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Abstract
Recent work has demonstrated the effectiveness of using symbolic
simulation to performhardware software co-analysis on an application-
processor pair and developed a variety of hardware and software
design techniques and optimizations, ranging from providing system
security guarantees to automated generation of application-specific
bespoke processors. Despite their potential benefits, current state-of-
the-art symbolic simulation tools for hardware-software co-analysis
are restricted in their applicability, since prior work relies on a costly
process of building a custom simulation tool for each processor de-
sign to be simulated. Furthermore, prior work does not describe how
to extend the symbolic analysis technique to other processor designs.

In an effort to generalize the technique for any processor design,
we propose a custom symbolic simulator that uses iverilog to perform
symbolic behavioral simulation. With iverilog – an open source syn-
thesis and simulation tool – we implement a design-agnostic symbolic
simulation tool for hardware-software co-analysis. To demonstrate
the generality of our tool, we apply symbolic analysis to three embed-
ded processors with different ISAs: bm32 (a MIPS-based processor),
darkRiscV (a RISC-V-based processor), and openMSP430 (based on
MSP430). We use analysis results to generate bespoke processors
for each design and observe gate count reductions of 27%, 16%, and
56% on these processors, respectively. Our results demonstrate the
versatility of our simulation tool and the uniqueness of each design
with respect to symbolic analysis and the bespoke methodology.
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1 Introduction
Emerging applications like wearables [17, 22], implantables [12, 21],
and IoT applications [14, 16, 19, 20, 23, 30] are characterised by ultra-
low area and power requirements. This is because many of these
systems are powered by battery or energy harvesting [14, 17] and
have form factor restrictions [19] due to the nature of the applica-
tions. Another defining characteristic of these ultra-low-power (ULP)
applications is that they tend to run the same software over and over,
as defined by their application. A body of recent work has shown
that using a novel hardware-software co-analysis technique based
on symbolic simulation can learn application-specific hardware be-
haviors and enable significant power, energy, and area savings for
ultra-low-power systems [4–6, 8]. Further, the co-analysis technique
has also been shown to enable security guarantees for ultra-low-
power systems [7], demonstrating its applicability beyond energy
and area optimizations.
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Despite the significant potential of application-specific design and
optimization techniques, applicability has been limited, since the sym-
bolic co-analysis tools developed in previous works were developed
for a single processor (openMSP430), and extending them to analyze
and optimize other processor designs or architectures requires the
challenging and time-consuming task of developing a new custom
simulation tool for each new design. This simulation approach is not
scalable, especially for industry, as each application may use a differ-
ent design, and it is infeasible to write a custom simulation tool for
each design. In this work, we overcome the limitations of prior work
and demonstrate a general, automated tool for hardware-software
co-analysis that can analyze any processor design and enable the
benefits of application-specific design and optimization.

A general purpose microprocessor is designed to run any appli-
cation, and thus, contains more gates than any specific application
may exercise during execution. The symbolic hardware-software co-
analysis methodology proposed in prior works performs a symbolic
simulation of a system’s software application on the system’s hard-
ware, in which inputs to the application are represented as symbols
(Xs) that represent an unknown logic value. The resulting simulation
characterizes the behavior of the system hardware for all possible
executions of the system software, for all possible inputs to the soft-
ware. One of the primary outputs generated by the symbolic analysis
is a dichotomy of the processor’s logic into two sets of gates – one set
of gates that could be exercised by the application in some execution
and another set of gates that are guaranteed to never be exercised for
any possible execution of the application. Both of these sets are used
in prior work for various application-specific design and optimization
techniques. For example, the set of exercisable gates, along with their
activity profiles, can be used to perform application-specific power
gating [6], determine application-specific peak power and energy
requirements [5], and provide security guarantees for an embedded
system [7]. The set of gates that can never be exercised can enable
application-specific voltage overscaling [8, 18], power gating [6], and
automatic generation of application-specific bespoke processors [4].

Prior works perform symbolic simulation on the gate-level netlist
of the processor to perform hardware-software co-analysis and iden-
tify the sets of exercisable and unexercisable gates. In the simulation,
all inputs are set to Xs and propagated through the gate-level netlist.
If an X propagates to a gate, it is considered exercisable, since for
some input the gate could toggle. When X propagates to the condition
of a conditional branch instruction, the simulation must simulate all
possible execution paths from the branch. In several applications, es-
pecially those with complex control flow structures, enumerating and
simulating all possible execution paths is intractable. Thus, to enable
a scalable simulation approach for complex applications, prior works
propose generating and simulating conservative states that represent
all the states observed at each PC-changing instruction [4, 15]. One
conservative state can represent multiple observed states (e.g., XX
represents 00, 01, 10, and 11), and thus, simulating from a conservative
state can enable the simulation to converge faster while guaranteeing
coverage of all possible application states, at the possible cost of some
over-approximation of the observed states.

Leveraging the application-specific design information generated
by symbolic hardware-software co-analysis, prior works have demon-
strated several analysis, design, and optimization techniques that
show significant area, energy, and security benefits [4–8]. However,
demonstrated benefits have been restricted to a single processor, since
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the co-analysis tool used in prior works was custom designed for the
openMSP430 processor, and performing co-analysis on a different
processor would require development of a custom simulation tool
for each new design. Modern gate-level simulators such as VCS [26]
can perform cycle accurate simulations; however, they do not sup-
port all features necessary to run hardware-software co-analysis. For
example, modern simulators do not support custom propagation of
symbols, management of conservative states, and splitting the sim-
ulation on observing a particular symbolic signal. In our work, we
develop a design-agnostic simulation tool that performs symbolic
hardware-software co-analysis with cycle-accurate precision at the
gate level. We extend an open-source design synthesis and simulation
tool – iverilog – to support symbolic simulations and enable the use
of conservative gate-level execution states. In this paper, we describe
how we extended iverilog to support symbolic hardware-software
co-analysis for an arbitrary digital design. We also demonstrate the
generality of our tool by performing symbolic co-analysis for three
microprocessors with different ISAs – MSP430 [11], MIPS [24], and
RISC-V [9]. We demonstrate that the results of symbolic co-analysis
can be used to perform application-specific design and optimiza-
tion for these processors by generating bespoke processors [4] for
various embedded applications, and we report the exercisable gate
count, number of execution paths evaluated, and simulation time for
analyzing the applications on the microprocessor designs.
2 Related work
Prior works on application-specific system design and optimization
propose symbolic hardware-software co-analysis and demonstrate
its use in a number of applications, from providing security guar-
antees in embedded systems [7], to performing application-specific
optimizations that reduce power and energy without sacrificing per-
formance or functionality [5, 6, 8, 18], to automatically generating
application-specific bespoke processors for ultra-low-power embed-
ded systems [4]. However, prior works rely on developing a custom
simulator for each processor to be analyzed and optimized. Since this
is a challenging and time-consuming endeavor that is not scalable,
prior works only demonstrated results for a single processor (open-
MSP430). In our work, we develop a design-agnostic symbolic simu-
lation tool that can apply symbolic hardware-software co-analysis
techniques to any digital design and application. Our tool offers a scal-
able approach to easily extend symbolic analysis and subsequently
enable application-specific optimization for new designs.

Prior work on property-driven automatic hardware transforma-
tion [1] developed a property-driven framework for automatically
generating hardware for a reduced ISA, where a specified list of
instructions or ISA features are not supported. The work uses a prop-
erty library to annotate all gates in the design and performs property
checking to identify gates for which the properties are verified. De-
veloping a property library that encodes ISA restrictions for each
application is a manual process that can be both challenging and
time-consuming. Our symbolic simulation tool, on the other hand,
can easily analyze a new design with minimal user effort or expertise.
Further, our tool is able to handle designs in any format – RTL or
gate-level netlist – described in any hardware description language,
e.g., verilog, VHDL, or system verilog.

In our work, we discuss saving and restoring simulation state
in iverilog. Restoring simulation state involves assigning values to
design elements, such as nets and registers. Prior works have used
verilog constructs such as force and release for fault injection in
design elements [10]. However, at any simulation point, force and
release allow us to assign only one value to a design element. To
assign a different value, the testbench must be modified and recom-
piled. Also, the simulation must be restarted from the beginning. By
saving and restoring simulation states, we avoid this overhead. Using
force and release, we cannot split the simulation and launch
multiple instances. Our approach allows us to parallelize simulations
for different execution paths.
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Figure 1.Our processor-agnostic symbolic co-analysis tool is built on
top of iverilog to allow hardware-software co-analysis of any digital
design.

3 A generic tool for hardware-software
co-analysis

Priorworks have demonstrated the effectiveness of symbolic hardware-
software co-analysis for a variety of analysis, design, and optimization
techniques. While the methodology itself is generic, the tool devel-
oped in prior works was custom built for a single processor and hence
was not generic. In this section, we discuss the implementation of
a symbolic hardware-software co-analysis tool in iverilog [29], an
open-source verilog synthesis and simulation tool. By implementing
the technique within the framework of a generic verilog simulator,
we enable the tool to easily analyze different designs with minimal
user effort or expertise required.

Performing the symbolic hardware-software co-analysis of an ap-
plication on a microprocessor design involves performing a gate-level
simulation in which all application inputs are replaced by symbols
(X) indicating unknown logic, thus simulating the behavior of the
microprocessor for all possible application inputs. When an X is prop-
agated to an instruction that affects control flow (e.g., branch, jump),
multiple simulations are spawned to cover all possible execution
paths of the application from the instruction. To handle execution
path explosion in complex applications, we follow the approach of
using a conservative state to represent all execution states observed
at the same program counter (PC) [10]. This guarantees coverage of
all possible execution states while allowing the simulations to con-
verge. To accommodate symbolic co-analysis, we make the following
modifications to iverilog source code.

1) Monitor critical microprocessor signals: To identify when X prop-
agates to an instruction that affects control flow, we implement a
system task function called monitor_x() in iverilog that monitors
a list of signals. For example, the signals could be a combination of
the ALU flags, like N, Z, C, and V (negative, zero, carry, and overflow)
that determine the result of a conditional branch instruction that
indicates if a branch is taken.

2) Save the simulation state: To cover all possible executions from
a branch with unknown outcome, we first dump the simulation state
before the execution of the instruction that affects control flow. The
simulation state indicates the state of the microprocessor along with
the state of the simulator (e.g., the event queue).

3) Continue simulation from a saved state: To simulate all possible
executions from the instruction affecting control flow, we make mul-
tiple copies of the saved simulation state and modify each copy with
the status that allows the microprocessor to take one of the possible
executions. We enhance the simulator to read the modified simulation
state and continue the simulation from the halted state. For this, we
implement another system task called initialize_state().

Figure 1 illustrates the entire simulation flow. To perform sym-
bolic co-analysis, the user provides the application binary and the
gate-level netlist to a testbench harness, along with a list of control
flow signals to monitor. The testbench instantiates the design, loads
the application binary, and provides inputs (Xs) to the application.
The testbench also calls the monitor_x() system task, providing
the user-specified control flow signals as argument. iverilog assim-
ilates all the information into an iverilog-specific intermediate rep-
resentation (vvp assembly) [29] and starts the simulation. Once the
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simulation reaches a PC-changing instruction where any of the sig-
nals that determine control flow are X, the execution path becomes
non-deterministic, and we must explore all possible execution paths.
At this point, the simulation is halted, the simulation state is saved,
and the Conservative State Manager (CSM) is alerted. The CSM is a
program that maintains a repository of previously-simulated states. A
simulation state is indexed by the PC of the PC-changing instruction
at which it was observed. When the simulator halts the simulation
and provides the simulation state to the CSM, the CSM compares
the state with the most conservative state that has been simulated
thus far for the same PC. If the current state is a strict subset of the
previously-simulated state, this state has already been evaluated, and
hence, further simulation is not required. If the current state is not
a strict subset, the CSM generates a more conservative state that
covers both states by merging the current state and existing conser-
vative state. Once the new conservative state is formed, appropriate
control flow signals are set to continue down the possible execution
paths from the PC-changing instruction. Algorithm 1 describes the
simulation procedure.

Algorithm 1 Symbolic Hardware-Software Co-analysis using iver-
ilog
1. Procedure symbolic_simulation(app_binary, design_netlist, control_signals)
2. Load the design_netlist and initialize the Memory.
3. Load app_binary into program memory
4. Propagate reset signal
5. 𝑠 ← State at start of app_binary
6. 𝑐𝑠 ← control_signals
7. Table of previously observed symbolic states,𝑇 .insert(𝑠)
8. Stack of un-processed execution paths,𝑈 .push(𝑠)
9. 𝑇𝑝 ← 𝜙 // Initialize empty toggle profile
10. 𝑇𝑛 ← 𝜙 // Initialize empty toggle nets
11. while𝑈 != ∅ do
12. 𝑒 ← 𝑈 .pop()
13. 𝑒 .set_control_signals() // set control signals for a execution path
14. $initialize_state(𝑒)
15. // halt if any of the control signal becomes X
16. while $monitor_x(𝑐𝑠) == 0 do
17. 𝑒′ ← propagate_gate_values(𝑒) // simulate this cycle
18. 𝑒 ← 𝑒′ // advance cycle state
19. end while
20. 𝑐 ←𝑇 .get_conservative_state(𝑒)
21. if 𝑒′ ⊄ 𝑐 then
22. 𝑒′′ ←𝑇 .make_conservative_superstate(𝑐 ,𝑒′)
23. 𝑈 .push(𝑒′′)
24. 𝑇𝑝 .save_toggle_profiles(𝑒′′)
25. else
26. break
27. end if
28. end while
29. // Merge toggled nets of all the toggled paths.
30. foreach 𝑝 ∈ 𝑇𝑝 do
31. 𝑇𝑛 .append(𝑝)
32. end for
33. // Mark driver gates of the corresponding nets as toggled.
34. foreach 𝑛 ∈ 𝑇𝑛 do
35. if 𝑛.toggled() then
36. 𝑔← 𝑛.getDriverGate()
37. 𝑔.setToggled()
38. end if
39. end for
40. foreach 𝑔 ∈ design_netlist do
41. if 𝑔.untoggled then
42. annotate_constant_value(𝑔,𝑠) // record the gate’s initial (and final) value
43. end if
44. end for

The simulation is complete when there are no new states to simu-
late. We then obtain gate activity information for all explored paths.
We combine the activity information to generate the gate activity
information for the entire application. The gate activity information
indicates all the gates that are exercisable by the application. This
information can be used for subsequent application-specific design
optimizations. For example, to generate a bespoke processor, unex-
ercisable gates are pruned away and the microprocessor design is
re-synthesized to generate a new gate-level netlist with lower area
and power consumption. During re-synthesis, fanout values of pruned
gates are set to the constant value seen during the symbolic simulation
of the target application. In Section 5 we demonstrate the generality
of the novel analysis tool by evaluating our methodology on three
different processor implementations, each based on a different ISA.

Start Start of sim 
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NB Assigns 
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Figure 2.We add a new type of event to capture ‘symbolic events’ in
iverilog’s event queue. This enables us to monitor control signals for
X and halt the simulation when necessary. The VVP engine is a part
of iverilog source that executes an iverilog compiled assembly code
that is generated from the verilog testbench.

3.1 iverilog software flow enhancement
iverilog is an event-driven simulator, where a set of events represents
a time step. Upon the execution of these events, the simulation time
progresses. Events are categorized into five event regions, and each
region represents a similar set of events. The event regions are exe-
cuted in the order shown in Figure 2. Since we implement symbolic
simulation as a plug-in feature to iverilog, we ensure that our modi-
fications do not affect the existing flow. Therefore, we create a new
event region called Symbolic events and execute them after the other
event regions. Symbolic events includes monitoring control flow sig-
nals, halting the simulation when X is detected, serializing and saving
the processor and simulator state, and restarting the simulation from
a saved state. By executing symbolic events last, we ensure that all
events for the time step have already executed. When the simulation
restarts, there may be a few events not belonging to the symbolic
events region that are executed before initialization. However, the
state initialization in the symbolic events region overrides the entire
simulator and processor state. This nullifies the effects of any event
executed before initialization. As this override occurs only in the first
time step, the overhead of this process is minimal.

3.2 Designing a testbench for symbolic hardware-software
co-analysis for iverilog

Listing 1 describes a simple testbench that uses the symbolic sim-
ulation feature of the iverilog tool. The user must follow the steps
described below to perform symbolic hardware-software co-analysis.
1) The testbench calls two system tasks: monitor_x() and
initialization_state() in an initial block. monitor_x()
accepts a list of signals that affect control flow as argument, allow-
ing iverilog to halt simulation when the execution path is non-
deterministic. initialization_state() accepts simulation
state as argument to allow iverilog to initialize the processor and
simulator states, and begin simulation from a previously halted state.
2) The testbench must instantiate and reset the processor.
3) The testbench must initialize the processor inputs – registers and
memory – to Xs to allow iverilog to simulate all possible execution
paths of the application.
3.3 Conservative State Management
Simulation halts if one or more Xs is encountered in a monitored
state variable or if the simulation terminating condition is met, in-
dicating that all possible application states have been simulated. In
case of an X in a monitored signal, we launch multiple instances of
iverilog that execute the branches of the simulation where the Xs in
the monitored state are re-interpreted as ones or zeros to cover all
legal scenarios. Alternatively, we can apply the conservative state
optimization proposed in prior works [4]. Using this optimization, a
more conservative state of the saved state is generated by merging
all the previously-observed states that match the PC of the current
saved state. Applying the conservative state optimization significantly
accelerates simulation by allowing many simulation paths that are
covered by the conservative state to be discarded.

How conservative states are formed can be configured in the sim-
ulator. A designer can choose any approach to form conservative
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Listing 1. Simple verilog test bench harness for starting symbolic
simulation
initial
begin

$monitor_x("control_signals.ini");
$initialize_state("sim_state.log");

RST_n = 1'b0;
#100 RST_n = 1'b1;

end

reg [7:0]data_memory[7999:0]; // 8kB data memory

// Instantiate Design.
GateLevelNetList dut(input reg1, reg2,..., data_memory);

initial
begin

reg1 = 16{1'bx};
reg2 = 16{1'bx};
// set input dependent memory locations as X
for (i = start_loc; i < end_loc; i = i + 1)
begin

data_memory = 8'bxxxxxxxx;
end

end
... // other necessary initializations
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Figure 3. Various approaches for conservative state generation ex-
hibit trade-offs between simulation effort and conservative over-
approximation. To capture all states in the first row (green) we could
either create two conservative states as shown in the second row
(blue) or one uber-conservative state as shown in the third row (red).

states, depending on convergence and accuracy requirements, as long
as the approach ensures that the formed conservative state covers all
observed states. For example, the approach used in prior work is to
generate a single conservative state by merging simulation states and
replacing all differing bits with Xs. Generating a single state to cover
all observed states allows the simulation to converge the quickest
and is most scalable, but it is also the most conservative, and repre-
sents some gates as exercisable that may not actually be exercisable.
Consider the in Figure 3, where the observed states for a given PC
are represented by the green circles. A conservative state of XXX
encompasses all the observed states, and in addition, covers a few
unobserved states. Though this approach reduces simulation time
significantly, it can lead to over-approximation of exercisable gates.
As another example, consider using a conservative state of 0XX along
with the state 100, represented by blue circles. This conservative state
formulation requires simulation of two execution paths rather than
the original five and avoids representing unobserved states. In our
tool, the CSM supports the ability to specify a custom conservative
state generation approach by providing the rules of conservative
state generation. Another example of a custom approach could be
using application constraints to constrain conservative states [15].
The CSM accepts constraints in the form of a text file and uses them
to reduce over-approximation of conservative states.

The CSM keeps track of all the saved states along with their PC
values and generates conservative states to be fed into the next branch
in the simulation. CSM is also responsible for triggering the launch
of the iverilog instance that simulates the next branch. Since each
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Figure 4. Our symbolic tool allows rules for symbol propagation to
be customized. The left sub-figure shows a case where circuit inputs
are propagated as separate symbolic values, while the right sub-
figure shows a case where the symbolic values carry no identifying
information and thus cannot be distinguished.

branch of the simulation can be run by a separate process, launching
these processes in parallel can drastically improve simulation time.

3.4 Propagation of symbols
The simulation tool also allows customization of symbol propaga-
tion. Different approaches for propagating Xs are used for different
application-specific optimizations. For example, optimizations that
require the identification of unexercisable gates must track the propa-
gation of Xs, as this indicates the possibility of a gate being exercised
for some application input, while to provide security guarantees,
symbols must also propagate taint information [7]. For a less con-
servative simulation, we may want to track the propagation of each
unknown value individually. This can allow simplification when the
same symbol recombines at a gate.

For example, the left sub-figure of Figure 4 shows a case where
inputs to the circuit are propagated as separate symbolic values. In
this case, it can be determined that the inputs to the XOR gate have
the same unknown value, and the output of the XOR gate is logic
0. In the right sub-figure, no identifying information is propagated
with the symbols, so it cannot be determined that the inputs to the
XOR gate have the same value, and the output must be assumed to
be unknown (𝑋 ). The latter approach is easier and more scalable to
simulate, while the former is less conservative.

4 Methodology
Weverify our technique on a silicon-proven processor – openMSP430 [13]
– an open-source version of one of the most popular ULP proces-
sors [2, 28], a custom implementation of an open-source 32-bit MIPS
processor – bm32 [24] – and DarkRISCV SoC [9], a RISCV imple-
mentation that implements the RV32e ISA [27] with integer registers
reduced to 16 bits. Our implementation of DarkRISCV only modeled
the processor core and memory. The processor designs are synthe-
sized, placed, and routed in TSMC 65GP technology (65nm) for an
operating point of 1V and 100 MHz using Synopsys Design Com-
piler [25] and Cadence EDI System [3].

Gate-level simulations are performed by running full benchmark
applications on the placed and routed processor using our symbolic
simulation tool. Table 1 lists our benchmark applications. We show
results for the benchmarks that fit in the program memory of the
processors. Table 2 lists the selected processors and their features.

The gate-level simulations were performed using an enhanced ver-
sion of iverilog [29] written in C++ and a Conservative State Manager
written in Perl. The CSM uses the conservative state approach used
in prior work [4].

Benchmarks are chosen to be representative of emerging ULP ap-
plication domains such as wearables, internet of things, and sensor
networks [31]. Also, benchmarks were selected to represent a range
of complexity in terms of control flow and execution length. Experi-
ments were performed on a server housing two Intel Xeon E-2640
processors (8-cores each, 2GHz frequency, 64GB RAM).
5 Results
In this section, we present and discuss the results of evaluating three
microprocessor designs – openMSP430 (MSP430), bm32 (MIPS32),
and dr5 (RV32e), using our tool. We run conservative-state based
symbolic simulation for all the applications in Table 1 and generate
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Table 1. Benchmark Applications
Benchmark Description

Div Unsigned integer division
inSort in-place insertion sort

binSearch Binary search
tHold Digital threshold detector
mult unsigned multiplication
tea8 TEA encryption algorithm

Table 2. Target Platform Characterization
Design ISA Features
bm32 MIPS32 32-bit MIPS implementation,

with hardware multiplier.
openMSP430 MSP430 16bit microcontroller with

16x16 Hardware Multiplier,
Watchdog, GPIO, TimerA

dr5 RV32e 32-bit RISCV embedded ISA
with 16 integer register, 3 stage
pipeline.
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Figure 5. Benchmarks run on MSP430 processor have a higher re-
duction in exercisable gate count compared to MIPS and RISCV pro-
cessors because of the presence of unused peripherals in MSP430.

the input-independent gate activity profile. We then prune away the
unused gates and re-synthesize the design to generate an area and
energy efficient bespoke processor, as in [4]. We present the results
of our analysis using two metrics – exercisable gate count and the
number of simulation paths.

5.0.1 Validation. To verify that the bespoke netlist generated with
our generalized simulation tool works correctly, we simulate the ap-
plication behavior using fixed known inputs on both the original and
the bespoke gate-level netlist. We verified that the outputs from both
the designs are the same. We also verified that the set of exercised
gates for the fixed input run is a subset of the set of exercisable gates
reported by our tool. Also, to ensure that the bespoke optimization
enhancements made to iverilog do not affect the existing simulation
capabilities, we verified that the event list from the baseline iver-
ilog version matches the iverilog version after our enhancements at
simulation points for applications that are picked at random.

5.0.2 ExercisableGates. Table 3 shows the number of gatesmarked
as exercisable by an application for the three designs. The total num-
ber of gates in the three microprocessor designs – bm32, openMSP30,
dr5 – are 16795, 7218, and 7578, respectively. Using our tool to perform
symbolic hardware-software co-analysis, we achieve a gate count
reduction of 27%, 56% and 16% for these processors, respectively. Fig-
ure 5 shows the percentage reduction of the toggled gates for all
benchmarks in Table 1. We observe that designs with external periph-
erals tend to have a higher gate count reduction. This is because, for
applications that do not use peripherals, the set of gates representing
the peripheral logic will not be exercised and can be safely removed.
Since dr5 does not contain any peripheral logic such as a multiplier,
it exhibits a relatively smaller reduction in the toggled gate count.
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Figure 6. Benchmarks run on MIPS and RISCV processors have a
higher number of simulated paths because a 16-bit register is used
to indicate branch conditions, whereas in MSP430, a 1-bit register is
used, resulting in fewer conservative states.

5.0.3 Simulation paths. From the simulation paths reported in
Figure 6, we observe that bm32 and dr5 require significantly more
simulation paths than openMSP430 to complete symbolic simulation.
This is because of a fundamental difference in how compare instruc-
tions are implemented in the designs and how that affects conditional
jumps in an application. In openMSP430, the result of the compare
instruction is stored in program status word in the form of N, Z, C,
and V flags. Based on the value of these flags (1 or 0), conditional
jumps are resolved. In bm32 and dr5, on the other hand, the compare
instruction is implemented as a subtraction operation, and the re-
sulting value is stored in a 16-bit register, which is used to resolve
conditional jumps. As discussed in Section 3 we halt the simulation
when the output of a compare instruction preceding a conditional
jump resolves to one or more Xs. In the case of openMSP430, this
means when any of the NZCV flags of the status register is an X.
In the case of bm32 and dr5, this means that the 16-bit register that
holds the result of subtraction contains one or more Xs. If the 16-bit
result register already contains an X, subsequent subtractions (such
as compare used to evaluate loop termination conditions) would
increase the number of Xs in the register. In most applications, all pos-
sible execution paths are only evaluated when the entire register fills
with Xs. This significantly increases the number of paths that need
to be evaluated for bm32 and dr5 processors. Since the NZCV flags
in openMSP430 are 1-bit each, there are no additional Xs incurred at
every compare instruction. This means that openMSP430 is able to
converge faster, while for bm32 and dr5, several simulation instances
are necessary to reach a simulation state that represents all possible
subtraction operations. Due to the use of status bits (NZCV flags),
benchmarks compiled for openMSP430 also have fewer conditional
branch instructions compared to benchmarks in other processors,
leading to fewer explored paths.

Another factor that significantly affected the simulation time for
dr5 is the lack of a hardware multiplier module. As such, the compiler
for dr5 performs multiplication in software using a library imple-
mentation of multiplication in the form of repeated additions in a
loop. This leads to the use of input-dependent conditional branches
to perform multiplication in dr5. Since input-dependent conditional
branches lead to the generation of multiple simulation paths, we see
that for the benchmark mult, dr5 has more than one simulation path
in Figure 6, while the number of simulation paths for the other two
processors that use a hardware multiplier is one.

Finally, Figure 6 shows that for the benchmark tHold, the number
of simulated paths is higher for openMSP430 compared to bm32 and
dr5, contradicting the trend seen in the other benchmarks. This is
because the compiled binary for openMSP430 had three conditional
branch instructions vs two in dr5 and bm32. Hence, in openMSP430,
the number of execution split points in each loop iteration of tHold
is three, compared to only two for dr5 and bm32. This difference
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Table 3. Gate count analysis

Benchmark BM32 tgc: 16795 omsp430 tgc: 7218 darkriscv tgc: 7578
GateCount % reduction GateCount % reduction GateCount % reduction

Div 12008 28.5 3175 56.01 6399 15.56
inSort 12210 27.3 3098 57.08 6402 15.52

binSearch 12200 27.36 3115 56.84 6324 16.55
tHold 12139 27.72 2970 58.85 6259 17.41
mult 12707 24.34 3651 49.42 6299 16.88
tea8 12340 26.53 2755 61.83 6577 13.21

Table 4. Simulation path and runtime analysis

Benchmark BM32 tgc: 16795 omsp430 tgc: 7218 darkriscv tgc: 7578
paths created skipped simulated cycles paths created skipped simulated cycles paths created skipped simulated cycles

Div 327 112 53202 17 8 776 325 112 13149
inSort 315 130 35044 230 118 18086 319 132 9382

binSearch 941 190 154198 119 62 9715 829 190 2374
tHold 191 68 17168 293 184 13030 191 68 4690
mult 1 0 528 1 0 258 175 60 5790
tea8 1 0 10018 1 0 3852 1 0 4534

quickly adds up as the symbolic execution tree is built, leading to a
higher number of simulation paths for openMSP430. Table 4 provides
the number of simulation paths created and skipped, along with the
simulated cycles for each application in all the designs.
6 Conclusion
Current state-of-the-art symbolic simulation tools for hardware-
software co-analysis are restricted in their applicability, since prior
work relies on a costly process of building a custom simulation tool
for each processor design. Furthermore, prior work does not describe
how to extend the symbolic analysis technique to other processor
designs. In this paper, we described how we modified iverilog to sup-
port propagation of symbolic values, conservative state generation
and simulation, monitoring of critical control signals, and saving and
restoration of simulation states, thus creating a design-agnostic sym-
bolic simulation tool for hardware-software co-analysis. We demon-
strated the generality of our tool by performing symbolic analysis
on three embedded processors with different ISAs, and we also used
analysis results from our tool to generate bespoke processors for each
processor design and discussed the impact of architectures on the
results and simulation times. Our results demonstrate the versatility
of our simulation tool and the uniqueness of each design with respect
to symbolic analysis and the bespoke methodology.
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