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Abstract

Recently proposed techniques for peak power
management [18] involve centralized decision-
making and assume quick evaluation of the various
power management states. These techniques suf-
fer from two limitations. First, they do not pre-
vent instantaneous power from exceeding the peak
power budget, but instead trigger corrective action
when the budget has been exceeded. Second, while
these techniques may work for multi-core architec-
tures (processors with small number of cores), they
are not suitable for many-core architectures (proces-
sors with tens or possibly hundreds of cores on the
same die) due to an exponential explosion in the
number of global power management states.

In this paper, we look at three scalable techniques
for peak power management for many-core architec-
tures. The proposed techniques (mapping the power
management problem to a knapsack problem, map-
ping it to a genetic search problem, and mapping it
to a simple learning problem with confidence coun-
ters) prevent power from exceeding the peak power
budget and enable the placement of several more
cores on a die than what the power budget would
normally allow. We show up to 47% (33% on aver-
age) improvements in throughput for a given power
budget. Our techniques outperform the static oracle
by 22%.

1 Introduction

While power has long been a well-studied prob-
lem, most dynamic power reduction techniques,
e.g., V/f scaling, clock gating, etc., exploit slack in
the execution behavior of programs to reduce aver-
age power. Peak power is often left untouched. This
is in spite of the fact that peak power plays a large
role in determining the characteristics and hence
the cost of the power supply, thermal budgeting for
the chip, as well as the reliability qualification of
the processor [8].

While the inefficiencies due to the lack of peak
power management are substantial even for unipro-
cessors [18], the extent of the problem becomes
much worse for multi-core processors. This is be-
cause the number of additional cores that can be
powered using the absolute gap between peak power

and average power keeps increasing with the in-
creasing number of cores on a processor die. In fact,
this inefficiency increases linearly with the core scal-
ing factor [18]. If the predictions of tens to hundreds
of cores on future processors are correct, effective,
efficient, and scalable peak power management will
become a necessity.

Recently proposed techniques for peak power
management [18, 33, 5] involve centralized decision-
making and assume quick evaluation of the vari-
ous power management states. While these poli-
cies work well for multi-core processors (with a rela-
tively small number of cores), they may not be suit-
able for many-core architectures (processors with
tens or possibly hundreds of cores on the same die)
due to an exponential explosion in the number of
global power management states. For example, an
8-core processor with four power states (three volt-
age states and one off state) has 48, i.e., over 65
thousand possible global states that must be evalu-
ated. Similarly, an 80-core processor like Intel’s re-
cent announcement [17], with two power states (full-
power and half-power) can have 280 possibilities!
Even though a large number of these states can triv-
ially be ignored by most peak power management
techniques, significant subsetting still needs to be
done. In this paper, we we look at three practical,
scalable approaches of identifying the power man-
agement states that maximize processor throughput
for a given peak power budget.

The second limitation of previously proposed
techniques [18, 33] is that while these techniques at-
tempt to limit the global power consumption, power
overshoots are still allowed (overshoots trigger cor-
rective action). The techniques that we propose in
this paper attempt to prevent the power of a multi-
core processor from exceeding a threshold. The pre-
vention is provided by dynamically selecting a sub-
set of cores and scaling down their voltages. So, the
processor effectively keeps switching between dif-
ferent peak power management states, each with a
peak power consumption below a threshold. The
switches are made between states based on appli-
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cation execution characteristics to maximize the
throughput of the processor.

2 Related Work

Power-related architectural optimizations have
been the subject of much research. Most previous
work in this area has focused on the use of tech-
niques like gating [1, 28, 16, 11], voltage and fre-
quency scaling [27, 14, 22, 2, 26, 32, 19, 29, 39],
or heterogeneity [13, 23] to reduce processor power
consumption. These approaches usually target av-
erage power dissipation for uniprocessors or chip
multiprocessor architectures with a small number
of cores. They do not address peak power man-
agement. Other power-related work has addressed
current variability [20] and thermal issues [6, 35, 9]
in modern microprocessors. Some of the proposed
solutions could potentially be used for peak power
management.

Annavaram, et al. [3, 15, 4], propose an approach
to power management by controlling the energy
consumed per instruction in response to the paral-
lelism of a program. They also attempt to stabilize
power consumption within a fixed budget. Their
work differs from ours in that we focus on scalable
policies for peak power management.

The work that is perhaps the closest to ours is
that of Isci, et al. [18], who propose the use of a
global power manager to limit the chip-level power
consumption of a multi-core processor. While their
methods address the gap between average power
and peak power consumption in multi-core proces-
sors, they do not prevent power from exceeding a
threshold (though one may imagine using their tech-
niques to prevent power overshoots by triggering
corrective action conservatively).

Another closely related work by Juang, et al [21],
makes a case for distributed power management
instead of local power management of individual
cores. We focus on investigating policies for effi-
cient peak power management.

There has been a lot of peak power management
work done recently in the context of servers and
datacenters [25, 10, 31]. Our work focuses on multi-
core architectures.

There has also been work done in the context of
high-level and low-level synthesis to maximize per-
formance for a given peak power budget, as well
as the dual problem of minimizing peak power for
a given performance. Our techniques work at the
system architecture-level and are, therefore, orthog-
onal.

Figure 1. On average, a multicore processor
consumes only a fraction of its maximum rated
power.

To the best of our knowledge, this is the first
work on mapping a multi-core system-level peak
power management problem to the proposed algo-
rithmic approaches.

3 Throughput Benefits of Peak

Power Management
This section discusses our proactive approach

to peak power management that enables the place-
ment of several more cores on a processor die than
what the power budget would allow for, thereby
substantially increasing processor throughput. We
also discuss scheduling policies that enhance the
throughput even further.

3.1 Integrating More Cores than Allowed by
the Power Budget

There is often a sizable gap between the average
power and peak power of a multi-core processor.
Figure 1 shows the distribution of power consump-
tion for a 9-core chip multi-processor (CMP) as a
percentage of peak power for a set of workloads that
we studied (details in Section 5). On average, the
processor consumes only 66% of its maximum rated
power. However, the processor and the power sup-
ply must be designed to supply the peak power and
rated to handle this load. In theory, we should be
able to add approximately 50% more cores running
at full power and still remain below the peak power,
on average.

Now consider an architecture (Figure 2) with
peak power management that has several more
cores on the die than the baseline processor. The
average power of the new architecture is just below
the peak power of the baseline processor while a
peak power management mechanism prevents the
new architecture from exceeding the peak power
of the baseline (even though the processor con-
tains several more cores than the power budget
would normally allow). The peak power manage-
ment mechanism bounds the processor power by
intelligently scaling down the power for a subset of
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Figure 2. Power-Equivalent Processor Config-
urations.

cores. Power can be scaled down through the appli-
cation of V/f scaling, clock gating, or power gating.
The throughput of this architecture is higher than
that of the baseline processor, due to the increased
number of cores.

In this paper, we employ V/f scaling to limit the
maximum power consumption on a core. Each core
is assumed to be scalable independently. A central-
ized power manager is assumed like in [18].

3.2 Intelligent Core to Power State Mapping
to Maximize Throughput

In this section, we describe the various baselines
against which we compare our proposed approaches.

3.2.1 Static Mapping

We considered two static baselines – random static
and static oracle. For a given processor configura-
tion, the random static scheduler arbitrarily selects
the cores that will be scaled, or equivalently, the
cores that will receive full power.

Static oracular scheduling (similar to what was
used in [24]) requires foreknowledge of the behavior
of applications in various power states and employs
a metric called weighted speedup (WS) [36]. WS ex-
presses the throughput of an application running at
full power relative to the throughput of the same ap-
plication running in a reduced power state. A large
WS value indicates that the performance of an ap-
plication deteriorates rapidly as power is decreased.
Conversely, an application with a WS value close
to one can run in a reduced power state with very
little performance degradation. The static oracular
mapping is produced by assigning power states to
processor cores such that WS is maximized. Those
with the highest WS are assigned to a full power
state, and those with lower WS values are allocated
reduced power states.

We also evaluated a static configuration in which
all cores are scaled to the lowest power state. This
configuration – referred to as all scaled – maximizes
core integration for a given power budget.

3.2.2 Dynamic Mapping
Static power management policies cannot react to
the changing behavior of applications and therefore
do not provide the most efficient processor power
mappings.

We used the previously proposed MaxBIPS pol-
icy [18, 5, 33] as our centralized dynamic base-
line. MaxBIPS, proposed by Isci et al [18], predicts
the corresponding power and BIPS values for each
possible power mode combination. Afterward, it
chooses the combination with the highest through-
put that satisfies the current power budget.

MaxBIPs was presented as a peak power man-
agement solution for a four-core multi-core proces-
sor and relies on a global arbiter/scheduler to make
power management decisions for each core on the
processor. While MaxBIPS works well for the four-
core case [18, 33, 5], the technique may not be
scalable for a large number of cores, as confirmed
in Section 6. Secondly, while MaxBIPS attempts to
limit the global power consumption, it allows power
overshoots and triggers reactive correction for these
overshoots.

The three dynamic techniques proposed in the
next section prevent power overshoots and are tar-
geted towards architectures with a large number of
cores.

We also considered sorted WS. Under this policy,
when power scheduling is triggered, each thread is
evaluated in the available power states. The WS of
each thread is calculated, and the threads are sorted
in order of decreasing WS. Threads with high WS
values are alotted full power while threads at the
low end of the list are assigned low power states.

The benefit of sorted WS over MaxBIPS is that
not all possible schedules are evaluated, and hence
the time overhead of making a decision is relatively
small. This benefit comes at the expense of making
potentially worse decisions.

4 Three Scalable Techniques for

Maximizing Throughput

Näıve methods of searching for an efficient global
state (i.e., core to power state mapping for each
core) have a time complexity of O(n2) or worse.
These techniques rely on tactics such as exhaus-
tive searching and sorting – tactics that will not
scale well as the search space expands. We consider
three canonical techniques that reduce the amount
of time required to make a peak power management
decision as well as the total number of decisions to
be made during the decision space search. These
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Figure 3. Knapsack-based arbitration reduces
the search time for peak power management.

techniques directly promote the scalability and ef-
ficiency of our peak power management methods,
making them suitable for many-core architectures.

4.1 Modeling Peak Power Management as a
Disjunctively Constrained 0-1 Knapsack

The first technique is mapping the task of power
management to an algorithm that runs in linear or
sublinear time. One such algorithm that conforms
nicely to the problem of peak power management
is the disjunctively constrained 0-1 knapsack prob-
lem (DCKP) [30]. Figure 3 describes the process of
power arbitration using the knapsack approach.

Knapsack problems operate on a set of items,
each with fixed profits and weights. The objective
of the knapsack problem is to fill a knapsack of lim-
ited capacity in such a way that the profit of the
carried items is maximized. The DCKP is a special
version of the knapsack problem in which the items
are divided into classes. When filling the knapsack,
one and only one item from each class must be se-
lected.

The task of power state selection maps seam-
lessly onto the DCKP. The items to be chosen from
are the applications that are currently running in
the system. These items are naturally divided into
classes based on the number of cores in the pro-
cessor. Within each class, the items represent an
application running on a core in each of the pos-
sible power states. Each item has a profit and
weight represented respectively by the throughput
and power consumption of the application for each
power state. Finally, the capacity of the knapsack
is characterized by the peak power of the processor.
Thus, solving the DCKP corresponds to choosing
the power state of each core to maximize the overall
system performance while ensuring that the power
consumption of the processor does not exceed the
maximum budget. Due to the characteristics of the
peak power management problem as mapped to the
DCKP (specifically, the fact that the weights are
non-negative integers) and the efficient partitioning
techniques employed by the DCKP [30], solving the
DCKP is an O(n) problem in this case (though in
a general, it is not).

Since the maximum power consumption of a core
in a given power state is constant, the weight of

each item is known a priori. However, the perfor-
mance of an application changes, sometimes dras-
tically, over the course of execution and therefore
must be sampled prior to the selection of a new
power state. Intuitively, more power states avail-
able to an application should result in a solution
that is closer to optimal. However, as the number of
power states increases, so does the evaluation time
required to determine the profits and to a lesser de-
gree the complexity of finding the optimal solution.
Hence, the number of power states should be care-
fully chosen to balance this tradeoff and produce
the highest throughput.

Note that the above algorithm runs in the
power manager and requires no special hard-
ware support (other than performance coun-
ters).

4.2 Mapping Peak Power Management to a
Genetic Search Problem

An alternate way to increase the efficiency of
making decisions about the best global state (that
maximizes processor throughtput for a given power
budget) is to treat the subset selection problem as
a heuristic search problem. The goal of a heuristic
search problem is to prune the search space based
on certain properties of the search algorithm as well
as the search space. Although the number of pos-
sible power mappings quickly escalates relative to
the number of cores, a search technique can employ
feedback gathered during the search to refine the
search process and intelligently explore the search
space.

One search method that has been applied to a
wide range of problems is the genetic algorithm [12].
The genetic algorithm intelligently investigates the
search space, selecting the candidate mappings that
perform the best to be archetypes in the creation
of new mappings. Mappings that perform poorly
are replaced with the offspring from selected par-
ent configurations. An aspect of randomness is also
introduced into the reproduction process to more
effectively cover the search space in the case that
none of the members of the initial population closely
match the optimal solution.

The evaluation process, depicted in figure 4, be-
gins with the creation of random configurations to
fill the initial population. These random configu-
rations are designed to respect the power budget
of the processor, since the number of processors at
peak power remains constant across all mappings.
After initialization of the population, each config-
uration is applied and evaluated with respect to a
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Figure 4. The genetic algorithm for peak power management traverses the search space intelligently.

fitness metric. In this case, the throughput of the
processor in the current configuration determines
the fitness of the power mapping. Once the evalua-
tion of the initial population has been accomplished,
the fittest members of the population are chosen to
produce the next generation. Two parent configu-
rations generate an offspring configuration through
comparison of their mappings. If the parents agree
on the power state of a core, then their union is
passed on to the child. If the parent mappings do
not agree, a decision bit is used to determine which
parent trait will be passed on to the child. When the
bit is set, a full power state is propagated. The bit
is then toggled so that the next conflict will result in
the propagation of a reduced power state. Since all
mappings specify the same number of peak power
cores and reduced power cores, the number of con-
flicts between two parents must be even. Thus, the
decision bit upholds the guarantee that the result-
ing power state will respect the budget.

After reproduction, the newly created configu-
rations replace the most unfit configurations, and
hence the population is refined with each new gen-
eration. Evaluation and evolution continue until
either the change in the best performance between
successive generations falls below a threshold, indi-
cating that the solution is close to the optimum, or
some maximum number of generations is reached.
At this time, the fittest configuration is selected as
the new processor state and normal operation re-
sumes.

The success of the genetic algorithm in locating a
good power state may be affected by several factors.
Typically, when genetic algorithms are employed,
many random configurations are generated to com-
prise the initial population. Indeed, a larger ini-
tial population increases the likelihood that one or
more of the configurations will closely resemble the
optimum. However, consideration of a large initial
population requires substantial time to evaluate the
fitness of each member. Furthermore, since the ini-
tial members are randomly formed, they are just as
likely to perform poorly as they are to perform well.
Thus, evaluation of a large initial population may
lead to the application of several inefficient power
configurations. On the other hand, a large initial

population increases the probability that some of
the members are close to optimal. As such, the
number of iterations required to arrive at an ac-
ceptable solution may decrease. Additionally, once
the initial population has been evaluated, the focus
of the genetic algorithm switches to the refinement
of the existing solution. So, from this point on, the
power mapping applied after each generation should
only improve, even as evaluation continues.

Note that the genetic algorithm is simply a
canonical example of a heauristic search technique
that fits well to the fitness landscape of the peak
power management problem. A complete explo-
ration of all such approaches is beyond the scope
of this work.

Note also that the above algorithm runs in
the power manager and requires no special
hardware support (other than performance
counters).

4.3 Viewing Peak Power Management as a
Simple Learning Problem with Confidence
Counters

While performing an intelligent search can sub-
stantially reduce the arbitration overhead, the
search space can be reduced significantly more if
application characteristics are also considered while
pruning the search space – specifically, if the pro-
cessor knows for each application whether or not
it requires full power to run without considerable
performance degradation. Since, an application’s
behavior is not known by the processor before run-
time, the processor must learn the needs of each
application and choose an appropriate power state
within these bounds. Figure 5 describes a learning-
based approach to peak power management.

To implement learning, a set of counters – one for
each core – is employed to remember how power was
mapped to the core in the past. If the core consis-
tently receives full power after each evaluation, the
corresponding counter will increment until it satu-
rates, indicating that the application on the core re-
quires full power to run efficiently. Likewise, a core
for which evaluation repeatedly selects a reduced
power state will be tagged accordingly by a counter
that decrements to saturation. Once an application
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Figure 5. A learning-based approach reduces the search space for the peak power management decision
by eliminating cores with static behavior from consideration.

to power state relationship has been learned, the as-
sociation is remembered for subsequent evaluations.
Reinitialization of the counter memory is performed
periodically to allow for an unbiased evaluation of
the processor power state even in the face of dy-
namically changing program behavior.

Counters for cores that tend to fluctuate be-
tween multiple power states remain close to the
initial, mid-range value, indicating that evaluation
of this core should continue in order to provide a
good mapping. However, evaluation can cease for
the cores that have already been associated with a
particular power state. Consequently, performance
losses during evaluation which result from a tempo-
rary suboptimal mapping are eliminated. Further-
more, the overhead associated with the evaluation
process is significantly reduced, since decisions must
be made for fewer cores. Note that the above
algorithm runs in the power manager and
requires no special hardware support (other
than performance counters).

5 Methodology

In this section we discuss the methodological
details of this study – specifically the architec-
tures that we studied, assumptions that we made
about voltage/frequency scaling, our methodology
for comparing processors with different numbers of
cores, our workloads, and our simulation approach.

The processors evaluated in our study are chip
multiprocessors (CMPs) with homogeneous cores.
All cores are modeled with 65 nm process param-
eters. The frequency and supply voltage of each
core are 3 GHz and 1.5 Volts, respectively, at full
power. All cores are connected to the L2 cache
banks through a matrix crossbar interconnect. To
account for increased area due to additional cores
and interconnections, the L2 cache size of an en-
hanced configuration is reduced by half with respect
to the corresponding baseline configuration.

Power estimates reported by Wattch [7] were
used to calculate the peak power consumption of
each core in various power states. Wattch reports
the maximum dynamic power consumption for a
core at a given supply voltage. To calculate the to-
tal peak power for a core in a given power state, an

assumption is made that the peak dynamic power
consumption represents 75% of the total proces-
sor power. Thus, the dynamic power values from
Wattch are scaled up to represent the dynamic and
static contributions to peak power. Table 1 gives
the peak power figures for several V/f scaling fac-
tors, assuming 65 nm process technology.

Scale 1.0 0.9 0.8 0.7 0.6 0.5

Power (W) 18.289 15.549 13.098 10.888 8.899 7.107

Table 1. Peak Power for V/f Scaling Factors.
The supply voltage and frequency of each core

in our modeled CMPs can be controlled indepen-
dently. When a core switches V/f domains, we do
not assume an instantaneous change. Instead, we
model a gradual transition from one V/f domain
to another at a rate of 10 mV/µs. When a tran-
sition between V/f domains occurs, the cores are
halted until the transition is complete for all cores.
During this time, the processor is assumed to still
consume power, but no performance gains are reg-
istered. Modeling a V/f transition in this manner
represents a very conservative approach. Table 2
displays the penalty in cycles incurred when switch-
ing from a full power state to a reduced power state.

ScalingFactor ∆V Switching Time Cycles @ 3 GHz

0.9 0.15 15 µs 45,000

0.8 0.30 30 µs 90,000

0.7 0.45 45 µs 135,000

0.6 0.60 60 µs 180,000

0.5 0.75 75 µs 225,000

Table 2. V/f Switching Penalties.
Workloads are constructed from a set of 16

SPEC2000 benchmarks. Table 3 lists the bench-
marks used in workload construction along with
fast-forward distances in billions of instructions.

ammp mcf bzip crafty eon equake galgel mgrid

2.0 12.6 0.4 0.7 0.1 3.5 5.0 2.1

parser swim applu art twolf vpr vortex wupwise

0.4 0.3 0.3 7.5 0.9 36.1 6.0 1.1

Table 3. Benchmarks and Fast-Forward Dis-
tances.

For the 16-core results that we present in this
paper, we average the results over five kinds of
workloads (each consisting of 16 threads). One
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workload contains all benchmarks in equal propor-
tions. Other workloads contain benchmarks with
high, low, and varied sensitivity to V/f scaling. Fi-
nally, the dynamic workload contains benchmarks
that exhibit more dynamic behavior than others.

Workloads are constructed using the sliding win-
dow approach [37]. The size of the window is equal
to the number of cores in the processor.

Simulations are performed using SMTSIM [38] to
simulate our various CMP configurations. Wattch
is integrated into SMTSIM to gather power statis-
tics. SMTSIM executes statically-linked Alpha bi-
naries. After fast forwarding each benchmark for
an appropriate time [34], all simulations run for 1
Billion cycles. The global power arbiter/scheduler
is assumed to be implemented in software and the
overheads of making power management decisions
are modeled accordingly.

We performed our evaluations with respect to
weighted speedup (WS) and aggregate throughput
and found no significant difference in trends or anal-
ysis.

6 Analysis and Results
In this section, we demonstrate the performance

benefits of peak power management for many-cores.
First, we analyze the gains achieved by adding cores
to the die and managing the power states of the
cores using the baseline techniques. Next, we ana-
lyze the overheads of peak power management for
the various techniques discussed in this paper and
show that most strategies become ineffective for ar-
chitectures with a large number of cores, due to
their high timing overheads. Finally, we demon-
strate how efficient policies can closely approximate
the benefits of exhaustive centralized arbitration
while substantially reducing the cost of decision-
making.

6.1 Improving Throughput through Peak
Power Management

Figure 6 shows throughputs for different base-
line mapping policies. Results are shown relative to
the average performance of a benchmark running
on a reduced power core. As the results show, even
static subsetting of cores can result in 16% through-
put improvement when voltage is halved and by 5%
when voltage is scaled by a factor of 0.8. Baseline
corresponds to the 8-core processor, where all cores
are running at full power. Dynamic corresponds
to sorted WS and results in 18% throughput im-
provement over the baseline when voltage is halved.
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Figure 6. Performance Improvements due to
Peak Power Management.
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Figure 7. Timing Overhead of Making Peak
Power Management Decisions for Various Poli-
cies

Sorted WS was chosen because MaxBIPS has pro-
hibitively large overhead for processors with 8 or
more cores (details below).

6.2 Overhead of Managing Peak Power for
Many-cores

While the previous section shows the potential
benefits of peak power management, the actual per-
formance improvements depend on the overhead
of making power scheduling decisions. Figure 7
shows the time overhead of making peak power
management decisions in software for the various
techniques for various numbers of cores. As the
graph shows, MaxBIPS, which has been demon-
strated as an effective global power management
technique in [18, 5, 33] may be unsuitable, as is,
for peak power management for many-core architec-
tures (with unacceptably large overhead even for 8
cores) due to the exhaustive nature of its state space
search. Overheads for sorted WS and learning-based
approach are low for small and moderate number of
cores because of significant reduction in the state
space. The overheads increase linearly, however.

6.3 Performance of the Proposed Techniques
Figure 8 shows the performance of the proposed

techniques for peak power management for a 16-
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Figure 8. Performance of many-core power
management policies against the baseline and
the static oracle.

core CMP architecture along with the performance
of the baseline processor and a static oracular sched-
uler for comparison. The graph also contains results
for sorted WS. The graph does not contain results
for MaxBIPS, as it has unacceptably high overhead
for 16 cores.

As the results show, the proposed techniques sig-
nificantly outperform the baseline as well as the
static oracle. Consider the confidence counter-
based learning-based approach, for example, in
which cores are eliminated from the evaluation pro-
cess as the power manager learns the optimal states
for the cores. For the 16-core architecture that we
studied, decisions only needed to be made for 4 or
5 cores, on average, after the first learning phase.
This 71.67% reduction of cores in the decision cor-
responds to a 99.96% reduction of the search space,
resulting in a substantial speedup in the arbitration
process and marked gains in performance. On av-
erage, the learning-based approach results in a 33%
performance improvement over the baseline proces-
sor and 22.1% over the static oracle. These improve-
ments can primarily be attributed to the increased
efficiency of the evaluation process in finding the op-
timal power mapping. Specifically, cores that have
already learned their optimal power states are not
subjected to a suboptimal state during evaluation.
This benefit is evidenced by superior performance
of the learning-based approach for the high sensi-
tivity workload. When performance is sensitive to
V/f scaling, temporarily suboptimal states encoun-
tered during evaluation can noticeably degrade per-

formance.

Employing the genetic algorithm for intelligent
exploration of the search space also results in re-
duced search time. Results show that nearly all
searches terminate within two generations. Occa-
sionally, the selection process extended for three
generations. Thus, in the worst case for the 16-core
model, the search space was reduced by 99.95%. On
average, power management utilizing this technique
generates performance gains of 30.7% over the base-
line and 19.8% over the static oracle. The slight re-
duction in performance with respect to the best per-
forming technique is likely due to the increased eval-
uational overhead of the genetic approach, which
may require multiple iterations to converge on the
final power mapping.

Modeling the search process as a knapsack prob-
lem results in a reduction in the computational com-
plexity of the search algorithm, allowing for faster
examination of the search space. On average, per-
formance increased by 32.6% with respect to the
baseline processor and by 21.7% over the static or-
acle. The knapsack approach exhibits good per-
formance even for workloads with low performance
contrast between different power states. Whereas a
learning-based technique relies on performance dif-
ferentiation between different power states to op-
timize the evaluation procedure, the knapsack ap-
proach considers the entire power budget and opti-
mizes the power state partitioning, regardless of the
variance in the the performance statistics. Note also
that the knapsack approach examines thread per-
formance in isolation (as opposed to search-based
approaches that examine the overall performance of
a workload). So, we expect the benefits of this ap-
proach to be reduced for highly bandwidth-sensitive
workloads, where the system performance does not
necessarily equal the sum of isolated performance
values.

Note that the proposed approaches, even if they
seem relatively complex (over random mapping or
sorted WS, for example), outperform sorted WS, a
simplistic dynamic mapping technique, by at least
12%, justifying the need for such approaches.

Note also that all the proposed techniques
achieve roughly the same performance for our work-
loads. However, they still differ in terms of the
cost of making peak power management de-
cisions (see Figure 7). We suspect that the
learning-based approach will outperform other ap-
proaches for very large number of cores. The limi-
tations of our current simulation infrastructure pre-
vent us from doing that study.
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7 Summary and Conclusions
This research focuses on maximizing many-core

processor throughput for a given peak power bud-
get. We demonstrated that managing peak power
for many-core architectures (processors with tens
or possibly hundreds of cores on the same die)
may pose a significant challenge when using conven-
tional, centralized techniques [18, 33, 5], especially
if a large number of power domains are supported on
the chip. The challenge stems from an exponential
explosion in the global power management states.
We proposed three scalable techniques for peak
power management that are specifically tuned for
many-core architectures. These techniques accel-
erate the decision process for peak power manage-
ment by pruning the search space of global power
management states. Over our set of diverse work-
loads, our enhanced architectures (using the pro-
posed techniques) averaged 30% better performance
than comparable CMPs with equivalent area and
power budgets. Also, the proposed techniques per-
formed, on average, at least 22% better than the
peak power management policies designed for ar-
chitectures with a small number of cores, even for
16 cores.

As the number of cores on a processor die con-
tinues to grow and as peak power management in-
creasignly becomes a first order concern, the effec-
tiveness of our techniques will only continue to in-
crease.
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