
Constrained Conservative State Symbolic Co-analysis for
Ultra-low-power Embedded Systems

Shashank Hegde†, Subhash Sethumurugan†, Hari Cherupalli∗, Henry Duwe‡, and John Sartori†
† University of Minnesota, ∗Synopsys Inc., and ‡ Iowa State University

{hegde031,sethu018,jsartori}@umn.edu,haricherupalli@gmail.com,duwe@iastate.edu

ABSTRACT

Symbolic simulation and symbolic execution techniques have long
been used for verifying designs and testing software. Recently, us-
ing symbolic hardware-software co-analysis to characterize unused
hardware resources across all possible executions of an application
running on a processor has been leveraged to enable application-
specific analysis and optimization techniques. Like other symbolic
simulation techniques, symbolic hardware-software co-analysis
does not scale well to complex applications, due to an explosion
in the number of execution paths that must be analyzed to charac-
terize all possible executions of an application. To overcome this
issue, prior work proposed a scalable approach by maintaining
conservative states of the system at previously-visited locations in
the application. However, this approach can be too pessimistic in
determining the exercisable subset of resources of a hardware de-
sign. In this paper, we propose a technique for performing symbolic
co-analysis of an application on a processor’s netlist by identify-
ing, propagating, and imposing constraints from the software level
onto the gate-level simulation. This produces a more precise, less
pessimistic estimate of the gates that an application can exercise
when executing on a processor, while guaranteeing coverage of all
possible gates that the application can exercise. This also reduces
the simulation time of the analysis, significantly, by eliminating
the need to explore many simulation paths in the application. Com-
pared to the state-of-art analysis based on conservative states, our
constrained approach reduces the number of gates identified as ex-
ercisable by up to 34.98%, 11.52% on average, and analysis runtime
by up to 84.61%, 43.83% on average.

KEYWORDS

symbolic execution, symbolic simulation, gate-level analysis, hard-
ware/software co-analysis, constraints

ACM Reference Format:

ShashankHegde†, Subhash Sethumurugan†, Hari Cherupalli∗, HenryDuwe‡,

and John Sartori† . 2021. Constrained Conservative State Symbolic Co-

analysis for Ultra-low-power Embedded Systems. In 26th Asia and South

Pacific Design Automation Conference (ASPDAC ’21), January 18–21, 2021,

Tokyo, Japan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

3394885.3431157

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431157

1 INTRODUCTION

A large number of emerging computing applications have ultra-
low-power requirements [15, 17]. Notable among these are the in-
ternet of things, sensor networks, wearable electronics, and biomed-
ical devices. The ultra-low-power requirements of these applica-
tions are due to the fact that the applications are either energy-
constrained (e.g., battery-powered applications), power-constrained
(e.g., energy-harvesting applications), or both. The embedded sys-
tems used by these applications typically consist of a low-power
microcontroller / microprocessor running a single application over
and over throughout its operational lifetime.

Based on the application-specific nature of many emerging ultra-
low-power systems, a recent line of work has proposed application-
specific power and energy reduction techniques that identify hard-
ware resources (e.g., gates) in a processor that cannot be exercised
by the application running on the processor and eliminate the
power used to support those resources [7, 9, 10]. However, such
application-specific optimizations can only be safely applied if an
analysis technique can guarantee that the application running on
the processor will never use the resources for any possible execu-
tion of the application, for any inputs. Eliminating gates or power
for resources that could be used by the application could lead to
incorrect execution of the application. For example, power gating
a gate that was incorrectly identified as “unused” but is actually
exercised by an application can result in the application producing
incorrect outputs or crashing. Given the need for guarantees and
the inability to achieve such guarantees through input-based ap-
plication profiling, recently-proposed application-specific power
management techniques rely on a symbolic simulation [4] of the ap-
plication on the processor hardware to identify hardware resources
that are guaranteed to not be used across all possible executions of
an application. By propagating symbols that represent unknown
logic values for all inputs to an application, it is possible to deter-
mine all possible hardware resources that could be used by the
application in an input-independent fashion [9, 10]. Recent work
has demonstrated that the input-independent activity profiles gen-
erated by such a symbolic simulation of an application running on
a processor can be leveraged to identify worst-case timing, power,
and energy characteristics for a low-power system and to eliminate
power used by resources that the system’s captive application is
guaranteed to never use [7, 9, 10].
Symbolic hardware-software co-analysis is also related to sym-

bolic execution [5]; however, it differs in that co-analysis considers
every possible execution of a given application for all possible in-
puts, rather than determining a specific set of inputs that will test
the application. Also, prior works on symbolic execution do not
consider the application-specific effects of software on hardware.
Symbolic hardware-software co-analysis suffers from the same

scalability limitations characteristic of symbolic simulation and
execution – namely, the state-space explodes for applications with



ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

Shashank Hegde†, Subhash Sethumurugan†, Hari Cherupalli∗ , Henry Duwe‡, and John Sartori†

complex control structures, due to a large number of possible execu-
tion paths. Many heuristics have been proposed to tame the scala-
bility problems of symbolic simulation and execution [2, 3, 5, 6, 16];
however, existing heuristics for scalable symbolic simulation and
symbolic execution cannot be applied to the symbolic co-analysis
used for application-specific power management, since existing
heuristics sacrifice perfect coverage to improve scalability.
This problem was handled in prior work [8] by maintaining

conservative states at PC-changing instructions. A conservative
state is formed by merging two states and replacing the differing
bits in the states with Xs, representing unknown logic values. A
conservative state encompasses a superset of all observed states
every time the simulation re-visits the PC. If a state is a sub-state of
the conservative state maintained at the PC, that state has already
been simulated, and execution from the state can be terminated.
However, this conservative over-approximation still treats the

application as a black box, and hence, suffers from the pessimism of
marking too many gates as exercisable, potentially leaving signifi-
cant benefits on the table. This is due to the nature of conservative
state construction, where states are merged by replacing locations
that are different with Xs; thus, the number of states represented
by the resulting super-state can be exponentially more than the
number of states used to generate the conservative state (e.g., see
Section 2). This can lead to covering states that are not possible in
the original application.
In this paper, we propose a constrained conservative state sym-

bolic hardware-software co-analysis technique that characterizes
the behavior of an application by analyzing the binary to deter-
mine constraints, e.g., bounds of a particular memory element. Such
bounds can be used to constrain the value of the memory element
from being overly pessimistic (i.e., containing too many Xs), leading
to fewer gates marked as exercisable and reduced simulation times.
Our technique is based on the observation that simulating from
conservative states can mark many gates as exercisable that the
application cannot actually exercise, and that conservative state-
based simulation can unnecessarily explore execution paths that
are not actually possible for the application.
This paper makes the following contributions.

•We show that the over-approximation of prior scalable symbolic
hardware-software co-analysis is significant, due to treating the
application as a black box, and demonstrate that applying higher-
level constraints from the software can significantly mitigate this
over-approximation.
•We propose a constrained conservative state symbolic hardware-
software co-analysis technique that translates constraints on vari-
ables at the software level to constraints on memory elements in
the processor-memory system, enabling reduced pessimism over
state-of-the-art techniques in the number of gates that are marked
as exercisable by up to 34.98%, and by 11.52% on average.
•We show that in addition to reducing the number of gates identi-
fied as exercisable for an application, our co-analysis technique also
reduces analysis time. Compared to existing techniques, analysis
time is reduced by up to 84.61%, and by 43.83% on average.

2 BACKGROUND AND MOTIVATION

Co-analysis techniques presented in prior work [7, 9, 10] identify
all exercisable gates for an application in a processor through sym-
bolic simulation of the application on the processor netlist. The
symbolic simulation analysis technique is described in the black

text of Algorithm 1. Unfortunately, this co-analysis technique can-
not analyze applications with complex control flow or infinite loops.
To resolve this issue, prior work [10] proposes maintaining con-
servative states for each PC-changing instruction (e.g., conditional
branch). A conservative state is a state that covers all simulated
states observed at a particular PC-changing instruction. An exe-
cution path is simulated only if the current state is not a subset
of a previously observed conservative state, in which case a more
conservative state is created by merging the current state with the
conservative state maintained for the PC-changing instruction and
continuing simulation from the new conservative state. This algo-
rithm is described by the black and blue text in Algorithm 1. The
conservative approximation technique described above enables a
scalable gate activity analysis that completes in a small number of
passes through the application.
Figure 1c illustrates how conservative state is generated and

how maintaining conservative states can significantly improve
simulation time. The example code in Figure 1b (compiled from
C-code in Figure 1a) represents a simple subroutine that updates
an internal variable (represented by r13 (p)), based on an external
value (represented by r14 (q)), over 16 iterations (tracked by r5 (i)).
The first section of the code (red) initializes the registers r5, r13,
and r14. The next two sections (blue and yellow) are the loop body,
where r13 is compared against r14. If r14 ≥ r13, line 7 is executed
to increase r13 by r14. Otherwise, simulation iterates again, after
decreasing the loop counter (r5) in the next section (green). After
exiting the loop, we return from this subroutine.
Figure 1c shows the execution tree and the values of two regis-

ters r13 and r5 at various states that the processor reaches during
execution. The simulation starts in the red block and reaches the
end of the blue block. Since r14 contains Xs, the subsequent jump
jnc’s path is inconclusive, and an X propagates to the PC. We split
the simulation to execute both branch paths – the yellow block
and the green block. The state of the processor at the end of the
blue block is represented as 𝑆0, and the states of the processor at
the start of false and true paths are represented as 𝑆𝐹0 and 𝑆𝑇0 , re-
spectively. The same convention is used for the rest of the states in
the tree. Each state in the table contains two rows for the values
of the registers r13 and r5. The upper row represents the value
of the register observed when the simulation reaches the corre-
sponding point in the execution tree. The lower row represents
the conservative value computed by merging this value with the
previous conservative state observed at this point. Simulation pro-
ceeds using this conservative value instead of the observed value.
One example of conservative approximation is that of register r5
for state 𝑆1. Since 𝑆1 and 𝑆0 correspond to the same PC, we build
a conservative state to represent both the states 𝑆1 and 𝑆0 when
we simulate down 𝑆1; this is achieved by replacing the values that
differ between the two states with Xs. In the case of r5, the two
states differ in the least significant 5 bits, which are replaced by Xs
to represent both the states. This X-ification of the states leads to
skipping execution of several states downstream and thus a faster
completion of application analysis.

However, the conservative over-approximation of r5 at 𝑆1 repre-
sents not only the two states merged but also all 32 states rep-
resentable by varying the lower 5 bits of r5. Therefore, when
we execute the instruction dec r5 in the green block just be-
fore state 𝑆3, the value 16’bXXXXX can represent 32 different val-
ues, including 16’b0 and 16’b1. Decrementing 16’b0 by 1 results



Constrained Conservative State Symbolic Co-analysis for Ultra-low-power Embedded Systems

ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

(a) Example C Program.

(b) Compiled MSP430 Program.

(c) Conservative state-based scalable symbolic co-analysis can analyze applications with infinite

loops and input-dependent branches by simulating conservative states that capture the activity of

multiple possible states.

(d) Constraining memory elements based on bounds from the software level reduces pessimism in

estimating the number of gates marked as exercisable and also reduces the number of paths that

need to be explored.

Figure 1: Illustration of Symbolic Simulation with Conservative Approach vs Constrained Conservative Approach

in 16’b1111111111111111 (two’s complement arithmetic), while
decrementing 16’b1 by 1 results in 16’b0. To represent both these
states, r5’s value becomes 16’bXXXXXXXXXXXXXXXX. Unfor-
tunately, this represents all the 216 possible values for a 16-bit
number, leading to exercising many more gates in the processor
than necessary, since r5 only actually assumes values between 0
and 16. Since 0 ≤ r5 < 17, we can constrain the value of r5 to
16’b00000000000XXXXX, as shown in Figure 1d. This not only re-
duces the number of gates toggled; it also reduces the number of
execution paths simulated, leading to faster convergence.
Based on this motivation, we develop an approach to encode

information about constraints on variables from the binary, propa-
gate them during co-analysis, and enforce them on the variables to
reduce pessimism in conservative state analysis. We present our
approach in the next section.

3 CONSTRAINED CONSERVATIVE STATE
(CCS) SYMBOLIC CO-ANALYSIS

In this section, we explain Constrained Conservative State Sym-
bolic Co-Analysis. Our co-analysis tool (see Figure 2) is based on
the observation that certain constraints on variables at the software
level are lost when the application is simulated at the gate-level,
leading to overly pessimistic estimates of the hardware resources

Figure 2: Methodology for CCS

(i.e., gates) needed to execute the application. We translate software-
level constraints to the gate level in three steps. First, we encode
high-level program constraints as constraints on the operand values
of static instructions. Our tool generates these constraints from
a pattern-based static analysis of the application binary. Second,
these encoded constraints are loaded into the conservative sym-
bolic simulator and propagated from source operands to destination
operands during simulation. Third, when operands containing Xs
are updated by an instruction, encoded and propagated constraints
are applied so that the operands’ symbolic values observe the con-
straints. Pseudocode of our implementation is shown in Algorithm 1
and Algorithm 2. Changes to the conservative symbolic co-analysis



ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

Shashank Hegde†, Subhash Sethumurugan†, Hari Cherupalli∗ , Henry Duwe‡, and John Sartori†

Algorithm1Constrained Conservative State Symbolic Co-analysis

1. Procedure GateActivityAnalysis(app_binary, design_netlist)
2. Initialize all memory cells and all gates in design_netlist to X
3. Load app_binary into program memory
4. Propagate reset toggle signal
5. 𝑠 ← State at start of app_binary
6. Symbolic Execution Tree𝑇 .set_root(𝑠)
7. Unprocessed execution points queue,𝑈 .push(𝑠)
8. 𝐶 .init() // Initialize conservative system state map
9. 𝐶𝑇 .load_constraints() // Load Static constraints map
10. while𝑈 != ∅ do
11. 𝑒 ← 𝑈 .pop()
12. if 𝑒 .isConditinalBranch() and 𝑒 .PC ∈ C then
13. 𝑎 ← 𝐶 .getState(𝑒 .PC)
14. if 𝑒 .isConservativeSubstateOf(𝑎) then
15. continue
16. else
17. 𝑒 ← buildConservativeState(𝑎, 𝑒)
18. 𝐶 ←𝐶 .update(𝑒 .PC, 𝑒)
19. end if
20. else if 𝑒 .isConditionalBranch() then
21. 𝐶 ← 𝐶 .add(𝑒 .PC, 𝑒)
22. end if
23. while 𝑒 .nextPC != X and !𝑒 .END do
24. 𝑒 .setInputsX() // set all peripheral port inputs to Xs
25. 𝑒′ ← propagateGateValues(𝑒) // perform simulation for this cycle

26. if 𝑒′.aboutToCommit() then
27. // instruction will be committed in the next cycle

28. 𝑐𝑡 ← getConstraints(𝐶𝑇 , 𝑒′.𝑃𝐶)
29. 𝑒′ ← propagateConstraints(𝑒′, 𝑐𝑡 ) // transfer constraints, source to destination
30. 𝑒′ ← enforceConstraints(𝑒′, 𝑐𝑡 )
31. end if
32. 𝑒 .annotateGateActivity(𝑒 , 𝑒′) // annotate tree point with activity
33. 𝑒 .addNextState(𝑒′) // add to execution tree
34. 𝑒 ← 𝑒′ // process next cycle
35. end while
36. if 𝑒 .nextPC == X then
37. for all 𝑎 ∈ possibleNextPCVals(𝑒) do

38. 𝑒′ ← 𝑒 .updateNextPC(𝑎)
39. 𝑈 .push(𝑒′)
40. 𝑇 .insert(𝑒′)
41. end for
42. end if
43. end while

in Algorithm 1 are presented in red. In the following subsections,
we explain each step in greater detail.

3.1 Encoding Constraints from Binary
In order to constrain simulation values, our tool must know what
memory element’s values should be constrained, what its valid set of
values are, and at what execution points those constraints are valid.
As shown in Figure 3, our tool takes value bound constraints (e.g., 0
to 17) on instruction operands (e.g., r5) for specific instructions (e.g.,
the mov, dec, and jnz instructions at PCs 3, 9, and 10, respectively).

An example instruction pattern is shown in Figure 3. Many possi-
ble static analyses at different abstraction levels, from C compiler to
binary analysis, could be used to generate constraints, with varying
trade-offs of coverage and precision [13, 14, 19]. The exploration
of these trade-offs is beyond the scope of this paper. For our work,
we chose to use a pattern-based binary analysis approach where
we map known binary patterns resulting from high-level program
structures (e.g., loops and if statements) into constraints (e.g., regis-
ter holding a loop iterator is bounded between its initialization and
termination values at loop boundaries). We have identified nine
such patterns involving different types of loops and nested loops.
Note that for pattern-based analysis, the relevant patterns can de-
pend on compiler options. Our library of patterns covers the most
common patterns observed in our benchmark set (see Section 4).

3.2 Propagating Constraints

Once we encode all the constraints, we load them into the co-
analysis tool as Fixed (i.e., immutable) constraints on operands

Algorithm 2 Constraint Enforcement

1. // 𝑒 : Execution state of the processor
2. // 𝑐𝑡 : Constraint
3. Procedure enforceConstraints(𝑒 , 𝑐𝑡 )
4. if 𝑒 .isOutputOutOfBounds(𝑐𝑡 ) then
5. if 𝑒 .isMemoryOp() then
6. 𝑒 ← handleMemoryEnforcement(𝑒 , 𝑐𝑡 )
7. else
8. 𝑒 .dstRegVal← genConstrainedVal(𝑒 .dstRegVal, 𝑐𝑡 )
9. end if
10. end if
11. return 𝑒

12. //𝑒 : Execution state of the processor
13. // 𝑐𝑡 : Constraint
14. Procedure handleMemoryEnforcement(𝑒 , 𝑐𝑡 )
15. if containsX(𝑒 .memAddress) then
16. for all 𝑎𝑑𝑑𝑟 ∈ possibleAddresses(𝑒 .memAddress) do
17. if isAddressInBounds(𝑎𝑑𝑑𝑟 , 𝑐𝑡 .addressConstraint) then
18. if 𝑒 .memOperation == read then
19. val← generateConstrainedConservativeVal(val,

𝑒 .dMemory[𝑎𝑑𝑑𝑟 ], 𝑐𝑡 .valConstraint)
20. else if 𝑒 .memOperation == write then
21. 𝑒 .dMemory[𝑎𝑑𝑑𝑟 ]← generateConservativeVal(𝑒 .val, 𝑒 .dMemory[𝑎𝑑𝑑𝑟 ])
22. end if
23. end if
24. end for
25. if 𝑒 .memOperation == read then
26. 𝑒 .dataBus.put(val)
27. end if
28. else
29. 𝑎𝑑𝑑𝑟 ← 𝑒.memAddress
30. if 𝑒 .memOperation == read then
31. val← 𝑒 .dMemory[𝑎𝑑𝑑𝑟 ]
32. 𝑒 .dataBus.put(val)
33. else if 𝑒 .memOperation == write then
34. 𝑒 .dMemory[𝑎𝑑𝑑𝑟 ]← 𝑒 .val
35. end if
36. end if
37. return 𝑒37. return 𝑒

Figure 3: Example of constraint encoding during static anal-

ysis of the application binary.

(i.e., register and memory values) at specific static instructions, and
we start symbolic co-analysis. During co-analysis, we intercept
every instruction when it is about to be committed in the processor
pipeline, read the constraints on the instruction’s source operands,
and update the constraint on the destination operand if that operand
does not have a Fixed constraint at the current PC. This updating
creates a Dynamic constraint for the memory element.
Consider the instruction mov #2, r13, with r13 having no

constraint before the instruction is executed. At the end of the
execution of the instruction, we will have a constraint on r13 as
2 ≤ r13 < 3, representing its constant value.



Constrained Conservative State Symbolic Co-analysis for Ultra-low-power Embedded Systems

ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

Consider another instruction, add r5, r13, with constraints on
r5 as 1 ≤ r5 < 17 and on r13 as 2 ≤ r13 < 3. Since the value of
r5 does not contain Xs (it is 16), the constraint of r13 is updated
by adding r5’s value (16) to the lower and upper bounds of r13’s
constraints to produce the constraint: 18 ≤ r13 < 19. However, if
the value of r5 is 16’bXXXXX, the constraint on r13 is updated to
3 ≤ r13 < 20, by adding the lower bounds and the upper bounds
of the two constraints, respectively. This ensures that constraints
are as tight as possible while encompassing all possible values.

3.3 Enforcing Constraints
Encoding and propagating constraints ensures that values of reg-
isters or memory locations that are constrained cannot go out of
bounds of these constraints. To ensure this, we monitor all reg-
ister and memory location values for changes during simulation.
Whenever a register or a memory location is modified, we check
its value against any constraint it has. If the value of the register
or memory location could be out of bounds of the constraint, we
enforce the constraint on the register or memory location by modi-
fying its value appropriately. Our technique ensures that enforcing
constraints does not eliminate exploration of any reachable states
for a given application. A formal proof is presented in Section 3.4.
In addition to constraining memory and register values, it is

important to ensure that memory addresses do not go out of bounds.
In an indirect addressing mode, if the register holding the mem-
ory address contains Xs, there are several possible addresses that
could be accessed. In such a case, the constraint on the register
restricts the number of possible memory locations. While perform-
ing memory reads, all possible memory addresses (defined by the
constrained conservative value) are read, and a conservative value
is generated out of data read from memory. This value is sent to
the data bus and used by the instruction. Similarly, while han-
dling a memory write, both the address and the value could have
Xs. In this case, we first resolve the constraint on the address by
identifying the permissible locations for the element, based on the
constraint and the value of the address. We then generate con-
servative values and update the constraints at all the resolved ad-
dresses. For instance, consider the instruction mov r5, -5(r6).
Assume that both r5 and r6 contain Xs. To handle proper exe-
cution of this instruction, we first obtain the constraint for r6
and adjust the address constraint for -5(r6) according to the off-
set (i.e., Lower_bound -5(r6) ← Lower_bound (r6) - 5 ) and
Upper_bound -5(r6)← Upper_bound (r6) - 5). Then, for each
address represented by -5(r6)’s value in the simulator (the value
with the Xs), we check if the address is in the range of the constraint
(i.e., Lower_bound -5(r6) < address < Upper_bound -5(r6)). For
the addresses that are in the bound of the constraint, we write the
conservative value of r5 combined with the existing memory value
to the locations pointed by the resolved addresses. This algorithm
is presented in Algorithm 2.

3.4 Proof of CCS Correctness
Theorem 3.1 (Application Execution StateCoverage). Given

a constraint c and an element (register/memory address) e, enforcing
c on e at a PC p does not eliminate exploration of any reachable states
for application A.

Proof. Let 𝑆1𝑆1𝑆1, 𝑆2𝑆2𝑆2, . . . , 𝑆𝑛𝑆𝑛𝑆𝑛 be consecutive conservative states gen-
erated at PC 𝑝𝑝𝑝 by the Conservative State (CS) approach. By def-
inition of conservative state, 𝑆1𝑆1𝑆1 ⊂ 𝑆2𝑆2𝑆2 ⊂ . . . ⊂ 𝑆𝑛𝑆𝑛𝑆𝑛 . Let 𝑆𝑖𝑆𝑖𝑆𝑖 be the
first state where 𝑒𝑒𝑒 violates 𝑐𝑐𝑐 . Thus, 𝑆𝑖𝑆𝑖𝑆𝑖 covers all executions leading

Table 1: Benchmarks
Embedded Sensor Benchmarks [18]

mult, binSearch, div, inSort, tea8, rle, tHold, intAVG, intFilt

EEMBC Embedded Benchmarks [11]

AutoCorr, convEn, FFT, Viterbi

Complex Benchmarks

MergeSort , graph500 [1], highCC

to 𝑝𝑝𝑝 that have been explored until the 𝑖𝑡ℎ encounter of 𝑝𝑝𝑝 . I.e., for
all states before 𝑆𝑖𝑆𝑖𝑆𝑖 (𝑆1𝑆1𝑆1, 𝑆2𝑆2𝑆2, . . . , 𝑆𝑖−1𝑆𝑖−1𝑆𝑖−1), the Constrained Conservative
State (CCS) approach and CS are identical. Since 𝑆𝑖𝑆𝑖𝑆𝑖 violates 𝑐𝑐𝑐 , it
necessarily covers some states that are not reachable by 𝐴𝐴𝐴. Con-
straining 𝑒𝑒𝑒 using 𝑐𝑐𝑐 generates 𝑆 ′𝑖𝑆

′
𝑖𝑆
′
𝑖 such that 𝑆 ′𝑖𝑆

′
𝑖𝑆
′
𝑖 covers all possible

values that 𝑒𝑒𝑒 can assume in𝐴𝐴𝐴; only unreachable states are elimi-
nated through the application of 𝑐𝑐𝑐 . Thus, continuing the simulation
from 𝑆 ′𝑖𝑆

′
𝑖𝑆
′
𝑖 will explore all valid states that are reachable by𝐴𝐴𝐴. �

4 EXPERIMENTAL SETUP

We perform evaluations on a silicon-proven openMSP430 [12] pro-
cessor, synthesized, placed and routed in TSMC 65GP (65nm) tech-
nology using Synopsys Design Compiler and Cadence EDI System.
The processor was implemented for an operating point of 1V and
100MHz.We implemented our constrained conservative state-based
scalable symbolic co-analysis in a custom gate-level simulator that
was built in-house in C++. We also developed a custom static binary
analysis tool in Python for encoding constraints. The static con-
straints were stored in a JSON file and fed to the custom gate-level
simulator, which the simulator uses for Propagation and Enforce-
ment. We show results for all benchmarks from [18], all EEMBC
benchmarks [11] that fit in the program memory of our processor,

as well as complex and recursive benchmarks1 designed to stress-
test the scalability of our symbolic hardware-software co-analysis
technique with complex control structures not found in the rest of
our benchmarks (Table 1). Experiments are performed on a server
housing two Intel Xeon E-2640 processors (8-cores each, 2GHz
operating frequency, 64GB RAM).

5 RESULTS

To illustrate the benefits of our proposed technique for symbolic
co-analysis, we compare our constrained conservative state (CCS)
symbolic co-analysis technique (Algorithm 1 black+blue+red text)
against the naive symbolic co-analysis technique (Algorithm 1
black text only) and the state-of-the-art conservative symbolic co-
analysis technique [8] (Algorithm 1 black+blue text). We compare
analysis time and exercisable gate counts for the benchmarks de-
scribed in Section 4. We show that the constrained conservative
approach addresses the limitations of the naive and conservative
approaches by yielding an exercisable gate count closer to the ac-
curate naive approach, while also significantly reducing simulation
time compared to the state-of-art with minimal overhead.

For benchmarkswith simple control flow (i.e., no input-dependent
branches), symbolic simulation only needs to consider a single ex-
ecution path through the program; conservative states are never
created, and the conservative and constrained conservative ap-
proaches will perform the same simulation as the naive approach.
Since the results for these benchmarks (mult, intFilt, tea8, FFT, Au-
toCorr, convEn) do not show any variation between the simulation

1MergeSort is a recursive sorting algorithm. graph500 runs BFS on a graph. highCC
(high Cyclomatic Complexity) is a synthetic benchmark that uses cyclic array accesses

to alter the control flow of the application and has 1632 possible control flow paths.



ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

Shashank Hegde†, Subhash Sethumurugan†, Hari Cherupalli∗ , Henry Duwe‡, and John Sartori†

Table 2: Constrained conservative state symbolic co-analysis

reduces analysis time compared to naive and conservative

state-based co-analysis and enables analysis of applications

with complex control structures.

Benchmark
Analysis Time (Number of Simulation Cycles)

Naive Consv. CCS %Reduction
(w.r.t. Naive)

%Reduction
(w.r.t. Consv.)

div ∞ 186 178 - 4.30

intAVG ∞ 337 329 - 2.37

rle ∞ 7431 5951 - 19.92

rle_small 25496 6495 2153 91.56 66.85

binSearch 100468 9994 1551 98.46 84.48

tHold 20520 2615 1986 90.32 24.05

inSort ∞ 22205 12120 - 45.42

inSort_small 24427 9106 5089 79.17 44.11

Viterbi ∞ 69265 26389 - 61.90

MergeSort ∞ 104574 16093 - 84.61

graph500 ∞ 185341 79663 - 57.02

highCC ∞ 116290 80276 - 30.90

Table 3: Use of constraints reduces the number of explored

symbolic execution paths.

Benchmark
Symbolic Execution Paths

Naive Consv. CCS %Reduction
(w.r.t. Naive)

%Reduction
(w.r.t. Consv.

div ∞ 9 7 - 22.22

intAVG ∞ 15 13 - 13.33

rle ∞ 129 101 - 21.71

rle_small 504 113 33 93.45 70.80

binSearch 2048 91 41 98.00 54.95

tHold 460 247 39 91.52 84.21

inSort ∞ 121 67 - 44.63

inSort_small 476 115 65 86.34 43.48

Viterbi ∞ 771 291 - 62.26

MergeSort ∞ 1453 235 - 83.83

graph500 ∞ 1350 1124 - 16.74

highCC ∞ 1604 756 - 52.80

Table 4: Use of constraints reduces the number of gates iden-

tified as exercisable.

Benchmark
Exercisable Gates Identified

Naive Consv. CCS %Increase
(w.r.t.
Naive)

%Reduction
(w.r.t. Consv.)

div N/A † 3627 3566 - 1.68

intAVG N/A † 3675 3648 - 0.73

rle N/A † 4488 3759 - 16.24

rle_small 3185 4487 3740 17.43 16.65

binSearch 3065 3454 3424 11.71 0.87

tHold 2893 3530 3368 16.42 4.59

inSort N/A † 5406 3518 - 34.92

inSort_small 3134 5418 3523 12.41 34.98

Viterbi N/A † 5449 5449 - 0.00

MergeSort N/A † 5134 4294 - 16.36

graph500 N/A † 5988 5987 - 0.02

highCC N/A † 4007 3558 - 11.20

† Since these simulations did not finish, naive simulation would be forced to report
that all 7218 gates of the design might be exercisable.

approaches and thus cannot be used to compare the techniques,
we omit these benchmarks from our results tables due to space
limitations. However, we did use these benchmarks to verify that
the results for all three simulation approaches are consistent. Fur-
thermore, our constrained conservative approach does not increase
the execution time or number of execution paths considered.

Analysis Time. Table 2 compares analysis times for performing
the symbolic simulation of each benchmark application.We use sim-
ulated clock cycles of the openMSP430 processor as a proxy of anal-
ysis time that is independent of the host computer’s computational

capability and load.2 Constrained conservative analysis achieves
the lowest analysis time for all benchmarks by effectively prun-
ing the execution tree to eliminate consideration of already-visited
states and states that are precluded by application constraints. For
six of the benchmarks, naive symbolic simulation was not able to
complete within 24 hours and was eventually killed after using
all of our server’s memory (64 GB RAM and 125 GB swap). These
benchmarks are marked with ∞ in the naive column of Table 2.
Meanwhile, the conservative state approach is able to analyze all
of the benchmarks in under an hour. By applying application con-
straints on top of the conservative approach, CCS reduces analysis
time for each benchmark, with a maximum reduction of 84.61%
compared to the state-of-art conservative state approach. Applying
software constraints to the symbolic simulation keeps conservative
values within their legal ranges, significantly pruning the state
space and resulting in a more efficient exploration of the applica-
tion’s possible states.

Table 3 shows the number of symbolic execution paths each sym-
bolic simulation approach explores (as described in Section 2). In
the conservative approach, new symbolic execution path subtrees
are created at conditional branches and simulated if they have not
been previously explored. By constraining the values of register-
s/memory elements in the processor, the constrained conservative
approach reduces the number of symbolic execution paths that
must be simulated to completely characterize all possible execu-
tions of an application. This significantly reduces analysis time for
several applications. For MergeSort, an application with complex
input-dependent control flow, the conservative state approach con-
tinues simulating symbolic execution paths until all bits of the loop
iterator (for the loop that merges two sorted arrays) become Xs
for a given recursive step. In the proposed constrained approach,
simulation only proceeds until 6 Xs propagate into the loop iterator,
since the maximum bound on the loop iterator is 34 (array size).
The result is an 84% reduction of the number of symbolic execution
paths that are explored and a corresponding 85% reduction in the
number of analysis cycles. As processor complexity increases, the
state space of the hardware-software symbolic co-analysis increases,
and the potential benefits of constraining the symbolic simulation
increase. E.g., a 64-bit processor has exponentially more possible
states than a 16-bit processor, so the same loop bounds constraint
applied to both would eliminate exponentially more states from
consideration in a 64-bit processor vs. a 16-bit processor.

Exercisable Gates. Table 4 presents the count of exercisable gates
reported by the three symbolic simulation approaches. All three
approaches guarantee identification of all possible gates that can
be exercised by any possible execution of an application; however,
the approaches vary in their overestimation of the exercisable gates
due to conservative state approximations. The naive approach does
not use conservative states to cover multiple real states, and there-
fore, provides the most accurate report of the exercisable gate set.
However, because naive simulation attempts to simulate all possible
states of an application without approximation, naive simulation is
not scalable and does not always complete. For some benchmark
applications (e.g., inSort and rle), significantly reducing the input
size (e.g., to 5 elements) reduces the size of the symbolic execution
tree sufficiently to allow the naive approach to finish. We include

2The overhead introduced by the constrained conservative analysis indicated by
red text in Algorithm 1 is between 1.1% and 1.9% per cycle.



Constrained Conservative State Symbolic Co-analysis for Ultra-low-power Embedded Systems

ASPDAC’21, Tokyo Odaiba Waterfront, Japan,

small versions of those benchmarks in the results tables to enable
further analysis and comparison of the simulation approaches.3

The conservative state approach identifies more exercisable gates
than the naive approach. For applications with complex control
flow, the overapproximation of the conservative state approach can
be significant. The small versions of rle and inSort demonstrate that
the conservative approach can significantly increase the number of
gates marked as exercisable compared to naive symbolic simulation
(e.g., 73% increase in exercisable gates reported for inSort_small).
With the proposed constrained simulation, however, there is only a
12% increase in reported exercisable gates for the same application.
Applying application constraints to the symbolic states avoids simu-
lation of states that are not actually possible for the application and
can significantly reduce the pessimism of applying conservative
states to achieve a scalable symbolic simulation.

Compared to the conservative state approach, CCS reports fewer
exercisable gates for all benchmarks, except Viterbi where the re-
sult is identical, with a maximum reduction of 35% (inSort). The
static analysis used in this work generated a maximum of 7 con-
straints (for graph500) and a minimum of 1 constraint (for div).
More sophisticated static analysis techniques may generate more
constraints. Nevertheless, our work shows that even applying a
small number of constraints can result in significant reduction of
exercisable gates and analysis time compared to state-of-art conser-
vative state symbolic co-analysis. The largest benefits come from
benchmarks such as inSort, MergeSort, and rle, that access data
using addresses containing Xs. This can potentially cause the ad-
dress handler in openMSP430 to exercise all the peripherals, since
they are in a unified address space. Constraining the addresses
avoids this overapproximation of exercisable resources. Although
binSearch also accesses data using addresses containing Xs, its
structure already limits the number of Xs in addresses during con-
servative symbolic simulation, since the binSearch algorithm uses a
right shift that guarantees that the upper 8 address bits are always
zero. This reduces the exercisable gates reported by the conserva-
tive state approach for binSearch. Viterbi implements an iterative
pointer chasing algorithm that involves many memory-accessing
instructions. With the random memory access pattern of the ap-
plication, the inputs of these instructions are all Xs, causing all
the gates in the memory and peripheral path to be presumed ex-
ercisable. Constraints do help to restrict the number of memory
accesses with unknown pointer values, since the accesses are made
in a loop, and the loop bound can be determined by static analysis.
This significantly reduces analysis time (by 62%) but does not help
to reduce the exercisable gate count. Graph traversal in graph500
also involves a pointer chasing random memory access pattern.
Similar to Viterbi, reduction in exercisable gates is negligible, but
determining loop bounds via static analysis significantly reduces
analysis time, by 57%.

6 CONCLUSION
Symbolic co-analysis of an application binary on the gate-level
netlist of a processor can be used for application-specific power and

3Conservative symbolic simulations report slightly more exercisable gates for
inSort_small than for inSort. At first, this seems counterintuitive; however, our analy-
sis revealed that a few instructions were different between the two binaries. These
instructions cause different gates to be exercised by each of the binaries. We con-
firmed that the additional exercisable gates in inSort_small trace back to instruction
source/destination operand registers. These gates contribute to fewer than 0.2% of
the total gates in the processor design and do not change the behavior of the core
algorithm in the benchmarks.

energy optimizations. Although the state-of-the-art conservative
symbolic co-analysis technique provides a scalable solution, we
showed that this approach can be pessimistic both in terms of
the exercisable gates and the number of symbolic execution paths
explored. In this paper, we proposed a constrained conservative state
symbolic hardware-software co-analysis technique that applies
constraints to symbolic states to reduce the pessimism in marking
gates as exercisable. In addition to guaranteeing identification of all
possible exercisable gates for an application execution, the proposed
technique significantly reduces simulation time and number of
symbolic execution paths explored. We showed that our technique
can reduce application analysis time by up to 84.61% while reducing
the exercisable gates by up to 34.98% compared to the state-of-art
conservative state symbolic co-analysis technique.

REFERENCES
[1] [n.d.]. Graph 500. http://www.graph500.org.
[2] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,

Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, et al.
2013. An orchestrated survey of methodologies for automated software test case
generation. Journal of Systems and Software 86, 8 (2013), 1978–2001.

[3] Valeria Bertacco, Maurizio Damiani, and Stefano Quer. 1999. Cycle-based sym-
bolic simulation of gate-level synchronous circuits. In Proceedings of the 36th
annual ACM/IEEE Design Automation Conference. ACM, 391–396.

[4] Randal E Bryant. 1991. Symbolic Simulation – Techniques and Applications. In
Proceedings of the 27th ACM/IEEE Design Automation Conference. ACM, 517–521.

[5] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82–90.

[6] Pankaj Chauhan, Edmund M Clarke, and Daniel Kroening. 2004. A SAT-based
algorithm for reparameterization in symbolic simulation. In Proceedings of the
41st annual Design Automation Conference. ACM, 524–529.

[7] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori. 2017. Bespoke processors
for applications with ultra-low area and power constraints. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). 41–54.

[8] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
2017. Determining Application-Specific Peak Power and Energy Requirements
for Ultra-Low-Power Processors. ACM Trans. Comput. Syst. 35, 3, Article 9 (Dec.
2017), 33 pages. https://doi.org/10.1145/3148052

[9] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. 2017.
Enabling Effective Module-oblivious Power Gating for Embedded Processors. In
High Performance Computer Architecture, 2017. HPCA 2017. IEEE 21st International
Symposium on. IEEE.

[10] Hari Cherupalli, Rakesh Kumar, and John Sartori. 2016. Exploiting Dynamic
Timing Slack for Energy Efficiency in Ultra-Low-Power Embedded Systems.
In Computer Architecture (ISCA), 2016 43th Annual International Symposium on.
IEEE.

[11] EEMBC. 2020. EEMBC Benchmarks. http://www.eembc.org.
[12] O Girard. 2013. OpenMSP430 project. available at opencores.org (2013).
[13] A. Ibing and A. Mai. 2015. A Fixed-Point Algorithm for Automated Static De-

tection of Infinite Loops. In 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering. 44–51.

[14] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. 2009. A Fast and Pre-
cise Static Loop Analysis Based on Abstract Interpretation, Program Slicing
and Polytope Models. In 2009 International Symposium on Code Generation and
Optimization. 136–146.

[15] Michele Magno, Luca Benini, Christian Spagnol, and E Popovici. 2013. Wearable
low power dry surface wireless sensor node for healthcare monitoring application.
In Wireless and Mobile Computing, Networking and Communications (WiMob),
2013 IEEE 9th International Conference on. IEEE, 189–195.

[16] Chris Wilson, David L Dill, and Randal E Bryant. 2000. Symbolic simulation with
approximate values. In International Conference on Formal Methods in Computer-
Aided Design. Springer, 507–522.

[17] Ross Yu and Thomas Watteyne. 2013. Reliable, Low Power Wireless Sensor
Networks for the Internet of Things: Making Wireless Sensors as Accessible as
Web Servers. Linear Technology (2013). http://cds.linear.com/docs/en/white-
paper/wp003.pdf

[18] Bo Zhai, Sanjay Pant, Leyla Nazhandali, Scott Hanson, Javin Olson, Anna Reeves,
Michael Minuth, Ryan Helfand, Todd Austin, Dennis Sylvester, et al. 2009. Energy-
efficient subthreshold processor design. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on 17, 8 (2009), 1127–1137.

[19] W. Zuo, P. Li, D. Chen, L. Pouchet, Shunan Zhong, and J. Cong. 2013. Improv-
ing polyhedral code generation for high-level synthesis. In 2013 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
1–10.


