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Abstract—Modern digital IC designs have a critical operating point,
or “wall of slack”, that limits voltage scaling. Even with an error-
tolerance mechanism, scaling voltage below a critical voltage - so-called
overscaling - results in more timing errors than can be effectively
detected or corrected. This limits the effectiveness of voltage scaling
in trading off system reliability and power. We propose a design-
level approach to trading off reliability and voltage (power) in, e.g.,
microprocessor designs. We increase the range of voltage values at
which the (timing) error rate is acceptable; we achieve this through
techniques for power-aware slack redistributionthat shift the timing
slack of frequently-exercised, near-critical timing paths in a power- and
area-efficient manner. The resulting designs heuristically minimize the
voltage at which the maximum allowable error rate is encountered, thus
minimizing power consumption for a prescribed maximum error rate
and allowing the design to fail more gracefully. Compared with baseline
designs, we achieve a maximum of 32.8% and an average of 12.5% power
reduction at an error rate of 2%. The area overhead of our techniques,
as evaluated through physical implementation (synthesis, placement and
routing), is no more than 2.7%.

I. I NTRODUCTION

The traditional goal of IC design is for the product to always
operate correctly, even under worst-case combinations of (pro-
cess, voltage, temperature, wear-out, etc.) non-idealities. It is well-
recognized that designing for worst-case operating conditions incurs
considerable area, power and performance overheads [5], and that
these overheads worsen with increased manufacturing or runtime
variations in advanced technology nodes [24].Better-than-worst-case
(BTWC) design [1] allows reliability (in the sense of timing and
hence functional correctness) to be traded off against performance
and power. The central idea, as exemplified by the shadow-latch
technique inRazor [5], is to design for average-case conditions
(thus saving area and power) while adding an error detection and
correction mechanism to handle errors that occur with worst-case
variabilities. System-level techniques, as exemplified byAlgorithmic
Noise Tolerance[13], allow timing errors to proliferate into the
system or application, but then exploit algorithmic and/or cognitive
noise tolerance in mitigating errors at the application level. The use
of such application- or system-level error detection and correction is
assumed in proposed probabilistic SOCs [3] and stochastic processor
architectures [18], which are recent classes of BTWC designs.

Our work focuses on theoptimizedapplication of voltage over-
scaling for power reduction in the context of BTWC design. Fig-
ure 1 illustrates power consumption under voltage scaling in BTWC
designs. In the left plot, functional errors begin to occur below the
voltagevb, but we can reduce power consumption until we reach the
voltage vc, given the use of error correction. The right plot shows
that below the voltagevc, power consumption is increased because
of recovery overhead.

The impact of BTWC design techniques is often limited in high-
performance digital designs by acritical operating pointor “wall
of slack” phenomenon that limits voltage overscaling and, more
importantly, is a direct consequence of today’s standard approach to
power optimization. The Critical Operating Point (COP) hypothesis
[19] (cf. Figure 1(a)), in the context of voltage scaling, states that a
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Fig. 1. Error rate (a) and power consumption (b) versus voltage scaling in
BTWC designs.

modern digital design will have a critical operating voltageVc above
which zero timing errors occur, and below which massive timing
errors occur. The COP hypothesis is natural in light of how modern
designs are optimized for power and area, subject to a frequency
constraint: negative timing slack (on a combinational path) is cured
by upsizing and buffering, while positive timing slack is traded off
for area and power reductions. Thus, in the final design, many timing
paths are critical, and there is a “wall of (critical) slack”. The COP
hypothesis states that overscaling beyond the critical voltage can
abruptly cause error rates beyond what an error-tolerance mechanism
can handle. According to [19], this has been confirmed in general-
purpose microprocessors. A key motivation for our work is that COP
behavior limits the applicability of voltage scaling in trading off
reliability for power - even in the context of BTWC design.

Our work seeks to improve the effectiveness of BTWC design
techniques throughpower-aware slack redistribution, a novel design
approach that enables extended voltage-reliability tradeoffs. Power-
aware slack redistribution reapportions timing slack of frequently oc-
curring, near-critical timing paths to increase the level of overscaling
(i.e., reduce the minimum voltage) at which a given error-tolerance
mechanism can maintain an acceptable timing error rate. The result
is a design that fails more gracefully, and achieves significantly
improved power savings with only small degradation of application
performance.

In the following, Section II reviews previous work, and Section III
formalizes the problem of achieving “gradual slope” in the timing
slack distribution, and hence graceful degradation of correctness with
voltage overscaling. Section IV describes our power-aware slack re-
distribution techniques, and Section V discusses implementation and
experimental methodology. Section VI presents results and analysis,
and Section VII concludes.

II. RELATED WORK

A. BTWC Designs

Better-than-worst-case (BTWC) design approaches allow circuits
to save power by optimizing for normal operating conditions rather
than worst-case conditions. One class of BTWC techniques allows
adaptation to runtime conditions by specifying multiple safe voltage
and frequency levels at which a design may operate, and allows for
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switching between these states. Examples in this class are Correlating
VCO [2], [12] and Design-Time DVS[23]. Another class of BTWC
designs uses “canary” circuits, including delay-line speed detectors
[4] and triple-latch monitors [16], to detect when critical timing
(failure) is imminent and thus avoid any unsafe voltage scaling.
Finally, Razor [5] and ANT techniques [13] provide error tolerance
at the circuit- and algorithm-level, respectively. Their benefits under
voltage scaling are limited not only by COP behavior but by the
overhead of error correction that is increasingly required as voltage
is scaled.

B. Design-level Optimizations

Design-level optimizations for timing speculation architectures
([8], [20], [7]) identify and optimize frequently-exercised timing
paths, while other (infrequently-exercised) paths are allowed to have
timing errors.EVAL [20] trades error rate for processor frequency
by using system-level configurations to shift or otherwise reshape
path delay distributions of various functional units.BlueShift [8]
is an application of EVAL that identifies most frequently violated
timing constraints and optimizes the corresponding timing paths using
forward body biasing and path constraint tuning (PCT) (essentially,
setup timing over-constraints).CRISTA[7] also addresses variation-
tolerant circuit design by usingShannon expansion-basedpartitioning
to isolate critical paths. Critical paths with low activity are separated
and de-optimized.

C. Cell Sizing

Many previous works use cell sizing for power or area recovery
subject to timing constraints. Generally, positive (setup) timing slack
on non-timing critical cell instances can be flexibly ‘traded’ for power
and area objectives (gate-length increase or Vth swap to reduce
leakage, or gate-width decrease to reduce area and total power).
Fishburn and Dunlop propose a fast iterative method to meet delay
constraints called TILOS [6]. TILOS uses the Elmore delay model
for transistor delays, and proposes a heuristic that sizes transistors
iteratively, according to the sensitivity of the critical path delay to
the transistor sizes, i.e., finding a greedy (maximum delay reduction
/ transistor width increase) “move” at each iteration. The method
of Duet [21] performs simultaneous assignment of threshold voltage
(Vth) and transistor width using a merit (sensitivity) function. Gupta
et al. propose small biases of transistor gate length to further minimize
leakage power [10]. They also present a sensitivity-based downsizing
approach for transistor-level Vth assignment [9], and a post-layout,
post-signoff gate length biasing technique for parametric yield (leak-
age and leakage variability) optimization [11]. Jeong et al. revisit a
general linear programming (LP) formulation that can concurrently
exploit multiple knobs ranging from multi-Lgate footprint-compatible
libraries to post-layoutLgate biasing [14].

Our work, detailed below, uses post-layout cell resizing to re-
distribute timing slack so as to achieve a switching activity-aware
‘gradual slope’ distribution of timing slack. We believe that ours is
the first to do so specifically in the BTWC context; moreover, our
proposed methodology can find frequently exercised paths rapidly
(without repeated gate-level simulation as inBlueShift).

III. T HE GOAL OF DESIGN OPTIMIZATION

We minimize power consumption for a given error rate by min-
imizing the voltage at which that error rate can still be observed.
Traditional designs exhibit a critical wall of slack in which the path
slacks for the majority of paths are similar and close to the critical
path slack of the circuit (observe the red curve in Figure 2).

For traditional designs, our goal of aggressively reducing the
operating voltage to save power is thwarted by the critical wall of
slack, because scaling past the wall results in a catastrophic number
of timing violations. To alleviate this restraint, we seek to reshape

the slack distribution of a circuit to have a gradual slope rather than
the steep slope that characterizes the critical wall (observe the blue
curve in Figure 2).

Timing slack0

Zero slack after voltage scaling

0

‘wall’ of slack ‘gradual slope’
slack

N
um

be
r 

of
 p

at
hs

‘wall’ of slack

N
um

be
r 

of
 p

at
hs

Timing slackZero slack after voltage 
scaling

Rarely 
exercised 

paths

Frequently 
exercised 

paths

‘gradual slope’ slack

Zero slack at 
nominal voltage

Fig. 2. The goal of the ‘gradual slope’ slack optimization is to transform a
slack distribution having a critical ‘wall’ into one with a more gradual failure
characteristic.

To achieve the desired slack distribution that permits aggressive
voltage scaling, we must alter the slack of some paths to break
down the critical wall. In our optimization approach, we increase
the slack of frequently executed critical paths to reduce the onset of
errors when voltage is scaled. Likewise, we can reduce the slack of
rarely exercised paths, since these paths will not have a significant
impact on error rate when voltage is scaled. Together, these path
slack adjustments will reshape the slack distribution of a circuit and
extend the range of voltage scaling. The goals of our optimization
are expressed in Figure 2.

IV. SLACK REDISTRIBUTION AND POWER REDUCTION

We now present our cell swapping approach to achieve a gradual,
activity- (and hence power-) aware timing slack distribution for a
given circuit design.

A. Power-aware Slack Redistribution Using Cell Swap Method

Our slack distribution optimizer is implemented in C++ and per-
forms cell swapping (gate sizing only, with no logic resynthesis) using
theSynopsys PrimeTime vB-2008.12-SP2[27] tool and its built-inTcl
socket interface. Traditional optimization tools treat all paths equally:
all negative-slack paths must be brought up to zero or positive slack.
By contrast, to improve the performance-power profile of the design,
we spend our optimization efforts on frequently-exercised paths in
order to minimize error rates under voltage overscaling.

Our heuristic determines a target voltage corresponding to a
specific error rate, and then ‘over-optimizes’ frequently-exercised
paths using upsizing (i.e., increase of transistor width and hence drive
strength) cell swaps. Figure 3 illustrates the challenges inherent in
setting the target voltage. The figure shows path delay changes after
slack optimization for a fixed target voltage, where the optimizer
swaps cells inPaths A, B and C to reduce the slack of those paths
with respect to the fixed target voltage. However, if the voltage at
which the maximum acceptable error rate is observed is larger than
the target voltage as specified by the red-dotted line,Paths Aand
C are optimized unnecessarily beyond the actual scaled voltage, and
power is wasted.

Our slack optimization approach finds a target voltage after esti-
mating error rates at each operating voltage, and iteratively optimizes
paths while scaling voltage. At the initially selected voltage, the opti-
mizer performs cell swaps to improve timing slack. After performing
this timing optimization at the initially selected voltage, the voltage
is scaled until the target error rate is reached. Figure 4 illustrates the
optimization heuristic.Path A is optimized until the target voltage is
reached, butPath C is not optimized, sincePath C does not have
negative slack at the target voltage.
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Fig. 3. Path delay before and after slack optimization with a fixed target
voltage.
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To enable proper voltage selection, we must accurately forecast
error rates without resorting to time-consuming functional simulation.
Accurate error rate estimation ensures that we do not over-optimize,
resulting in too much area overhead, or under-optimize, thus limiting
the possible extent of voltage scaling. For this purpose, we use toggle
information of flip-flops that have negative timing slack. The toggle
information consists of toggles from both negative-slack paths and
positive-slack paths; in the error rate calculation, only toggles from
negative-slack paths are considered. Hence, the error rate in a single
flip-flop, ERf f , can be estimated by Equation (1).

ERf f = TGf f ×
∑TGp neg

∑TGp all
(1)

In Equation (1),TGf f is the toggle rate of flip-flopf f , TGp neg
andTGp all are the toggle rates of a negative slack pathp negand
all pathsp all to flip-flop f f . We obtain an aggregate error rate as
the summation of error rates in all flip-flops. However, this value
will be significantly larger than the actual error rate observed during
functional simulation, it does not account for errors that occur in the
same clock cycle. Moreover, the existence of false paths also imparts
pessimism to the estimated error rate. We therefore use a parameter
α, obtained from experimental investigations, to compensate for this
pessimism. The estimated error rate of a target designD is defined in
Equation (2), with the compensation parameterα. In the experiments
reported below, a value ofα = 0.5 is used.

ERD = α× ∑
f f∈D

ERf f (2)

Figure 6 compares estimated error rates and actual error rates at
each operating voltage. The estimated error behavior roughly matches
the actual error behavior, and we can find an appropriate target
voltage based on the estimated error rate.

After finding a target voltage, theslack optimizerfinds negative-
slack paths by tracing backward from flip-flop cells using a depth-first
search (DFS) algorithm. We optimize by swapping (i.e., resizing)
cells with other library cells that have identical functionality. We
determine priority according to the switching activity of a path,
defined as the minimum toggle rate over all cells in the path. Cell
swapping is performed on all cells in a given target path, and only
swaps that improve timing slack of the path are accepted.1 There
is significant order-dependence - and hence impact of prioritization

1We consider only setup timing slack, since hold violations can typically
be fixed by inserting hold buffers in a later step.

- since we do not allow the optimizer to touch a previously-
swapped cell; the intuition here is that this helps avoid ’cycling’
of configurations and also reduces runtime. After cell swapping, the
optimizer checks the timing of fan-in and fan-out cells that have
been previously touched. When there is no timing degradation in the
connected neighboring cells, the cell change is finally accepted.

Algorithm 1 Pseudocode for theslack optimizer.

Procedure SlackOptimizer( )

1. Read netlist and initialize PrimeTime Tcl socket interface;
2. Read switching activity (toggle rate) of each cell;
3. //Scale and find target voltage
4. for Vtarget = 1.00V to 0.50V;Vtarget←Vtarget−0.01V do
5. Load Library (.lib) for the target voltageVtarget;
6. ER←ComputeErrorRate(Vtarget);
7. if ER> ERtarget then
8. P← FindCriticalPaths();
9. OptimizePaths(P);

10. else
11. continue
12. end if
13. //Terminate algorithm after checking error rate and power
14. ER←ComputeErrorRate(Vtarget);
15. PWR← ReportTotalPower(Vtarget);
16. if PWR> PWRprev then
17. RestoreSwaps(); break;
18. else if ER> ERtarget then
19. break;
20. else
21. PWRprev← PWR; continue;
22. end if
23. end for
24. Save list of swaps and perform ECO with SOCE;

Procedure OptimizePaths(P)

1. while P 6= /0 do
2. Pick the critical pathp with maximum switching activity;
3. P← P− p;
4. while swap count is not zerodo
5. for i = 0 to |p| do
6. if f lagc(i) then
7. continue;
8. end if
9. for all alternative LibCell for the cell instancec(i) do

10. Resize the instancec(i) with LibCell;
11. Check the path slack ofp;
12. for all fanin and fanout cellcf an of c(i) do
13. if f lagcf an then
14. Check the slack of critical pathpf an of cf an;
15. end if
16. end for
17. if ∆slack(p) < 0 or ∆slack(pf an) < 0 then
18. Restore cell change;
19. end if
20. f lagc(i)← true;
21. end for
22. end for
23. end while
24. end while

Algorithm 1 presents pseudocode of the optimizer.
ComputeErrorRate(Vtarget) estimates error rates, as defined by
Equation (2). ERtarget is a target error rate, which can be set
to the maximum allowable error rate. TheFindCriticalPaths()
function finds all negative-slack paths in the design, and
ReportTotalPower(Vtarget) reports the total power consumption
from Synopsys PrimeTime. In the pseudocode, the target voltage is
iteratively scaled by an additional 0.01V until the error rate exceeds
a target error rate. Then, the heuristic optimizes critical paths at the
target voltage. If the power consumption is not reduced after the
voltage scaling, the latest swaps are restored by theRestoreSwaps()
function and the optimization is terminated.
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Algorithm 2 Pseudocode for thepower reduction.

Procedure PowerReduction( )

1. SlackOptimizer( );
2. Insert all cells into setC;
3. while C 6= /0 do
4. Pick the cellc and check the cell slackdc and toggle rateTgc;
5. if dc > 0 or Tgc < β then
6. for all alternative LibCell for the cell instancec(i) do
7. Resize the instancec(i) with LibCell;
8. Check the total powerpw of the cellc;
9. for all fanin and fanout cellcf an of c(i) do

10. if ∆slack(cf an) < 0 andTgcf an > γ then
11. Restore cell change;
12. else if pwc(i) > pwc(i−1) then
13. Restore cell change;
14. end if
15. end for
16. end for
17. end if
18. C←C−c;
19. end while
20. Save list of swaps and perform ECO with SOCE;

B. Power-aware Post-processing

In addition to the above slack optimization, we can also reduce
power consumption by downsizing cells on rarely-exercised paths.
Algorithm 2 shows this post-processing heuristic. Thepower re-
duction procedure downsizes cells logical equivalents with smaller
power consumption. Two parameters govern cell selection and swap
acceptance. First, a cell is selected that has positive slack or is in
a rarely-exercised path. The cell’s toggle rate should be less than
β, where the parameterβ is set small enough for us to expect an
insignificant effect on error rate. Downsizing cell swaps are accepted
as long as they do not increase error rate; to this end, a second variable
γ characterizes the cell’s effect on neighboring cells. If the timing
slack of the neighboring cells which have larger toggle rate thanγ,
the downsizing is restored. Within these constraints, the optimizer
selects the best candidate cells to reduce power without affecting
error rate.

V. M ETHODOLOGY

Figure 5 illustrates our overall flow for gradual-slope slack op-
timization. The switching activity interchange format(SAIF) file
provides toggling frequency for each net and cell in the gate-level
netlist; it is derived from a value change dump (VCD) file from
gate-level simulation using in-built functionality of theSynopsys
PrimeTime-Px[27] tool. To find timing slack and power values at
the specific voltages, we prepareSynopsys Liberty(.lib) files for each
voltage value – from 1.00V to 0.50V in 0.01V increments – using
Cadence SignalStorm TSI61[28].
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Fig. 5. CAD flow incorporating ourslack optimizerto create a design with
gradual-slope slack distribution.

We use theOpenSPARC T1processor [25] to test our optimization
framework. Table I describes the selected modules and provides
characterization in terms of cell count and area.

TABLE I
TARGET MODULES FOR EXPERIMENTS.

Module Stage Description Cell # Area (um2)

lsu dctl MEM L1 Dcache Control 4537 13850
lsu qctl1 MEM LDST Queue Control 2485 7964

lsu stb ctl MEM ST Buffer Control 854 2453
sparc exu div EX Integer Division 4809 14189
sparc exu ecl EX Execution Unit Control Logic 2302 7089
sparc ifu dec FD Instruction Decode 802 1737

sparc ifu errdp FD Error Datapath 4184 12972
sparc ifu fcl FD L1 Icache and PC Control 2431 6457

spu ctl SPU Stream Processing Control 3341 9853
tlu mmu ctl MEM MMU Control 1701 5113

Gate-level simulation is performed using test vectors obtained from
full-system RTL simulation of a benchmark suite consisting of bzip2,
equake and a sorting test program. These benchmarks are each fast-
forwarded by 1 billion instructions using the OpenSPARC T1 system
simulator, Simics [17] Niagara. After fast-forwarding in Simics, the
architectural state is transferred to theOpenSPARCRTL usingCMU
Transplant[22]. More details of our architecture-level methodology
are available in [15].

Switching activity data gathered from gate-level simulation is
fed to Synopsys PrimeTime (PT)static timing tool through itsTcl
socket interface. Timing slack and switching activity information
is continually available fromPT, through the Tcl socket interface,
during the optimization process. After our optimization, all netlist
changes are realized usingCadence SoC Encounter v7.1[29] in ECO
(engineering change order) mode.

Module designs are implemented in TSMC 65GP technology using
a standard flow of synthesis withSynopsys Design Compiler vY-
2006.06-SP5[26] and place-and-route withCadence SoC Encounter.
As noted above, voltage scaling effects are captured by characterizing
Synopsys Libertylibraries (usingCadence SignalStorm TSI61) at a
number of operating voltages. Runtime is reduced by adopting a
restricted library of 63 commonly-used cells (62 combinational and
1 sequential); the total characterization time for 51 voltage points is
around two days, but this is a one-time cost.

Using ourslack optimizer, we optimize the module implementa-
tions listed in Table I, and then estimate error rates by counting cycles
with timing failures during gate-level simulation. We use a SCAN-
like test wherein the test vectors specify the value of each primary
input and internal flip-flop at each cycle. This prevents pessimistic
error rates due to erroneous signals propagating to other registers.
We emulate the SCAN test by connecting all register output ports to
the primary input ports, allowing full control of module state.

VI. RESULTS AND ANALYSIS

Our experimental results compare the performance of our slack op-
timization flow against several alternatives for 10 component modules
of theOpenSPARC T1processor [25]. In addition to traditional CAD
flows targeting loose (0.8GHz) and tight (1.2GHz) timing constraints
we also compare against an implementation ofBlueShift [8] that
optimizes paths in decreasing order of the product of negative slack
(magnitude) and switching activity. When voltage is scaled, such
paths cause the most timing violations, and we reduce errors by
assigning tighter timing constraints during P&R withCadence SoC
Encounter. We perform gate-level simulation of modules to estimate
error rates and power consumption at different voltages. For all
experiments, we use a compensation factor ofα = 0.5 (Equation (2)),
and setβ = γ = 10−4 in Algorithm 2.

Table II demonstrates the impact of slack optimization in reducing
power consumption for our test modules. Benefits estimated at
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Fig. 6. Actual error rates vs. estimated error rates for various modules in Table I.

optimization time are compared to actual simulated results, showing
the power reduction afforded for an error rate of 2%. Discrepancies
between the actual and estimated results are primarily due to the
inaccuracy of the error rate estimation technique. The slack optimizer
achieves up to 25.8% power reduction by redistributing slack and
extending the range of voltage scaling. The power reduction stage
provides additional benefits, up to 3.6%, by downsizing cells on
infrequently exercised paths.

We note that not all modules achieve substantial benefits. Power
reduction from baseline is limited forsparc exu div, sparc ifu errdp
and tlu mmu ctl. These modules have low switching activity, and
their error rates remain below 2% even for when voltage is scaled
down to 0.5V. Consequently, both the baseline and slack-optimized
implementations achieve the same benefits for these modules. Sig-
nificant benefits can be achieved when the original slack distribution
of the module dictates that errors increase rapidly. In that case, the
slack optimizer is able to redistribute slack and extend the range of
voltage scaling.

Figure 7 shows how error rate varies as voltage is scaled for each of
theOpenSPARC T1modules. The slack optimizer redistributes timing
slack so that the error rate for a module increases more gradually as
voltage is scaled down. Aggressive optimization can in some cases
result in a lower error rate for tightly constrained P&R or BlueShift,
but our goal is ultimately not to reduce error rate but rather to reduce
power consumption.

Figure 8 shows the power consumption of the modules at each
operating voltage, demonstrating that although aggressive optimiza-
tion can result in a lower error rate, this comes at considerable
power expense due to increased area from cell upsizing. The area
overhead of the slack optimizer is significantly lower than with the
other approaches, since it targets the specific cells for which upsizing
produces the most benefit. The additional power reduction stage even
reclaims some of this area overhead, reducing power almost to that
of the baseline at the same voltage. Table III shows the average area
overhead of each design approach.

TABLE III
AREA OVERHEAD OF DESIGN APPRAOCHES.

Tight P&R BlueShift Slack Optimizer SlackOpt+PowerReduce
20.3% 6.5% 2.7% 2.7%

The slack optimizer maximizes the benefits gained per each
increase area cost. This efficient slack redistribution approach results
in lower power for a given error rate, as shown in Figure 9. Benefits
are chiefly due to the ability to scale voltage to a lower level for the
same error rate. Even though aggressive approaches can sometimes
increase the range of voltage scaling further than the slack optimizer,
the power overhead of these approaches outweighs the power savings
of voltage scaling, and total power is even higher than that of the
baseline in many cases. Power-aware slack redistribution, on the other
hand, does well to reduce power consumption at the target error rates

for the diverse set of modules, in spite of its slight area overhead
(2.7%).

Figure 10 shows the slack distribution of each design tech-
nique – traditional SP&R (tightly constrained),BlueShift PCT, and
slack optimizerfor lsu dctl. We note that power-aware slack re-
distribution results in a more gradual slack distribution. Thus, the
slack-optimized design will have fewer failing paths as voltage
is scaled down. Figure 11 compares the slack distribution for all
modules before and after slack optimization. For some modules
(tlu mmu ctl,sparc i f u errdp), the slack distribution is relatively
unchanged after slack optimization (again, because the error rates of
these modules are low), and optimization is not performed unless an
error rate of 2% is exceeded. Forsparc exu div, the slack distribution
remains unchanged because the optimization heuristic is unable to
reduce the delay on critical paths through cell swapping.
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Fig. 10. Slack distribution of each design technique (target module :
lsu dctl).

VII. SUMMARY AND CONCLUSION

Our work enables an extended power-reliability tradeoff in digital
designs by optimizing the slack distribution for ‘gradual-slope’ in
a toggle rate-aware manner. Ourpower-aware slack redistribution
lowers the minimum voltage with acceptable timing error rate, and
leads to designs that not only can be run with lower power, but that
also fail more gracefully. We demonstrate the impacts of ‘gradual-
slope’ design on voltage overscaling and total system power, using
modules from theOpenSPARC T1benchmark and 65nm SP&R
implementation. Our experiments show a maximum of 32.8% and
an average of 12.5% total power savings over the baseline design at
an error rate of 2% (cf. Table II). The area overhead of our technique
is no more than 2.7%.

Our ongoing research seeks CAD techniques for similar extended
reliability-power tradeoffs for embedded memories, as well as the
exploitation of heterogeneity in multi-core architectures to reduce
average-case overhead of our gradual-slack optimization (with het-
erogeneously reliable and gracefully-degrading cores). Additionally,
our present techniques can be augmented to consider metrics of
‘architecture-level criticality’ in addition to path timing slack, so as
to further reduce overhead of increased resilience and more graceful
system degradation with voltage overscaling.
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Fig. 7. The response of error rate to voltage overscaling for each of theOpenSPARC T1modules.
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Fig. 8. Power consumption at each operating voltage of theOpenSPARC T1modules.
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Fig. 9. Power consumption at each target error rate of theOpenSPARC T1modules.
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TABLE II
EXPERIMENTAL RESULTS- POWER REDUCTION AFTER OPTIMIZATION

Estimated results (slack optimizer) Actual results (after ECO and simulation)
Design Before optimization After optimization Before optimization After slack optimizer After power reduction

Voltage Power Voltage Power Reduction Voltage Power Voltage Power Reduction Voltage Power Reduction
(V) (W) (V) (W) (%) (V) (W) (V) (W) (%) (V) (W) (%)

lsu dctl 0.92 4.25E-4 0.74 2.70E-4 36.39 0.76 3.10E-4 0.66 2.41E-4 22.26 0.66 2.30E-4 25.81
lsu qctl1 1.00 2.96E-4 0.85 2.07E-4 30.24 0.86 2.36E-4 0.82 2.14E-4 9.32 0.82 2.11E-4 10.59

lsu stb ctl 0.96 8.11E-5 0.92 7.55E-5 7.00 0.71 4.61E-5 0.66 4.04E-5 12.36 0.66 3.99E-5 13.45
sparc exu div 0.84 3.04E-4 0.84 3.04E-4 0.00 0.5 1.06E-4 0.5 1.06E-4 0.00 0.5 1.05E-4 0.94
sparc exu ecl 0.88 1.99E-4 0.73 1.43E-4 28.53 0.91 2.41E-4 0.74 1.63E-4 32.37 0.74 1.62E-4 32.78
sparc ifu dec 1.00 5.73E-5 0.81 3.98E-5 30.55 0.66 2.46E-5 0.63 2.38E-5 3.25 0.63 2.37E-5 3.66

sparc ifu errdp 0.56 1.22E-4 0.55 1.17E-4 3.78 0.51 1.11E-4 0.51 1.12E-4 -0.90 0.51 1.10E-4 0.90
sparc ifu fcl 0.98 2.21E-4 0.85 1.69E-4 23.34 0.85 1.77E-4 0.74 1.38E-4 22.03 0.74 1.35E-4 23.73

spu ctl 0.69 1.43E-4 0.65 1.26E-4 11.75 0.59 1.13E-4 0.56 1.02E-4 9.73 0.56 9.99E-5 11.59
tlu mmu ctl 0.74 9.60E-5 0.73 9.37E-5 2.35 0.5 4.62E-5 0.5 4.62E-5 0.00 0.5 4.56E-5 1.30

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

lsu_qctl1 

0

20

40

60

80

100

120

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

lsu_stb_ctl  

0

1000

2000

3000

4000

5000

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15

sparc_exu_div 

0

20

40

60

80

100

120

140

160

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

sparc_exu_ecl 

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

sparc_ifu_errdp 

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

sparc_ifu_fcl 

0

5

10

15

20

25

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

spu_ctl  

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

tlu_mmu_ctl  

0

10

20

30

40

50

60

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

sparc_ifu_dec 

0

20

40

60

80

100

120

140

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

# 
of

 p
at

hs

Timing Slack

lsu_dctl 
Traditional SP&R

Slack Optimizer

Fig. 11. Slack distribution of various modules in Table I (before and after slack optimization
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