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Abstract

Many emerging applications such as IoT, wearables, im-
plantables, and sensor networks are power- and energy-
constrained. These applications rely on ultra-low-power pro-
cessors that have rapidly become the most abundant type of
processor manufactured today. In the ultra-low-power em-
bedded systems used by these applications, peak power and
energy requirements are the primary factors that determine
critical system characteristics, such as size, weight, cost, and
lifetime. While the power and energy requirements of these
systems tend to be application-specific, conventional tech-
niques for rating peak power and energy cannot accurately
bound the power and energy requirements of an application
running on a processor, leading to over-provisioning that in-
creases system size and weight. In this paper, we present an
automated technique that performs hardware-software co-
analysis of the application and ultra-low-power processor in
an embedded system to determine application-specific peak
power and energy requirements. Our technique provides
more accurate, tighter bounds than conventional techniques
for determining peak power and energy requirements, re-
porting 15% lower peak power and 17% lower peak energy,
on average, than a conventional approach based on profiling
and guardbanding. Compared to an aggressive stressmark-
based approach, our technique reports power and energy
bounds that are 26% and 26% lower, respectively, on av-
erage. Also, unlike conventional approaches, our technique
reports guaranteed bounds on peak power and energy in-
dependent of an application’s input set. Tighter bounds on
peak power and energy can be exploited to reduce system
size, weight, and cost.

1. Introduction

Ultra-low-power (ULP) processors have rapidly become the
most abundant type of processor in production today. New
and emerging power- and energy-constrained applications
such as the internet-of-things (IoT), wearables, implantables,
and sensor networks have already caused production of ULP
processors to exceed that of personal computers and mobile
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processors [7]. The 2015 ITRS report projects that these ap-
plications will continue to rely on simple single-core ultra-
low-power processors in the future, will be powered by bat-
teries and energy harvesting, and will have even tighter peak
power and energy constraints than the power- and energy-
constrained ULP systems of today [2]. Unsurprisingly, low-
power microcontrollers and microprocessors are projected to
continue being the most widely-used type of processor in the
future [3, 7, 17, 37].

ULP systems can be classified into three types based on
the way they are powered [13]. As illustrated in Figure 1,
some ULP systems are powered directly by energy harvest-
ing (Type 1), while some are battery-powered (Type 3). An-
other variant is powered by a battery and uses energy har-
vesting to charge the battery (Type 2).

Type 1 O
energy Type 2 <>‘
source

Type 3

it *

energy electronic
/ harvester / »| regulator ) components

Figure 1: ULP systems are commonly powered by energy
harvesting, battery, or a combination of the two, where har-
vesters are used to charge the battery.

For each of the above classes, the size of energy harvest-
ing and/or storage components determine the form factor,
size, and weight. Consider, for example, the wireless sensor
node shown in Figure 2 [25]. The two largest system compo-
nents that predominantly determine the overall system size
and weight are the energy harvester (solar cell) and the bat-
tery.

Going one step further, since the energy harvesting and
storage requirements of a ULP system are determined by
its power and energy requirements, the peak power and en-
ergy requirements of a ULP system are the primary fac-
tors that determine critical system characteristics such as
size, weight, cost, and lifetime [13]. In Type 1 systems,
peak power is the primary constraint that determines sys-
tem size, since the power delivered by harvesters is propor-
tional to their size. In these systems, harvesters must be sized
to provide enough power, even under peak load conditions.
In Type 3 systems, peak power largely determines battery
life, since it determines the effective battery capacity [10].
As the rate of discharge increases, effective battery capacity




Table 1: Specific energy and energy density for different
battery types [5].

Battery Specific Energy | Energy Density
Type /gl [MI/L]
Li-ion 460 1.152
Alkaline 400 0.331
Carbon-zinc 130 1.080
Ni-MH 340 0.504
Ni-cad 140 0.828
Lead-acid 146 0.360

Table 2: Power density for different types of energy har-
vesters. [35]

Harvester type Power Density

Photovoltaic (sun) 100 mW/em?
Photovoltaic (indoor) | 100 uW/cm?
Thermoelectric 60 pW/cm?
Ambient airflow I mW/cm?

drops [10, 19]. This effect is particularly pronounced in ULP
systems, where near-peak power is consumed for a short pe-
riod of time, followed by a much longer period of low-power
sleep, since pulsed loads with high peak current reduce ef-
fective capacity even more drastically than sustained current
draw [19].

I Harvester

Battery Module

Figure 2: In most ULP systems, like this wireless sensor
node, the size of the battery and/or energy harvester domi-
nates the total system size.

In Type 2 and 3 systems, the peak energy requirement
matters as well. For example, energy harvesters in Type 2
systems must be able to harvest more energy than the system
consumes, on average. Similarly, battery life and effective
capacity are dependent on energy consumption (i.e., average
power) [19]. Figure 3 summarizes how peak power and en-
ergy requirements impact sizing parameters for the different
classes of ULP systems.

Finally, Tables 1 and 2 list the energy and power den-
sities for different types of batteries and energy harvesters,
respectively. These data provide a rough sense of how size
and weight of a ULP system scale based on peak energy and
power requirements. A tighter bound on the peak power and
energy requirements of a ULP system can result in a roughly
proportional reduction in size and weight.

How are Peak Power and Energy Determined Today?
There are several possible approaches to determine the peak
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Figure 3: Harvester and battery size calculations for Type
1, 2, and 3 ULP systems depend on peak power and energy
requirements.
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Figure 4: The conventional methodology for sizing energy
harvesting and storage components involves determining
peak power and energy requirements for a processor and
selecting components that will provide enough power and
energy to satisfy the requirements over the lifetime of the
system.

power/energy
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power and energy requirements of a ULP processor (Fig-
ure 4).! The most conservative approach involves using
the processor design specifications provided in data sheets.
These specifications characterize the peak power that can be
consumed by the hardware at a given operating point and
can be directly translated into a bound on peak power. This
bound is conservative because it is not application-specific;
however, it is safe for any application that might be exe-
cuted on the hardware. A more aggressive technique for
determining peak power or energy requirements is to use a
peak power or energy stressmark. A stressmark is an appli-
cation that attempts to activate the hardware in a way that
maximizes peak power or energy. A stressmark may be less
conservative than a design specification, since it may not be
possible for an application to exercise all parts of the hard-
ware at once. The most aggressive conventional technique
for determining peak power or energy of a ULP processor is
to perform application profiling on the processor by measur-
ing power consumption while running the target application
on the hardware. However, since profiling is performed with
specific input sets under specific operating conditions, peak
power or energy bounds determined by profiling might be
exceeded during operation if application inputs or system
operating conditions are different than during profiling. To

IPeak power and energy are sometimes referred to as worst-case power
and energy.
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Figure 5: Different applications can have different activity
profiles, resulting in peak power and energy requirements
that are application-specific.

ensure that the processor operates within its peak power and
energy bounds, a guardband is applied to profiling-based
results.

Our Proposal: Determining Application-specific Peak
Power and Energy Requirements

Most ULP embedded systems run the same application or
computation over and over in a compute / sleep cycle for
the entire lifetime of the system [1]. As such, the power and
energy requirements of embedded ULP processors tend to
be application-specific. This is not surprising, considering
that different applications exercise different hardware com-
ponents at different times, generating different application-
specific loads and power profiles. For example, Figures 5a
and 5b show the active (toggling) gates for two different
applications (tHold and PI — see Table 3) during the cy-
cles in which peak power is expended for each applica-
tion. These figures were generated by running gate-level
simulations of the applications on openMSP430 [20] and
marking all gates that toggled in the cycle in which each
benchmark expended its peak power. The figures show that
PI exercises a larger fraction of the processor than tHold
at its peak, leading to higher peak power. However, while
the peak power and energy requirements of ULP proces-
sors tend to be application-specific, many conventional tech-
niques for determining peak power and energy requirements
for a processor are not application-specific (e.g., design-
based and stressmark-based techniques). Even in the case of
a profiling-based technique, guardbands must be used to in-
flate the peak power requirements observed during profiling,
since it is not possible to generate bounds that are guaran-
teed for all possible input sets. These limitations prevent
existing techniques from accurately bounding the power and
energy requirements of an application running on a proces-
sor, leading to over-provisioning that increases system size
and weight.

In this paper, we present a novel technique that deter-
mines application-specific peak power and energy require-
ments based on hardware-software co-analysis of the appli-
cation and ultra-low-power processor in an embedded sys-
tem. Our technique performs a symbolic simulation of an
application on the processor netlist in which unknown logic
values (Xs) are propagated for application inputs.”> This al-
lows us to identify gates that are guaranteed to not be exer-

2Peak power and energy analyses can be offered as a cloud compilation
service by the hardware system vendor in settings where the application
developer does not have access to the processor description [6, 15, 24].

cised by the application for any input. This, in turn, allows
us to bound the peak power and energy requirements for the
application. The peak power and energy requirements gen-
erated by our technique are guaranteed to be safe for all pos-
sible inputs and operating conditions. Our technique is fully
automated and provides more accurate, tighter bounds than
conventional techniques for determining peak power and en-
ergy requirements. Our paper makes the following contribu-
tions.

e We present an automated technique based on symbolic
simulation that takes an embedded system’s application
software and processor netlist as inputs and determines
application-specific peak power and energy requirements
for the processor that are guaranteed to be valid for all pos-
sible application inputs and operating conditions. This is the
first approach to use symbolic simulation to determine peak
power and energy requirements for an application running
on a pProcessor.

e We show that the application-specific peak power and en-
ergy requirements determined by our technique are more
accurate, and therefore less conservative, than those deter-
mined by conventional techniques. On average, the peak
power requirements generated by our technique are 27%,
26%, and 15% lower than those generated based on design
specifications, a stressmark, and profiling, respectively, and
the peak energy requirements generated by our technique are
47%, 26%, and 17% lower. Reduction in the peak power and
energy requirements of a ULP processor can be leveraged to
improve critical system metrics such as size and weight.

e Our technique can be used to guide optimizations that tar-
get and reduce the peak power of a processor. Optimizations
suggested by our technique reduce peak power by up to 10%
for a set of embedded applications.

2. A Case for Application-specific
Input-independent Peak Power and
Energy Requirements

We measured peak power consumption for a sample set of
ULP benchmark applications (see Table 3) running on an
MSP430F1610 processor.® Benchmark applications were
run repeatedly with different inputs at an operating fre-
quency of 8 MHz while sampling the voltage and current
of the processor at a rate of 10 MHz using an InfiniiVision
DSO-X 2024A oscilloscope, to ensure at least one sample
per cycle. Power is calculated as the product of voltage and
current. Figure 6 shows our test setup.

Figure 7a compares the peak power observed for different
applications. The results show that peak power can be differ-
ent for different applications. Thus, peak power bounds that
are not application-specific will overestimate the peak power
requirements of applications, leading to over-provisioning
of energy harvesting and storage components that determine
system size and weight. Figure 7a also shows that the peak
power requirements of applications are significantly lower
than the rated peak power of the chip (4.8 mW), so using
design specifications to determine peak power requirements
can lead to significant over-provisioning and inefficiency.
The figure also confirms that peak power of an application
depends on application inputs and can vary significantly for
different inputs. This means that profiling cannot be relied

3MSP430 is one of the most popular processors used in ULP sys-
tems [8, 46].



Figure 6: The test setup used to measure peak and average
power on a ULP processor (MSP430).
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Figure 7: The peak power and normalized peak energy (nor-
malized to an application’s runtime in cycles) of a ULP
processor are different for different applications and differ-
ent inputs. The bars represent average across all inputs; er-
ror bars show the range of input-induced peak and average
power variations. Measured variation between multiple runs
of the same application and same input is less than 2%.

on to accurately determine the peak power requirement for a
processor, since not all input combinations can be profiled,
and the peak power for an unprofiled input could be signifi-
cantly higher than the peak power observed during profiling.
Since input-induced variations change peak power by over
25% for these applications (Figure 7a), a profiling-based ap-
proach for determining peak power requirements should ap-
ply a guardband of at least 25% to the peak power observed
during profiling.

For energy-constrained ULP systems, like those powered
by batteries (Type 2 and 3), peak energy as well as peak
power determines the size of energy harvesting and storage
components (Section 1). Thus, it is also important to deter-
mine an accurate bound on the peak energy requirements of
a ULP processor. Figure 8 shows the instantaneous power
profile for an application (mult), demonstrating that on av-
erage, instantaneous power can be significantly lower than
peak power. Therefore, we can more accurately determine
the optimal sizing of components in an energy-constrained
system by generating an accurate bound on peak energy,
rather than conservatively multiplying peak power by exe-
cution time.
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Figure 8: Measured instantaneous power of MSP430F1610
for the mult benchmark is significantly lower, on average,
than both the rated and observed peak power for the applica-
tion.

Figure 7b characterizes the peak energy, normalized to
application runtime in cycles, for different applications and
input sets, showing that the maximum rate at which an ap-
plication can consume energy is also application- and input-
dependent. Therefore, conventional techniques for determin-
ing the peak energy requirements of a ULP processor have
the same limitations as conventional techniques for deter-
mining peak power requirements. In both cases, the limita-
tions of conventional techniques require over-provisioning
that can substantially increase system size and weight.

In the next section, we describe a novel technique for
determining the peak power and peak energy requirements
of a ULP processor that is application-specific yet also input-
independent.

3. Application-Specific Input-indep-endent
Peak Power and Energy

Figure 9 provides an overview of our technique for deter-
mining application-specific peak power and energy require-
ments that are input-independent. The inputs to our tech-
nique are the application binary that runs on a ULP pro-
cessor and the gate-level netlist of the ULP processor. The
first phase of our technique, described in Section 3.1, is an
activity analysis that uses symbolic simulation to efficiently
characterize all possible gates that can be exercised for all
possible execution paths of the application and all possible
inputs. This analysis also reveals which gates can never be
exercised by the application. Based on this analysis, we per-
form input-independent peak power (Section 3.2) and energy
(Section 3.3) calculations to determine the peak power and
energy requirements for a ULP processor.

3.1 Input-Independent Gate Activity Analysis

Since the peak power and energy requirements of an appli-
cation can vary based on application inputs, a technique that
determines application-specific peak power requirements
must bound peak power for all possible inputs. Exhaustive
profiling for all possible inputs is not possible for most ap-
plications, so we have created a novel approach for activity
analysis that uses unknown logic values (Xs) for inputs to
efficiently characterize activity for all possible inputs with
minimum simulation effort.

Our technique, described in Algorithm 1, is based on
symbolic simulation [9] of an application binary running on
the gate-level netlist of a processor, in which Xs are propa-
gated for all signal values that cannot be constrained based
on the application. When the simulation begins, the states
of all gates and memory locations that are not explicitly
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Figure 9: Our technique performs input-independent ac-
tivity analysis that enables determination of accurate peak
power and energy requirements for a ULP processor.

loaded with the binary are initialized to Xs. During simu-
lation, all input values are replaced with Xs by our simu-
lator. As simulation progresses, the simulator dynamically
constructs an execution tree describing all possible execution
paths through the application. If an X symbol propagates to
the inputs of the program counter (PC) during simulation,
indicating an input-dependent control sequence, a branch is
created in the execution tree. Normally, the simulator pushes
the state corresponding to one execution path onto a stack
for later analysis and continues down the other path. How-
ever, a path is not pushed to the stack or re-simulated if it
has already been simulated (i.e., if the simulator has seen the
branch (PC) before and the processor state is the same as it
was when the branch was previously encountered). This al-
lows Algorithm 1 to analyze programs with input-dependent
loops. When simulation down one path reaches the end of
the application, an un-simulated state is loaded from the last
input-dependent branch in depth-first order, and simulation
continues. When all execution paths have been simulated
to the end of the application (i.e., depth-first traversal of
the control flow graph terminates), activity analysis is com-
plete.*

During symbolic simulation, the simulator captures the
activity of each gate at each point in the execution tree.
A gate is considered active if its value changes or if it
has an unknown value (X) and is driven by an active gate;
otherwise, the gate is idle. The resulting annotated symbolic
execution tree describes all possible instances in which a
gate could possibly toggle for all possible executions of
the application binary. As such, a gate that is not marked
as toggled at a particular location in the execution tree can
never toggle at that location in the application. As described
in the next sections, we can use the information gathered
during activity analysis to bound the peak power and energy
requirements of an application.

3.2 Input-Independent Peak Power Requirements

The input to the second phase of our technique is the sym-
bolic execution tree generated by input-independent gate ac-
tivity analysis. Algorithm 2 describes how to use the activity-
annotated execution tree to generate peak power require-
ments for a ULP processor, application pair.

The first step in determining peak power from an execu-
tion tree produced during gate activity analysis is to concate-

4Complex applications and processors might require heuristics for ex-
ploration of a large number of execution paths [11, 21]; however, our ap-
proach is adequate for ULP systems, which tend to have simple proces-
sors and applications. For example, complete analysis of our most complex
benchmark takes 2 hours.

Algorithm 1 Input-independent Gate Activity Analysis

. Procedure Create Symbolic Execution Tree(app_-binary, design_netlist)
. Initialize all memory cells and all gates in design_netlist to X
. Load app-binary into program memory

. Propagate reset signal

s <— State at start of app_binary

. Symbolic Execution Tree 1".set_root(s)

. Stack of un-processed execution paths, U .push(s)

. while U != () do

e < U.pop()

10. while e.PC_next !=X and !e.END do

11. e.set_inputs_X() // set all peripheral port inputs to Xs

N I N N T N

12. e’ < propagate_gate_values(e) // simulate this cycle
13. e.annotate_gate_activity(e,e”) // annotate activity in tree
14. e.add_next_state(e’) // add to execution tree

15. e + €’ // process next cycle

16. end while
17. if e.PC_next ==X then

18. for all a € possible_PC_next_vals(e) do
19. if a ¢ T then

20. e’ « e.update_PC_next(a)

21. U .push(e”)

22. T .insert(a)

23. end if

24. end for

25. end if

26. end while

Algorithm 2 Input-independent Peak Power Computation

1. Procedure Calculate Peak Power

2. {E—0}.VCD < Open {Even—Odd} VCD File / maximizes peak power in
even—odd cycles

. T < flatten(Execution Tree) // create a flattened execution trace that represents
the execution tree

w

4. for all {even—odd} cycles ¢ € T do

5. for all toggled gates g € c do

6. if value(g.c) == X && value(g,c-1) == X then

7. value(g,c-1) <— maxTransition(g,1) // returns the value of the gate in
the first cycle of the gate’s maximum power transition

8. value(g,c) <— maxTransition(g,2) // returns the value of the gate in the
second cycle of the gate’s maximum power transition

9. else if value(g,c) ==X then

10. value(g,c) < !value(g,c-1)

11. else if value(g,c-1) == X then

12. value(g,c-1) <— !value(g,c)

13. end if

14. end for

15. {E—O}_VCD < value(*,c-1)

16. {E—O}_VCD < value(*,c)

17. end for

18. Perform power analysis using EZVCD and O_VCD to generate even and odd
power traces, Pr and Po

19. Interleave even cycle power from Pg with odd cycle power from Po to form
peak power trace, Ppeak

20. peak power <— max(Ppeq)

nate the execution paths in the execution tree into a single
execution trace. We use a value change dump (VCD) file to
record the gate-level activity in the execution trace. The ex-
ecution trace contains Xs, and the goal of the peak power
computation is to assign values to the Xs in the way that
maximizes power for each cycle in the execution trace. The
power of a gate in a particular cycle is maximized when the
gate transitions (toggles). Since a transition involves two cy-
cles, maximizing dynamic power in a particular cycle, c, of
the execution trace involves assigning values to any Xs in
the activity profiles of the current and previous cycles, ¢ and
¢ — 1, to maximize the number of transitions in cycle c.

The number and power of transitions are maximized as
follows. When the output value of a gate in only one of the
cycles, c or ¢ — 1, is an X, the X is assigned the value that
assumes that a transition happened in cycle c. When both
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Figure 10: To determine a bound on peak power, we gen-
erate two different activity profiles — one that maximizes
power in even cycles (left) and one that maximizes power
in odd cycles (right).

values are Xs, the values are assigned to produce the transi-
tion that maximizes power in cycle c¢. The maximum power
transition is found by a look-up into the standard cell library
for the gate. Since constraining Xs in two consecutive cycles
to maximize power in the second cycle may not maximize
power in the first cycle, we produce two separate VCD files
— one that maximizes power in all even cycles and one the
maximizes power in all odd cycles. To find the peak power
of the application, we first run activity-based power analysis
on the design using the even and odd VCD files to gener-
ate even and odd power traces. We then form a peak power
trace by interleaving the power values from the even cycles
in the even power trace and the odd cycles in the odd power
trace. This peak power trace bounds the peak power that
is possible in every cycle of the execution trace. The peak
power requirement of the application is the maximum per-
cycle power value found in the peak power trace.’

Our VCD generation technique is illustrated in Figure 10.
We use the example of three gates with overlapping Xs that
need to be assigned to maximize power in every cycle. We
show two assignments — one that maximize peak power in
all even cycles (left), and one that maximizes peak power in
all odd cycles (right). Assuming, for the sake of example,
that all gates have equal power consumption and that the
0 — 1 transition consumes more power than the 1 — 0
transition for these gates, the highest possible peak power
for this example happens in cycle 6 in the “even” activity
trace, when all the gates have a 0 — 1 transition.

3.3 Input-independent Peak Energy Requirements

Our technique generates a per-cycle peak power trace char-
acterizing all possible execution paths of an application. The
peak power trace can be used to generate peak energy re-
quirements. Figure 11 shows per-cycle peak power traces
sampled from our benchmark applications. Since per-cycle
peak power varies significantly over the compute phases of
an application, peak energy can be significantly lower than
assuming the maximum peak energy (i.e., peak power x
clock period x number of cycles). Instead, the peak en-
ergy of an application is bounded by the execution path with
the highest sum of per-cycle peak power multiplied by the
clock period. To avoid enumerating all execution paths, we

51t is possible that glitching between clock edges can impact the power
profile for an application. This impact can be accounted for by Primetime’s
power analysis [42].
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Figure 11: The per-cycle peak power varies significantly
over the course of an application, showing that the worst-
case average power can be significantly lower than peak
power. Therefore, the peak energy can be significantly lower
than the product of peak power and application runtime
would suggest.

use several techniques. For an input-dependent branch, peak
energy is computed by selecting the branch path with higher
energy. For a loop whose number of iterations is input-
independent, peak energy can be computed as the peak en-
ergy of one iteration multiplied by the number of iterations.
For cases where the number of iterations is input-dependent,
the maximum number of iterations may be determined ei-
ther by static analysis or user input (as suggested by prior
work [27]) ©. If neither is possible, it may not be possible to
compute the peak energy of the application; however, this is
uncommon in embedded applications [1].

3.4 Validation of X-based Analysis

To demonstrate that our symbolic execution-based (X-based)
activity analysis marks all gates that could possibly be tog-
gled by an application for all possible inputs, we performed
a validation check by comparing the sets of gates toggled
by input-based simulations for several different input sets
against the set of gates marked as potentially-toggled by
symbolic simulation. Figure 12 illustrates this comparison
for two input-based simulations of the mult benchmark with

5The number of loop iterations is bounded for all evaluated bench-
marks. In general, applications with unbounded runtimes are uncommon
in embedded domains.
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Figure 12: Toggled gates for mult with low-activity inputs
(top) and high-activity inputs (bottom), compared against
potentially-toggled gates identified by X-based analysis. X-
based simulation marks all gates that can potentially toggle
for an application for all possible inputs. This set of gates
(unique_x U common) is a superset of the gates that toggle
during an input-based application execution (common).

different input sets — those that have the lowest and highest
number of toggled gates. In the figure, toggled gates com-
mon to X-based and input-based simulation are shown as
Xs, and gates that are exclusively marked by symbolic simu-
lation as potentially-toggled are shown as blue triangles. As
expected, there are no gates that are exclusively marked by
input-based simulation. Our validation results show that all
the gates toggled by input-based simulation are also marked
as potentially-toggled by X-based symbolic simulation, val-
idating the correctness of our approach for characterizing
toggle activity.
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Figure 13: The X-based peak power trace generated by our
technique for an application provides an upper bound on all
possible input-based power traces for the application. (result
shown for mult)

We perform a second validation of our technique by com-
paring the peak power traces generated for benchmarks by
our technique against power traces generated by input-based

execution of the benchmarks. The validation results confirm
that our peak power trace always provides an upper bound on
the power of any input-based power trace. Figure 13 shows
an example; the X-based peak power trace for the mult ap-
plication is always higher than the input-based power trace.
These validation results also show that the X-based peak
power trace closely matches the input-based trace, indicat-
ing that the peak power and energy requirements generated
by our technique are not overly conservative.

3.5 Enabling Peak Power Optimizations

Since our technique is able to associate the input-indepe-
ndent peak power consumption of a processor with the par-
ticular instructions that are in the pipeline during a spike
in peak power, we can use our tool to identify which in-
structions or instruction sequences cause spikes in peak
power. Our technique can also provide a power breakdown
that shows the power consumption of the microarchitectural
modules that are exercised by the instructions. These analy-
ses can be combined to identify which instructions executing
in which modules cause power spikes. After identifying the
cause of a spike, we can use software optimizations to target
the instruction sequences that cause peaks and replace them
with alternative sequences that generates less instantaneous
activity and power while maintaining the same functionality.
After optimizing software to reduce a spike in peak power,
we can re-run our peak power analysis technique to deter-
mine the impact of optimizations on peak power. Guided by
our technique, we can choose to apply only the optimizations
that are guaranteed to reduce peak power.

Figure 14 shows an example where our technique identi-
fies peak power spikes in cycles 146 and 150. Our technique
also reports the instructions in each stage of the pipeline
during those cycles of interest (COls), as well as the per-
module power breakdown for those cycles, which identifies
the modules that are consuming the most power. This in-
formation can be used to guide optimizations that replace
the instructions with different instruction sequences that in-
duce less activity and power in the modules that consume the
most power. Since software optimizations can impact perfor-
mance as well as peak power, we will discuss optimizations
that reduce peak power and their impact on performance and
energy in Section 5.1.

4. Methodology
4.1 Simulation Infrastructure and Benchmarks

We verify our technique on a silicon-proven processor —
openMSP430 [20], an open-source version of one of the
most popular ULP processors [8, 46]. The processor is syn-
thesized, placed, and routed in TSMC 65GP technology
(65nm) for an operating point of 1V and 100 MHz us-
ing Synopsys Design Compiler [41] and Cadence EDI Sys-
tem [12]. Gate-level simulations are performed by running
full benchmark applications on the placed and routed proces-
sor using a custom gate-level simulator that efficiently tra-
verses the control flow graph of an application and captures
input-independent activity profiles (Section 3). We show re-
sults for all benchmarks from [48] and all EEMBC bench-
marks that fit in the program memory of the processor. These
benchmarks are chosen to be representative of emerging
ultra-low-power application domains such as wearables, in-
ternet of things, and sensor networks [48]. The IPC of these
benchmarks on our processor varies from 1.25 to 1.39, with
an average of 1.29. Power analysis is performed using Syn-
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Figure 14: A snapshot of instantaneous power profiles for
mult at two different COIs where peaks occur. Our tech-
nique analyzes the instructions in the pipeline (top) to find
each COI’s culprit instructions that cause the peak power in
each pipeline stage along with the per-module peak power
breakdown (bottom) to identify which instructions in which
microarchitectural modules are responsible for a peak.

opsys Primetime [42]. Experiments were performed on a
server housing two Intel Xeon E-2640 processors (8-cores
each, 2GHz operating frequency, 64GB RAM).

Section 2 shows measured data for an MSP430F1610
processor that demonstrate that different applications have
different peak power and energy requirements, and the re-
quirements of an application can vary significantly for dif-
ferent inputs. The results motivate an application-specific
input-independent technique for determining the peak power
and energy requirements for ULP processors. For the re-
sults in Section 5, we perform evaluations on the open
source openMSP430 processor [20]. Figures 15a and 15b
confirm that the peak power and energy requirements of
openMSP430 also depend on the application and applica-
tion inputs. Note that the results in Figure 7 and Figure 15
differ because they are for different implementations of the
MSP430 architecture (MSP430F1610 and openMSP430),
with different process technology (130 nm vs 65 nm) and
operating frequencies (§MHz vs 100 MHz).

4.2 Baselines

For baselines, we compare against conventional techniques
for determining the peak power and energy requirements
of processors. An overview of the baseline techniques can
be found in Figure 4. The design specification-based base-
line (design tool) is determined by performing power and
energy analysis of the design using the default input tog-
gle rate used by our design tools [42]. The stressmark-based
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Figure 15: Different applications and different input sets for
the same application have different peak power and peak
energy requirements. (results for openMSP430)

Table 3: Benchmarks

Embedded Sensor Benchmarks [48]
mult, binSearch, tea8, intFilt,
tHold, div, inSort, rle, intAVG

EEMBC Embedded Benchmarks [1]

Autocorr, FFT, ConvEn, Viterbi
Control Systems Benchmark
Proportional Integral Controller (PI)

baselines (GB input-based) use stressmarks that target peak
instantaneous power and average power. Kim et al. used a
genetic algorithm to automatically generate stressmarks that
target maximum di/dt-induced voltage droop for a micro-
processor [28]. We modified their framework to generate
stressmarks that target peak instantaneous power and aver-
age power for openMSP430. The profiling-based baseline
(input-based) is generated by performing input-based power
and energy profiling for several input sets and applying a
guardbanding factor of 4/3 to the peak power and energy ob-
served during profiling. The guardbanding factor is the same
as in prior studies [4, 30] and is appropriate for the input-
dependent peak power variability exhibited by our bench-
marks (Figure 7a).

5. Results

We use our technique described in Section 3 to determine
peak power and energy requirements for a ULP processor for
different benchmark applications. Figure 16 compares the
peak power requirements reported by our technique against
the conventional techniques for determining peak power re-
quirments, described in Section 4.2. The results show that
the peak power requirements reported by our X-based tech-
nique are higher than the highest input-based application-
specific peak power for all applications, confirming that our
technique provides a bound on peak power. The results also
show that our technique provides the most accurate bound
on peak power, compared to conventional techniques for de-
termining peak power requirements. For example, the peak
power requirements reported by our technique are only 1%
higher than the highest observed input-based peak power for
the benchmark applications, on average. Other techniques
for determining peak power and energy requirements are
significantly less accurate, which can lead to inefficiency in
critical system parameters such as size and weight (see Sec-
tion 1).

Our technique is more accurate than application-obliv-
ious techniques such as determining peak power require-
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Figure 16: Our X-based technique for determining peak
power requirements provides the most accurate (least con-
servative) guaranteed bound on peak power.

ments from a stressmark or design specification, because an
application constrains which parts of the processor can be
exercised in a particular cycle. Our technique also provides
a more accurate bound than a guardbanded input-based peak
power requirement, because it does not require a guardband
to account for the non-determinism of input-based profil-
ing (shown in Figure 16 as error bars). By accounting for
all possible inputs using symbolic simulation, our technique
can bound peak power and energy for all possible applica-
tion executions without guardbanding. The peak power re-
quirements reported by our technique are 15% lower than
guardbanded application-specific requirements, 26% lower
than guardbanded stressmark-based requirements, and 27%
lower than design specification-based requirements, on av-
erage.

Since our technique is application-specific and does not
require guardbands, one question is, “Why is the bound pro-
vided by X-based analysis more conservative for some ap-
plications than others?” The answer is that since X-based
analysis provides a bound on power for all possible inputs,
it becomes more conservative when there is greater possi-
bility for input-dependent variation in power. For example,
the multiplier is a relatively large, high-power module, with
high potential for input-dependent variation in power con-
sumption. For some inputs (e.g., X *0), power consumed by
the multiplier is minimal, since there are no partial products
to compute. For other inputs (e.g., two very large numbers),
the power consumed by the multiplier is much larger. Since
our symbolic simulation technique assumes Xs for inputs,
we always assume the highest possible power for a multiply
instruction. Therefore, X-based peak power requirements for
applications that contain a large number of multiplications
may be more conservative than X-based requirements for
other applications.

Conversely, the tea8 application, which performs en-
cryption, only uses low-power ALU modules — shift reg-
ister and XOR - that have significantly less potential for
input-induced power variation. As a result, X-based analysis
closely matches input-based profiling results for this applica-
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Figure 17: Our X-based technique for determining peak
energy requirement (normalized to application run-time in
cycles, i.e., the peak average power) is more accurate than
existing conventional techniques.

tion. For all applications, even those with more potential for
input-induced power variation, our X-based analysis tech-
nique provides a peak power bound that is more accurate
than those provided by conventional techniques.

Our technique also provides more accurate bounds on
peak energy than conventional techniques, partly because
of the reasons mentioned above, and also because our tech-
nique is able to characterize the peak energy consumption
in each cycle of execution, generating a peak energy trace
that accounts for dynamic variations in energy consump-
tion. Using a design specification to determine peak en-
ergy is particularly inaccurate, since it does not consider
dynamic variations in the energy requirements of an appli-
cation. The guardbanded input-based technique, which does
consider dynamic variations, provides a more accurate peak
energy bound than the design specification for all bench-
marks. However, it does not always provide a more accurate
bound than the design specification for peak power, since
peak power is an instantaneous phenomenon that is less de-
pendent on dynamic variations. Figure 17 presents peak en-
ergy of different benchmarks, normalized to application run-
time in cycles, i.e., peak average power, which character-
izes the maximum rate at which the application can con-
sume energy. In Figure 17, the peak energy requirements
reported by our technique are 17% lower than guardbanded
application-specific requirements, 26% lower than guard-
banded stressmark-based requirements, and 47% lower than
design specification-based requirements, on average. As ex-
pected, application-specific normalized peak energy (Fig-
ure 17) varies less than peak power (Figure 16), since peak
energy characterizes average peak power over the entire ex-
ecution of an application, whereas peak power corresponds
to one instant in the application’s execution.

As described in Section 1, more accurate peak power and
energy requirements can be leveraged to reduce critical ULP
system parameters like size and weight. For example, re-
duction in a Type 1 system’s peak power requirements al-



Table 4: Percentage reduction in harvester area compared to
different baseline techniques, averaged over all benchmarks,
for different percentage contributions of the processor peak
power to the system peak power.

Baseline 10% | 25% | 50% | 75% | 90% | 100%

GB-Input 149 | 3.73 | 747 11.21 | 1345 | 14.94

GB-Stress 2.60 | 647 12.95 | 19.42 | 23.31 | 25.90

Design Tool | 2.68 | 6.70 | 13.41 | 20.12 | 24.14 | 26.82

Table 5: Percentage reduction in battery volume compared
to different baseline techniques, averaged over all bench-
marks, for different percentage contributions of the proces-
sor energy to the overall energy of the system.

Baseline 10% | 25% | S0% | 75% | 90% | 100%
GB-Input 1.74 | 4.37 8.74 13.11 | 15.73 | 17.48
GB-Stress 259 | 649 1298 | 19.48 | 2337 | 25.97
Design Tool | 4.66 | 11.66 | 23.32 | 3498 | 41.97 | 46.64

lows a smaller energy harvester to be used. System size is
roughly proportional to harvester size in Type 1 systems. In
Type 2 systems, it is the peak energy requirement that deter-
mines the harvester size; reduction in peak energy require-
ment reduces system size roughly proportionally. Since re-
quired battery capacity depends on a system’s peak energy
requirement, and effective battery capacity depends on the
peak power requirement, reductions in peak power and en-
ergy requirements both reduce battery size for Type 2 and 3
systems.

A ULP system may contain other components, such as
transmitter/receiver, ADC, DAC, and sensor(s), along with
the processor. All of these components may contribute to
the system’s peak power and energy, and hence, the siz-
ing of the harvester and battery. Tables 4 and 5 show the
percentage reduction in the harvester size and battery size,
respectively, from our technique for different fractions rep-
resenting the processor’s contribution to the system’s peak
power and energy. For a real system such as the one shown
in Figure 2, which has a harvester area of 32.6¢m? and a bat-
tery volume of 6.95mm?, the area reduction of the harvester
is 4.87, 8.44, or 8.75¢m? if the system is designed using
guardbanded input-based profiling, guardbanded stressmark,
or design tool, respectively, for estimating the peak power of
the processor. Similarly, the volume reduction of the battery
is 0.42, 0.63, or 1.12mm3, respectively.” As expected, sav-
ings from our technique are higher when the processor is the
dominant consumer of power and energy in the overall sys-
tem.

5.1 Optimizations

As discussed in Section 3.5, our technique can be used
to guide application-level optimizations that reduce peak
power. Here, we discuss three software optimizations, sug-

"The battery is a thin film battery of dimensions 5.7mm x 6.1mm X
200 pum (area of 34.7mm?2). Assuming the height of the battery doesn’t
change, the corresponding savings in battery area are 6.07, 9.01, and
16.18mm?, respectively.

8ITRS 2015 projections show that the microcontroller will be the
dominant consumer of power in future IoT and IoE systems [2].

mov &0x013a, rl5; mov &0x013a, rl5; mov -6(r4), &0x0132
pop r2; pop r2; mov -4(r4), &0x0138

mov 0x013a, rl5

¥ $ $

mov &0x013a, rl5 mov &0x013a, rl5 mov -6(r4), &0x0132

mov #0, r9 mov #0, 9 mov -r(rd4), &0x0138

mov @rl, r2 mov @rl, r2 nop

add #2, rl5 add #2, rl mov 0x013a, rl5
(a) OPT 1 (b) OPT 2 (¢) OPT 3

Figure 18: Instruction optimization transforms.

gested by our technique, that we applied to the benchmark
applications to reduce peak power. The optimizations were
derived by analyzing the processor’s behavior during the cy-
cles of peak power consumption. This analysis involves (a)
identifying instructions in the pipeline at the peak, and (b)
identifying the power contributions of the microarchitectural
modules to the peak power to determine which modules con-
tribute the most.

The first optimization aims to reduce a peak by “spread-
ing out” the power consumed in a peak cycle over multiple
cycles. This is accomplished by replacing a complex instruc-
tion that induces a lot of activity in one cycle with a sequence
of simpler instructions that spread the activity out over sev-
eral cycles.

The second optimization aims to reduce the instantaneous
activity in a peak cycle by delaying the activation of one or
more modules, previously activated in a peak cycle, until
a later cycle. For this optimization, we focus on the POP
instruction, since it generates peaks in some benchmarks.
The peaks are caused since a POP instruction generates high
activity on the data and address buses and simultaneously
uses the incrementer logic to update the stack pointer. To
reduce the peak, we break down the POP instruction into two
instructions — one that moves data from the stack, and one
that increments the stack pointer.

The third optimization is based on the observation that for
some applications, peak power is caused by the multiplier (a
high-power peripheral module) being active simultaneously
with the processor core. To reduce peak power in such sce-
narios, we insert a NOP into the pipeline during the cycle in
which the multiplier is active.

The three optimizations we applied to our benchmarks
to reduce peak power are summarized below. The optimiza-
tions are shown in Figure 18.

e Register-Indexed Loads (OPT 1): A load instruction
(MQV) that references the memory by computing the address
as an offset to a register’s value involves several micro-
operations — source address generation, source read, and ex-
ecute. Breaking the micro-operations into separate instruc-
tions can reduce the instantaneous power of the load instruc-
tion. The ISA already provides a register indirect load oper-
ation where the value of the register is directly used as the
memory address instead of as an offset. Using another in-
struction (such as an ADD or SUB), we can compute the cor-
rect address and store it into another register. We then use the
second register to execute the load in register indirect mode.
e POP instructions (OPT 2): The micro-operations of a
POP instruction are (a) read value from address pointed to
by the stack pointer, and (b) increment the stack pointer by
two. POP is emulated using MOV @SP+, dst. This can be
broken down to two instructions —

MOV @SP, dst and ADD #2, SP.



e Multiply (OPT 3): The multiplier is a peripheral in open-
MSP430. Data is MOVed to the inputs of the multiplier and
then the output is MOVed back to the processor. For a 2-cycle
multiplier, all moving of data can be done consecutively
without any waiting. However, this involves a high power
draw, since there will be a cycle when both the multiplier
and the processor are active. This can be avoided by adding
a NOP between writing to and reading from the multiplier.
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Figure 19: Peak power reduction (left axis) and peak power
dynamic range reduction (right axis) achieved by optimiza-
tions. These reductions are enabled by our analysis tool and
provide further reduction in energy harvester size.

Figure 19 shows the reduction in peak power achieved by
applying the optimizations motivated by our technique. Re-
sults are quantified in terms of peak power reduction, as well
as reduction in peak power dynamic range, which quantifies
the difference between peak and average power. Peak power
dynamic range decreases as peaks are reduced closer to the
range of average power. Reduction in peak power dynamic
range can improve battery lifetime in Type 2 and 3 systems,
and reduction in peak power requirements can be leveraged
to reduce harvester size in Type 1 systems (see Section 1).
Our results show that peak power can be reduced by up to
10%, and 5% on average. Peak power dynamic range can
be reduced by up to 34%, and 18% on average. Figure 20
shows the peak power traces for an example application be-
fore and after optimization, demonstrating that optimization
can reduce the peak power requirements for an application.
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Figure 20: A snapshot of instantaneous power profiles for
mult before and after optimization.

Since optimizations that reduce peak power can increase
the number of instructions executed by an application, we
evaluated the performance and energy impact of the opti-
mizations. Figure 21 shows the results. Applying the opti-
mizations suggested by our technique degrades performance
by up to 5% for one application, and by 1% on average. On
average, the optimizations increase energy by 3%. Although

Table 6: Microarchitectural features in recent embedded
processors

[ Processor [ Branch Predictor | Cache |
ARM Cortex-M0O no no
ARM Cortex-M3 yes no
Atmel ATxmegal28A4 no no
Freescale/NXP MC13224v no no
Intel Quark-D1000 yes yes
Jennic/NXP JN5169 no no
SiLab Si2012 no no
TI MSP430 no no

the optimizations increase energy slightly, they can still en-
able reduction in size for Type 1 systems, in which harvester
size is dictated by peak power, and may also reduce the size
of Type 2 and 3 systems, where both peak power and energy
determine the size of energy storage and harvesting compo-
nents (see Figure 3).
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Figure 21: Performance degradation and energy overhead
introduced by peak power optimizations is small(average:
1%).

6. Generality and Limitations

We applied our techniques in the context of ULP processors
that are already the most widely-used type of processor and
are also expected to power a large number of emerging ap-
plications [16, 32, 36, 43, 47]. Such processors also tend to
be simple, run relatively simple applications, and do not sup-
port non-determinism (no branch prediction and caching; for
example, see Table 6). This makes our symbolic simulation-
based technique a good fit for such processors. Below, we
discuss how our technique may scale for complex proces-
sors and applications, if necessary.

More complex processors contain more performance-
enhancing features such as large caches, prediction or spec-
ulation mechanisms, and out-of-order execution, that in-
troduce non-determinism into the instruction stream. Co-
analysis is capable of handling this added non-determinism
at the expense of analysis tool runtime. For example, by in-
jecting an X as the result of a tag check, both the cache
hit and miss paths will be explored in the memory hier-
archy. Similarly, since co-analysis already explores taken
and not-taken paths for input-dependent branches, it can
be adapted to handle branch prediction. In an out-of-order
processor, the ordering of instructions is based on the depen-
dence pattern between instructions. Thus, extending input-
independent CFG exploration to also explore the data flow
graph (DFG) may allow analysis of out-of-order execution.

In other application domains, there exist applications
with more complex CFGs. For more complex applications,



heuristic techniques may be used to improve scalability
of hardware-software co-analysis. While heuristics have
been applied to improve scalability in other contexts (e.g.,
verification) [11, 21], heuristics for hardware-software co-
analysis must be conservative to guarantee that no gate is
marked as untoggled when it could be toggled. The develop-
ment of such heuristics is the subject of future work.

In a multi-programmed setting (including systems that
support dynamic linking), we take the union of the toggle
activities of all applications (caller, callee, and the relevant
OS code in case of dynamic linking) to get a conserva-
tive peak power value. For self-modifying code, peak power
for the processor would be chosen to be the peak of the
code version with the highest peak. In case of fine-grained
multi-threading, any state that is not maintained as part of a
thread’s context is assumed to have a value of X when sym-
bolic execution is performed for an instruction belonging to
the thread. This leads to a safe guarantee of peak power for
the thread, irrespective of the behavior of the other threads.

Our technique naturally handles state machines that
run synchronously with the microcontroller. For state ma-
chines that run asynchronously (e.g., ADCs, DACs, bus
controllers), we assume the worst-case power at any instant
by separately analyzing the asynchronous state machine to
compute peak power and energy and adding the values to
those of the processor. Asynchronous state machines are
generally much smaller than the actual processor, allowing
us to not be overly conservative.

A similar approach can be used to handle interrupts. Le.,
offset the peak power with the worst power consumed during
interrupt detection. The effect of an asynchronous interrupt
can be characterized by forcing the interrupt pin to always
read an X. Since this can potentially cause the PC to be
updated with an X, we can force the PC update logic to
ignore the interrupt handling logic’s output. This is achieved
by monitoring a particular net in the design and forcing it
to zero every time its value becomes X. Interrupt service
routines (ISRs) are regular software routines and can be
analyzed with the rest of the code.

7. Related Work

Peak power has been analyzed in several settings in litera-
ture. In particular, several techniques have been proposed to
estimate the peak power of a design. Hsiao et al. [22, 23]
propose a genetic algorithm-based estimation of peak power
for a circuit. Wang et al. [45] use an automatic test genera-
tion technique to compute lower and upper bounds for max-
imum power dissipation for a VLSI circuit. Sambamurthy
et al. [38] propose a technique that uses a bounded model
checker to estimate peak dynamic power at the module-level.
The technique is also functionally valid at the processor
level. Najeeb et al. [34] propose a technique that converts
a circuit behavioral model to an integer constraint model
and employs an integer constraint solver to generate a power
virus that can be used to estimate the peak power of the pro-
cessor. To the best of our knowledge, no prior work exists on
determining application-specific peak power for a processor
based on symbolic simulation.

The above techniques require a low-level description of
the processor (behavioral or gate-level). Techniques have
also been proposed at the architecture-level to predict when
power exceeds the peak power budget or to lower the peak-
to-average power variation. Sartori et al. [39] propose the
use of DVFS techniques to manage peak power in a multi-

core system. Kontorinis et al. [30] proposed a configurable
core to meet peak power constraints with minimal impact
on performance. Our technique identifies the peak power
and energy requirements of a processor through hardware-
software co-analysis.

Estimating peak energy of an application has been previ-
ously studied as the worst case energy consumption (WCEC)
problem [27, 40, 44]. However, prior techniques do not use
accurate power models, instead relying on microarchitec-
tural models, which do not consider the detailed state of a
processor or input values. As observed by [33], the power of
an instruction can differ based on the previous instructions
in the pipeline and its operand values. Our peak power com-
putation technique analyzes an application on a gate-level
processor netlist, allowing us to account for the fine-grained
interaction between instructions and the worst-case operand
values. The result is an accurate power model that can be
used for WCEC analyses such as the example analysis in
Section 5. Prior work on worst-case timing analysis sim-
ply identified the timing-critical path through the program.
However, the timing-critical path through a program may
not be energy-critical [27, 40]. We calculate energy across
all paths through gate-level simulation to determine the path
with highest energy.

Symbolic simulation has been applied in circuits for logic
and timing verification, as well as sequential test genera-
tion [9, 18, 26, 29, 31] and determination of application-
specific Vi, [14]. Symbolic simulation has also been ap-
plied for software verification [49]. However, to the best of
our knowledge, no existing technique has applied symbolic
simulation to determine the peak power and energy require-
ments of an application running on a processor.

8. Conclusion

In this paper, we showed that peak power and energy re-
quirements for an ultra-low power embedded processor can
be application-specific as well as input-specific. This renders
profiling methods to determine the peak power and energy of
ULP processors ineffective, unless conservative guardbands
are applied, increasing system size and weight. We presented
an automated technique based on symbolic simulation that
determines a more aggressive peak power and energy re-
quirement for a ULP processor for a given application. We
show that the application-specific peak power and energy
requirements determined by our technique are more accu-
rate, and therefore less conservative, than those determined
by conventional techniques. On average, the peak power re-
quirements determined by our technique are 27%, 26%, and
15% lower than those generated based on design specifica-
tions, a stressmark, and profiling, respectively. Peak energy
requirements generated by our technique are 47%, 26%, and
17% lower, on average, than those generated based on de-
sign specifications, a stressmark, and profiling, respectively.
We also show that our technique can be used to guide opti-
mizations that target and reduce the peak power of a proces-
sor. Optimizations suggested by our technique reduce peak
power by up to 10% for a set of benchmarks.
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