Homework # 4 EE 3161 - Spring 2008 Due Friday, March 28 in class

- 1) Problem 6.10 of Pierret.
- 2) Assume the *ideal* silicon diode below.
 - a) Make a quantitative sketch of the carrier concentrations across the diode for forward and reverse bias.
 - b) For a small forward bias of 0.2V, what is the total excess hole charge injected into the n-region if the area of the diode is 1 cm²? Is this equal to the total excess electron charge in the p-region?
 - c) What is J_0 for the diode? If we increase the doping of the p-region to $N_a = 1 \times 10^{19}$ cm⁻³, how does J_0 change (state which terms change and in which direction)?

- 3) A *real* silicon p-n junction has $N_a = 5 \times 10^{16} \text{ cm}^{-3}$ in the p-region and $N_d = 2 \times 10^{16} \text{ cm}^{-3}$ in the n-region. Assume the diode area is 1 cm² and $\tau_n = \tau_p = 1 \mu s$.
 - a) If we apply a reverse bias of 5V, what is the junction leakage current? What is the source of this current?
 - b) Can you derive a condition where the ideal diode equation leakage dominates?
 - c) What is the reverse bias breakdown voltage for this diode?
 - d) What is W at V_{br} ?
- 4) A p-n⁺ diode (shown below) has an n+ region doped at 10^{19} cm⁻³ and a p region doped at 10^{15} cm⁻³. At what level of forward bias would an appreciable amount (0.1V) of voltage be dropped across the bulk regions? Assume $\tau_n = \tau_p = 1 \mu s$.

continued on next page

- 5) [Problem 2, midterm exam #2, spring 2007] In the reverse-biased diode below, a narrow beam of light is scanned across a p-n junction. The recombination/generation time is 0.1µs.
 - a) Sketch the current produced by the light as a function of *x* across the entire device.
 - b) The light has a cross-sectional area of $1\mu m^2$ (ignore diffraction). The diode is $10\mu m$ wide (along y) and 10 μm thick (along z), and is doped at 10^{16} cm⁻³ on both sides. Estimate the current through the device if i) the light is off and ii) if the light is centered on the depletion region and generates $G_L=10^{23}$ cm⁻³ s⁻¹.

