47°C, Small 
Parts, Miami Lakes, Florida) are 72, 20, ~500 mJ/m2, respectively, at a temperature of 95 °C 
where the solder is molten. The surface energies of the solids γs (typically unknown) are not 
needed as this parameter cancels out when computing the energy differences. For example, 
considering the illustrated cubic component, the transition from being immersed in oil to the 
interface is favored because the hydrophilic gold surface prefers to be in contact with water 
instead of oil; transfer to the liquid-liquid interface is favored by 55 mJ/m2 = γAu,water-γAu,oil = 
γoilcos(θAu,oil)-γwatercos(θAu,water). The components are confined to this interface since they face a 
35mJ/m2=(γSi,oil-γSi,water)*5 = (γwatercos(θSi,water)-γoilcos(θSi,oil))*5 energy barrier preventing them 
from completely entering the water because the 5 hydrophobic Si sides prefer to remain in 
contact with oil instead of water.  For a cube to be oriented upside down within the interface 
would require the sum of 90 mJ/m2.  Consequently, the components are introduced to the solder 
with the correct orientation whereby the gold side faces the solder with a water layer in between. 
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The change in the recorded I/V curve between bent and unbent structures is reversible suggesting 
that a change in the local illumination angle is the likely cause. We repeated the assembly of 
modules as shown in Fig. 4F several times and found a slight reduction in the open circuit 
voltage and short circuit current when compared to the original isolated cells.  For example the 
module (marked as module 4) had an efficiency which was 1% smaller when compared with the 
original isolated cells (marked as isolated cell). This decrease in efficiency as the components are 
connected in parallel is likely due to variances in component doping, top contact uniformity, and 
isolation layer thicknesses. We have not yet tested effects of fatigue and minimal possible radius 
of curvature of bent structures but have observed situations where the top contact failed. 
 
CONCLUSIONS 
 

In summary, we have demonstrated examples of the directed self-assembly of micrometer-
sized components with single-angular orientation accuracy of 0.3° and contact-pad registration 
for 280µm – 2mm sized dies. Alignment pedestals and registration to 7 contact pads has been 
shown providing a route to flip-chip self-assembly. Scaling down to 10-fold smaller chip 
dimensions, however, was not possible by a linear extension of the previous agitation concepts. 
Instead a new concept has been developed that makes use of a dynamic method that passes the 
chip through a liquid-liquid interface. This concept was applied to the assembly of 
monocrystalline silicon solar cell chiplets onto flexible and curved substrates.  
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