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Abstract. Whereas efficient barrier implementations were once a concern only
in high-performance computing, recent trends in core integration make the topic
relevant even for general-purpose CMPs. While the nature of CMP applications
requires low-latency, the cost of low-latency barrier implementations using hardware-
based techniques can be prohibitive for CMPs, where die area represents oppor-
tunities for throughput and yield. Similarly, whereas traditional multiprocessor
barrier implementations were developed primarily for dedicated environments,
scheduling and multi-programming on CMPs require more adaptable barrier im-
plementations.
In this paper, we present and evaluate three barrier implementations that are hy-
brids of software and dedicated hardware barriers and are specifically tailored
for CMPs. The implementations leverage the unique characteristics of CMPs and
provide low latency comparable to that of dedicated hardware networks at a frac-
tion of the cost. The implementations also support adaptability, enabling efficient
multi-programming and dynamic remapping of the barrier network.

1 Introduction
Barrier synchronization has been a well-studied problem for large-scale, traditional
multiprocessors [1–4]. A wide variety of barrier implementations have been proposed,
ranging from software-based [2, 5–8] to fully hardware-based [3, 9–12]. Several of these
implementations have been used in the context of large-scale parallel applications with
large data sizes, coarse-grained parallelism, and high computation to communication
ratios.

Requirements for barrier synchronization for CMPs are different, however. In con-
trast to typical multiprocessor applications which target coarse-grained parallelism,
multi-core applications tend to exploit fine-grained parallelism, making low-latency
synchronization a primary concern. Consequently, multi-core applications can be highly
sensitive to barrier performance. For example, Figure 1 shows the performance of three
OpenMP NAS benchmarks [13] that exploit inner-loop parallelism. As the granularity
of parallelism decreases, the overhead of barrier synchronization becomes relatively
larger, and performance degrades. As the results show, performance can be very sensi-
tive to barrier latency for applications with fine-grained parallelism. So, a barrier im-
plementation for multi-cores should have low latency.

Also, low latency barrier implementations have traditionally been achieved through
dedicated hardware support. For CMPs, however, the high area and power overheads
of hardware barrier implementations are particularly taxing. Figure 2 shows how the



area overhead of additional dedicated links scales with the number of cores for a dedi-
cated hardware barrier tree implementation in 65nm technology. The area cost of dedi-
cated links is determined by the thickness (dependent on metal layer) and length of the
wires [14], and may represent a considerable fraction of the precious die area for CMPs
(up to 16% assuming a 400mm2 die). Since die area is a precious resource for CMPs
(as it can translate into higher throughput – saved area can be used for more cache or
cores – or higher yield – yield varies inversely with die area), a barrier implementation
for multi-cores cannot afford to ignore the area/power costs of providing low latency.

Finally, while applications for high-performance systems are typically run in a ded-
icated system mode, multi-core applications are often expected to run in shared en-
vironments with scheduling and multi-programming. So, barrier implementations for
multi-cores should be adaptable for various levels of participation and dynamically con-
figurable based on the mapping of threads to cores.Performance Sensitivity of NAS Benchmarks to Relative Barrier Latency
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Fig. 1: The performance of three NAS parallel benchmarks degrades as the granularity of parallelism becomes finer and
relative barrier latency increases on a 16-threaded workload. When relative barrier latency becomes high, as can be the case
for software barrier implementations, taking advantage of fine-grained parallelism has little or no benefit.Area Overhead of Dedicated Network
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Fig. 2: A dedicated network adds considerable area overhead to the chip. The plot above shows the area overhead of a
dedicated tree network in terms of additional wiring cost for 65nm technology.

In this paper, we revisit barrier synchronization for CMPs and present three CMP
platforms that achieve barrier latencies close to those of dedicated hardware barrier
networks at a fraction of the cost. The implementations support adaptability, enabling
efficient multi-programming and dynamic remapping of the barrier network.

2 Hardware-supported Mapping of Virtual Barrier Topologies
Our first CMP-specific optimization accelerates software-based barrier implementa-
tions. One way to reduce the performance overhead of software-based barrier synchro-



nization while keeping area overhead low is to form a virtual hierarchical network atop
the physical mesh. In terms of topologies, a butterfly network can potentially achieve
the lowest latency for global barrier synchronization. However, for this study, we con-
sider a virtual tree network due to the high connectivity/area and messaging costs of the
butterfly ((N/2)·log2N and N ·log2N , respectively) as compared to the tree (N−1 and
2 · (N − 1)). We assume that the existing topology of the network-on-chip for general
purpose communication is a mesh. The following section describes our first platform
for providing low-overhead, accelerated barrier support.

2.1 Implementation

When a group of cores that will perform synchronization is mapped into a virtual barrier
tree, we can reduce the software overhead of synchronization by adding a simple state
machine to each router to control routing of intermediate barrier notifications in the
interconnect, without involving the cores.

The state machine in each router (Figure 3) contains three registers and three notifi-
cation bits. The registers store the location of the parent, left child, and right child of a
node in the network. The notification bits record whether a node has received an arrival
notification from left child, right child, and self. When a thread reaches the barrier, it
sends a notification to itself. When all notification bits are set, the last arriving notifi-
cation is forwarded to the parent node. When the barrier has been satisfied at the root,
completion notices are propagated back down to the leaves of the tree.
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Fig. 3: This state machine describes the routing logic for barrier notifications in the virtual network. Arrival notifications are
forwarded up the tree when the barrier is satisfied at the current level. Completion notifications are propagated down the tree
after the barrier is satisfied at the root level.

Since propagation of the intermediate signals in the virtual barrier network can be
performed in hardware, a node only needs to perform the initial arrival notification and
the final check for barrier completion. Moreover, all of the notification details (such as
neighbors, size, etc.) are determined and stored in the routers when the virtual network
is configured. Therefore, rather than using a high overhead, generalized software pro-
cedure to send and receive notifications, we allocate a memory mapped address for use
in barrier algorithms such that a store to the address sends an arrival notification to the
network, and a load from the address stalls until the barrier completion notification is
received at the node.



2.2 Benefits and Overheads
Adding hardware support for virtual networks reduces barrier latency by minimizing
the software overhead of barrier management. Additional cost at routers consists only
of a few registers and a small state machine. This approach adds no additional area
overhead for communication links.

2.3 Map Optimization
While hardware support for virtual barrier networks improves the performance of bar-
riers without adding much overhead, the performance gains are constrained if a naive
strategy is used to map the virtual network onto the physical interconnect. In this sec-
tion, we consider the benefits of intelligent mapping.

Determination of the optimal virtual to physical mapping involves finding the min-
imum depth spanning tree of the graph represented by the CMP cores (vertices) and
mesh links (edges), where depth represents the longest distance from root to leaf. In
general, this problem is NP-complete [15], and the goodness of a solution may depend
on several factors, including the amount of time spent in computation. This may not
be a problem for a statically assigned tree, but for the case of multicore processors, in
which thread-to-core mappings are assigned dynamically at runtime and may change
depending on availability of nodes and number of threads in a thread group, a static
mapping will likely be inadequate.

The algorithm used to determine virtual to physical mappings is described in Fig-
ure 4. When a thread group will utilize barrier synchronization, this algorithm is exe-
cuted by the processor’s software runtime at the time a thread-to-core mapping is as-
signed for the task. Once the involved routers are configured by the runtime, no addi-
tional runtime support is needed during barrier execution. The algorithm selects a root
near the center of the selected mesh nodes to maximize opportunities for fanout as the
tree expands. Exhaustive testing over all possible tree roots confirms that the algorithm
achieves minimum global barrier latency by minimizing the depth of the tree. Figure 5
gives examples of a naive mapping and an optimized mapping for a 16-core CMP.

NodeList.append(root); hasParent[root] = true
while NodeList not empty do

POP Node i from NodeList with minimum depth
for child in {left,right} do

child = node with min distance(i, child) AND hasParent(child) = false
NodeList.append(child); hasParent[child] = true

end for
end while

Fig. 4: The virtual to physical mapping algorithm bears some similarities to Prim’s algorithm for minimum spanning trees.
The goal of the algorithm is to find the spanning tree with minimum root-to-leaf depth.

2.4 Platform Adaptability
The support for virtual barrier networks described above is easily adaptable to support
semi-global synchronization of dynamic thread groups. When a processor’s runtime
schedules a group of threads, it may assign to them a dynamically computed virtual
barrier tree if they will be performing barrier synchronization. In this case, the runtime
selects a group of cores for the threads to use, computes a virtual to physical mapping
for the graph represented by the cores and mesh links, and configures the state of the
routers to connect and initialize the virtual network.
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Fig. 5: In the figure on the left, an obvious (but naive) mapping strategy is used to assign tree neighbors. In this strategy, node
i’s children are at indices 2i + 1 and 2i + 2, and the resulting tree depth and aggregate hops of the mapping are 8 and
34. In an optimized approach to assigning the tree structure, a search is performed to find the best tree root, and each node’s
children are determined dynamically to minimize tree depth. The network on the right has a depth of 4 and an aggregate hop
count of 17 – half that of the naive mapping.

3 Barrier Implementation using Hybrid Networks
While the previous CMP-specific barrier implementation accelerates software-based
barrier implementations by providing hardware support for mapping virtual barrier
topologies to physical topologies, in this section, we discuss a CMP-specific barrier
implementation that tries to get the benefits of both software and hardware-based bar-
rier implementations by creating a hybrid network.

A dedicated barrier network includes a dedicated link between two nodes that are
neighbors in the topology. However, for a good mapping strategy, a direct connection
may already exist between the two nodes in the form of a regular mesh link. Thus,
adding an extra dedicated link does not buy additional performance in several cases.
However, there can be a benefit for placing a dedicated link when there is not already a
mesh link connecting two virtual neighbors in the barrier topology. This is the basis of
a technique we call barrier bolstering.

3.1 Implementation
In an attempt to create a perfect barrier tree, with one hop between each level of the tree
for all paths (each node is directly connected to all tree neighbors), we can add a dedi-
cated physical link between two virtual neighbors any time a single-hop path does not
exist between the nodes in the physical network. With this approach, the latency of the
hybrid network would be very close to that of the dedicated network, and presumably,
the cost would be lower, since some virtual links correspond directly to single physical
links in the mesh. However, since wire delay depends on wire length, the effective-
ness of this technique in reducing latency would be somewhat limited, since long wires
(even long dedicated wires) would incur multiple-cycle delays. Also, due to limited
connectivity at each switch in the mesh, the overhead of this strategy approaches that
of a dedicated network as the number of nodes increases.

The previously mentioned approach to barrier bolstering can incur high area over-
heads when the number of cores is large. Also, perceived benefits may in reality be lim-
ited, since long wires require multiple cycle delays. Thus, for our actual implementation
of barrier bolstering, we choose a more cost-effective technique for adding dedicated
links, and we assume that link latency is proportional to link length in hops. Under
this assumption, replacing long virtual links with dedicated links does not buy much
performance relative to the cost.



While it may be unrealistic to assume substantial reduction in latency by replacing
all multi-hop links with dedicated links, it is certainly possible to equalize the latency
of links that have similar latencies by replacing the longer virtual link with a dedicated
link. We define barrier slack as the difference in delay between two virtual links that
connect sibling nodes in the topology. When barrier slack is present, the critical path
of a virtual tree will be limited by the longer of the virtual links at a given level of
the tree. Thus, we can reduce the critical path of the tree by adding a dedicated link
to short circuit the longer path and equalize the latencies of the paths to the siblings.
Figure 6 demonstrates how barrier bolstering can reduce the depth of a barrier tree
by selectively adding dedicated links to equalize the latency of paths to two sibling
nodes. This reduction in latency is mostly attributed to the reduced routing cost on the
dedicated link.
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Fig. 6: This figure demonstrates how dedicated links can be selectively added to reduce the critical path of a tree. When two
virtual links in the same level of the tree differ in length (in hops), barrier slack exists between the two links. Under certain
circumstances, adding a dedicated link can eliminate the slack and equalize the latencies of the links to that of the shorter
link, reducing the critical path of the tree network.

3.2 Benefits and Overheads
Barrier bolstering produces a very low latency barrier implementation, with perfor-
mance close to that of a dedicated network (results in section 6) by selectively adding
dedicated links to reduce the depth of the tree network. Different approaches to bolster-
ing affect the number and lengths of dedicated links that are added, which determines
the area overhead of the bolstering technique.

Figure 7 compares various approaches to barrier bolstering in terms of their wiring
overhead costs. Even if possible to implement with acceptable link latencies, the cost of
the first mentioned technique (with single-hop links for every link) approaches the cost
of a dedicated network for large number of cores. This cost can be reduced somewhat
by realizing that permitting a certain number of two-hop links does not increase the
latency of the barrier. However, in our actual implementation of barrier bolstering, the
wiring cost remains low (less than 1% die area) even for large number of cores.

3.3 Mapping Considerations for Barrier Bolstering
In the case of barrier bolstering, the virtual to physical mapping algorithm from the
previous implementation (Figure 4) is modified to minimize the slack between sibling
nodes in the virtual tree. Figure 8 shows the new algorithm, which is used during net-
work design to determine the locations of supplemental dedicated links in the network
for optimal global barrier performance. Although the network is optimized for global
barriers, semi-global barriers can also achieve good performance, since they can be
mapped to optimized subtrees of the global tree. During dynamic mapping, the final
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Fig. 7: This figure compares the area overheads for various hybrid network configurations. Whereas the cost of a perfect
single-hop tree (where every node is directly connected to its neighbors) approaches that of a dedicated tree for high core
integration (compare to Figure 2), the cost of slack elimination via barrier bolstering remains low.

if statement of Figure 8 is ignored, since the locations of dedicated links are statically
assigned.

NodeList.append(root); hasParent[root] = true
while NodeList not empty do

POP Node i from NodeList with minimum depth
select children with: min(max(distance(i,left),distance(i,right))) AND min(|distance(i,left)-distance(i,right)|) AND
hasParent(left,right) = false
NodeList.append(left,right); hasParent[left,right] = true
if |distance(i,left)-distance(i,right)|< max correctable slack then

mark longer link as dedicated
end if

end while
Fig. 8: The virtual to physical mapping algorithm for barrier bolstering attempts to minimize slack between siblings. This
algorithm is used to select the locations of dedicated links for best global barrier performance.

3.4 Platform Adaptability
Since some dedicated links are used in barrier bolstering, the adaptability of the plat-
form for dynamic thread mapping is somewhat lessened. For semi-global synchroniza-
tion, the best case is when a thread group can be mapped to a subtree of the originally
mapped tree. In this case, the threads receive the full benefits of the bolstering. In the
worst case, the virtual to physical mapping for a thread group may not be able to use
any of the dedicated links. In this case, the performance of the bolstered network is
equivalent to that of the unbolstered virtual network.

4 Reducing Virtual Link Latency with Router Bypassing
While the first technique (hardware-supported mapping of virtual barrier topologies)
required no additional link area overhead, the previous technique (barrier bolstering)
allowed closer approximation of the performance of a dedicated hardware barrier net-
work. In this section, we discuss a way to get most of both benefits by allowing direct
virtual connections instead of physical connections in the case of bolstering.

4.1 Implementation
Using a well-mapped virtual topology in conjunction with barrier state machines at
the routing nodes significantly reduces the latency of barrier synchronization. Note,
however, that for a virtual link in a virtual tree, there may be multiple hops between
successive levels of the tree. This occurrence adds latency to the critical path of the tree,



and a significant portion of this latency is due to the packet being routed at multiple
routers along its path between tree levels. A recent work suggests the use of express
virtual channels [16] to mitigate the cost of routing packets that travel multiple hops.

Link Latency = 1
Routing Cost = 3

EVC Routing Cost = 1
Cost without EVC = 9

Cost with EVC = 5

EVC

Fig. 9: An EVC has a source and sink node and spans multiple hops along a routing path. When a packet allocates an EVC,
it skips the routing stage at intermediate routers and a routing decision only needs to be made again once the packet exits the
EVC.

Figure 9 explains the concept of an express virtual channel (EVC). When the down-
stream destination of a packet is further than one hop away, an EVC may be allocated,
spanning all intermediate routers so that the packet can continue on the same virtual
channel without being routed at the intermediate nodes. Routing only needs to be per-
formed again when the packet reaches the terminus of the EVC.

We use EVCs as a way to set up virtual connections between nodes that are logical
neighbors in the virtual barrier topology. Since the set of routing paths to be acceler-
ated for a given tree mapping are fixed, EVCs can be planned and allocated efficiently
according to the state of the configuration registers in the routers. When configured
by the runtime for a specific virtual topology, the registers store the location of virtual
neighbor nodes, describing the parameters for an EVC between the nodes.

4.2 Benefits and Overheads

Using EVCs to enhance routing between virtual neighbors maintains all the benefits of
the virtual network platform and also adds the benefit of reduced routing latency for
some multi-hop virtual links. The extent to which this benefit can improve performance
depends on how well EVCs can be utilized.

The costs incurred to obtain this additional benefit are increased router complexity
to add support for EVCs and potential degradation of other network traffic, since EVCs
suppress communication on intermediate routers when they are allocated until they are
freed. Use of EVCs does not add any area/power cost in terms of communication links.

4.3 Mapping Considerations

The use of EVCs adds a new dimension to the virtual to physical topology mapping
problem. Since EVCs are only allowed to travel along a single routing dimension [16],
the selection criteria for choosing the children of a node when forming a virtual tree
are somewhat different. Whereas in the original algorithm, children were chosen to
minimize the number of hops between successive tree levels, they are now selected
to simultaneously minimize both the number of hops and the number of directional
changes. This implies a different distance function that accounts for the relative costs
of link traversal and routing latency in EVCs. Because the cost of routing is higher than
the cost of link traversal, situations arise in which it is more efficient to travel more hops
in a single direction than fewer hops in multiple directions.



When an EVC flow passes through a router, any other traffic at that router is sup-
pressed. This situation reveals a tradeoff for EVCs. While they exhibit potential to ex-
pedite communication along the EVC path, they also potentially slow down other traffic
that uses any of the routers in the EVC path. We account for this by minimizing the oc-
currence of crossing paths in the same level of the tree whenever possible. This means
that if multiple potential children are located at the same distance, children are selected
to avoid crossing paths in the same tree level. Figure 10 gives the EVC-aware virtual to
physical mapping algorithm.

let distance(i,j) = (link latency)·hops(i,j)+(routing latency)·dirChanges(i,j)
NodeList.append(root); hasParent[root] = true
while NodeList not empty do

POP node i from NodeList with min depth
select children with: min distance(i,child) AND hasParent(child) = false
if multiple potential children with min distance then

select children to minimize crossing paths
end if
NodeList.append(children); hasParent[children] = true

end while
Fig. 10: The EVC-aware virtual to physical mapping algorithm minimizes directional changes and same-level crossing paths,
features that inhibit the utilization or performance of EVCs.

Figure 11 demonstrates that a mapping algorithm that is aware of the tradeoffs in-
herent in the use of EVCs can produce a different mapping than the normal mapping
algorithm, which considers the cost of all hops along a virtual path to be the same,
independent of the directional implications.
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Fig. 11: The figure above compares the same subsection of a 64-core mesh for two mapping strategies – one that considers
EVC tradeoffs during the mapping phase (left) and one that does not (right). When EVC tradeoffs are considered, virtual
paths that change directions are less desirable.

4.4 Platform Adaptability
Since EVCs are allocated dynamically, not statically like the dedicated links in barrier
bolstering, this platform shares all adaptability features of the original virtual network
platform.

5 Methodology
To obtain our experimental results, we use a modified version of the M5 simulator [17]
that has been adapted to support communication over a network-on-chip (NoC) rather
than a shared bus. In our baseline architecture, the NoC has a rectangular mesh topol-
ogy, with link latency equal to 1 cycle and routing latency equal to 4 cycles. Routers



Clock 2GHz Mem Latency 300 cyc Execution In-order
L1 Icache 32KB L1 Dcache 64KB L2 4MB/CORE, 10 cyc

Table 1: Architectural Details.

are pipelined for increased throughput. Table 1 lists some additional details about the
simulated architecture.

To model a dedicated hardware barrier network, we add an extra set of physical links
to the chip and arrange them in a tree topology. Routing for the dedicated network is
simple, deterministic, and suffers no resource contention. Thus, we specify single cycle
latency for routing on the dedicated network. Link latencies for the dedicated links are
assigned based on the Manhattan distance between the connected nodes.

For virtual barrier configurations, described in section 2, we model routers with sup-
plemental routing logic equivalent to the state diagram of Figure 3. The state machine
logic requires only a few latches and gates. For an N-core processor, the additional state
required at each router is composed of 3 · logN bits to store the indices of the parent,
left child, and right child, and 3 bits to track whether arrival notifications have been
received from left child, right child, and self.

In section 3, we model the addition of select dedicated links to the regular mesh.
All routing latencies remain the same, and link latencies of the dedicated links are
determined by the lengths of the links.

In section 4, we assume the availability of express virtual channels (EVCs). Nec-
essary support for EVCs is described in [16]. When an EVC is allocated, we assume
normal routing latency at the source and termination of the EVC and routing latency of
1 cycle for intermediate routers.

6 Analysis of Results
In this section, we first reinforce the point made in section 1 that barrier synchronization
mechanisms for CMPs need to be different from those for traditional multi-processors.
Then we compare the performance of the various CMP-specific barrier implementations
presented in this paper. Finally, we discuss the implication of new barrier implementa-
tions on performance and design of parallel applications.

6.1 Traditional Barrier Mechanisms in the Context of CMPs
In our revisitation of barrier mechanisms for CMPs, we looked at three categories of
software barrier implementations, categorized based on their communication patterns –
centralized barriers, decentralized barriers, and hierarchical barriers.

Centralized barriers are most commonly found in cache coherent shared memory
systems. In this style of barrier, all participating threads communicate with a central
entity to make known their arrival at the barrier. When the centralized entity receives
notifications from all threads, it responds in turn by sending barrier completion notifi-
cations to the participants. While this type of barrier is simple to implement, obvious
performance and scalability detriments are inherent in the design.

Decentralized barrier algorithms differ from centralized algorithms in that all
threads determine completion of the barrier locally. Thus, decentralized algorithms per-
form notification and completion phases in parallel, at the expense of extra communi-
cation between participants. An example of a decentralized barrier that we evaluated is
a broadcast barrier.



In a hierarchical barrier algorithm, each participant synchronizes with some sub-
set of the global nodes and subsequently propagates the local synchronization state to a
higher level until global synchronization can be determined. Some example implemen-
tations of this type are tree and butterfly barriers [2].

Figure 12 shows the performance of various standard software barrier implementa-
tions on multi-core architectures with different number of cores.Software Barrier Latency
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Fig. 12: This figure shows the latency of different software barrier implementations for varying number cores. While the
hierarchical software implementations show some promise, the other approaches are constrained by software overheads on
the critical path. For implementations that are sensitive to link latency, LL=X denotes the link latency.

Figure 12 demonstrates a few key CMP-specific points. First, there is no difference
between the performance of the centralized and decentralized software barriers on the
CMP due to the relative expense of barrier management in software as compared to the
relatively low cost of communication between cores. Essentially, notifications arrive
faster than the software is able to process them.

Another observation is that changing the latency of the communication links for
a multi-core architecture has almost no effect on the performance of centralized and
decentralized barriers. This further demonstrates that these implementations are con-
strained by software overhead and shared resource constraints and are unsuitable for
use in CMPs. On the other hand, the hierarchical barriers do respond to changing link
latency, with a more pronounced effect as the depth of the hierarchy grows. This is be-
cause the critical paths of these algorithms depend more directly on link latency. Since
notifications do not always queue up for threads, they must spend time waiting for no-
tifications to travel from one level of the hierarchy to the next.

The final observation to be drawn from the figure is that even though some software
approaches are not completely dominated by software overhead, the barrier synchro-
nization overhead is still unacceptably high for all software barrier implementations
in scenarios where medium to fine grain synchronization is desirable. So, barriers for
CMPs should preferably not be implemented in software and should have low latency.

We also investigated using dedicated hardware barrier tree networks.
Figure 13 shows performance scalability for dedicated tree barrier networks. The

two curves represent different assumptions about link latencies. The lower curve cor-
responds to the situation where routing can be done through different metal layers to
normalize the link latency. For the upper curve we assume pipelined links where the
length determines the number of latches necessary and thus the end-to-end latency of
the link. As the latter assumption represents a more realistic scenario, we use this ap-
proach for comparison in the rest of our discussion.



Dedicated Barrier Performance
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Fig. 13: Dedicated barrier networks achieve very low latency synchronization. The two curves represent different assumptions
about the routing and latency determination for network links. In one, uniform link latency is assumed. For the other curve,
we assume link latency proportional to link length.

Comparison of Figure 12 and Figure 13 demonstrates that dedicated hardware bar-
rier implementations have much smaller performance overhead than software imple-
mentations. In fact, compared to the dedicated barrier tree implementation, the best per-
forming software implementation exhibits up to 22.82x increased latency. However,
dedicated hardware barrier networks have prohibitive area overhead (see section 1). So,
new CMP-specific implementations are needed.

6.2 Performance Benefits of CMP-specific Barriers
Figure 14 compares the latencies of the efficient barrier techniques to those of the ded-
icated hardware barrier network. The results demonstrate that with efficient barrier no-
tifications and minimal support in the NoC, we can achieve close to dedicated perfor-
mance at a greatly reduced cost.Comparison of Efficient Latency Reduction Approaches
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Fig. 14: The efficient latency reduction techniques all represent ways to approach the performance of a dedicated network
without paying the associated overhead cost. The hybrid approach comes very close to matching the performance of a
dedicated synchronization network with a sizable reduction in overhead.

There are several sources of benefits for each of the three barrier implementations.
For example, our first technique (hardware-supported mapping of virtual barrier topolo-
gies to physical topologies) uses loads/stores instead of sends/receives. The formula for
latency of the tree barrier has the form X+Y ·log2N , where X and Y represent the noti-
fication/completion cost and the inter-level traversal latency, respectively. Thus, adding
load/store support for barrier notifications reduces latency by cutting down the value of
X, as demonstrated in Figure 15.

Similarly, optimizing the virtual to physical mapping for a synchronization net-
work can significantly affect performance. Figure 16 compares the latency of a naively
mapped virtual tree, in which children are located at the obvious node indices, to an
optimized virtual mapping, in which the children of each node in the tree are selected
intelligently based on the algorithm outlined in Figure 4.

Figure 17 shows that if EVCs are employed to expedite routing on virtual links,
then it becomes necessary to consider the limitations of virtual channels when decid-
ing on the optimal virtual to physical mapping. Mappings that are unaware of these



Reduction of Software Overhead by Replacing Send/Recv with LD/ST
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Fig. 15: This figure demonstrates the effect of using a LD/ST instruction for barrier notifications rather than a send/recv
operation. Since the barrier notification message does not need the general functionality of a full-fledged send operation, the
latency can be reduced considerably. Likewise, latency of completion query can be similarly reduced. The aggregate effect
is to shift the latency curve down by a constant offset.Intelligent vs Naive Mapping for Virtual Barrier
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Fig. 16: This figure compares barrier latency for two virtual barrier networks – one that is configured naively, and one that
is configured intelligently (e.g. the two configurations of Figure 5). The latency observed by a naive virtual mapping can be
considerably greater than that of an intelligently mapped virtual topology.

considerations are not able to make the most efficient use of available EVCs. As Fig-
ure 17 demonstrates, the benefit of adding EVC capability to the NoC is small unless
an EVC-aware mapping policy is used.
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Barrier Latency With EVCs for EVC-Aware and EVC-Unaware Mappings

Fig. 17: This figure shows the difference in barrier latency for an EVC-aware mapping strategy and a strategy that does not
optimize for best EVC utilization. The results demonstrate that the benefit of adding EVCs is small unless the existence of
EVCs is accounted for during the virtual to physical mapping process.

6.3 Implications for Performance and Design of Parallel Applications
To further validate the usefulness of our barrier techniques, we demonstrate how fast
barriers enable large-scale CMPs to exploit fine-grained parallelism and achieve speedups
on challenging benchmark applications. As in [18], we evaluate the performance of our
barrier techniques for two of the Livermore loops [19] and two benchmarks from the
EEMBC suite [20]. Figure 18 compares the performance of parallel versions of the
Livermore loops that employ software and hardware barrier techniques on a 128-core
CMP against the sequential performance for varying vector lengths.

Although the granularity of parallelism is very fine, the efficient barrier techniques
allow the large-scale CMP to achieve substantial speedups. For larger granularity of



parallelism, software barriers can have benefits, but the benefits are very limited com-
pared to those afforded by our efficient barrier techniques. These results demonstrate
the need for low-overhead, CMP-specific barrier techniques.

Figure 19 shows the benefits of efficient barrier approaches for EEMBC Autocor-
relation (32 lags, input=xspeech) and Viterbi decoder (input=getti.dat). The Autocor-
relation results demonstrate that while software barriers leave performance on the ta-
ble, virtual and hybrid approaches can nearly achieve the performance of a dedicated
synchronization network. For the Viterbi decoder, using a software barrier implementa-
tion actually results in a slowdown with respect to sequential, while hybrid approaches
achieve modest gains. For these benchmarks, performance variation between our effi-
cient techniques was small. This variation increases with increased application depen-
dence on barriers and increased number of cores performing synchronization.

In a nutshell, using CMP-specific barrier implementations allows existing parallel
applications to exploit fine-grained parallelism more effectively. It also allows applica-
tions to be parallelized at a finer granularity, potentially resulting in significant applica-
tion speedups.Performance Against Sequential for Loop 2
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Fig. 18: Performance comparison of software, hybrid, and hardware barrier implementations for Livermore loops 2 and 3.
Speedups are relative to sequential execution.Speedup vs Sequential for 16 threads0246810 SOFTWARE VIRTUAL HYBRID DEDICATEDSPEEDUP  . AutocorrelationViterbi
Fig. 19: Performance comparison of software, hybrid, and hardware barrier implementations for EEMBC Autocorrelation
and Viterbi decoder. Speedups are relative to sequential execution.

7 Related Work
Barrier synchronization in the context of large scale multiprocessors has been a well-
studied problem [1–4]. Several approaches target efficient software algorithms [2, 5–8],
but dedicated hardware synchronization networks have also been deployed in some
systems. Notably, IBM’s Bluegene/L [9] contains multiple interconnect networks, each
with a dedicated purpose. Both the global interrupt network and the collective com-
munication networks of BG/L can be used to achieve low latency barrier synchroniza-
tion [3]. Targeting low latency synchronization, other systems have also used dedi-
cated networks, including the AND-tree barrier synchronization circuits of the Cray
T3D [10], the network-supported fetch-and-add approach of the NYU Ultracomputer [11],



and the barrier register proposed by Beckmann, et al. [12]. While we evaluate the per-
formance of a dedicated hardware barrier network, we do so in the context of a CMP,
where we observe a different set of constraints and design considerations than those
found in previous large-scale multiprocessors.

More recent works have looked at the topic of synchronization in CMPs. Zhu, et
al. propose a synchronization state buffer [21] for reducing the overhead of fine-grain
synchronization support by tracking only actively synchronized data. Sampson, et al.,
suggest the use of barrier filters [18] that are implemented in the memory controllers
of a shared memory processor. These efforts both represent centralized, memory-based
approaches, whereas our techniques are inherently decentralized in nature and focus on
support in the NoC.

Another recent work [22] evaluates barrier performance in CMPs with the intent of
determining how well various barrier algorithms perform on different NoC topologies.
This is similar to the way in which we map virtual topologies onto disparate physical
topologies, however, the mapping strategies used in [22] are naive, leading to a differ-
ent set of conclusions. Another Cray multiprocessor, the T3E [23], uses configurable
routers, equipped with barrier synchronization units to map a virtual topology onto a
separate physical topology.

Our optimization of virtual barrier networks through the use of express virtual chan-
nels (EVCs) is based on the work of Kumar, et al. [16], who propose EVCs as a tech-
nique for approaching an ideal interconnect fabric for NoCs.

8 Conclusion
In this research, we have revisited the subject of barrier synchronization for many-core
CMPs. First, we established that the unique characteristics and constraints of CMPs dic-
tate that software-only barrier implementations perform poorly relative to implementa-
tions that utilize a dedicated synchronization network. Then we observed that the over-
head of adding a dedicated synchronization network to a chip can be high, especially
as core integration continues to increase. Based on these observations, we suggested
several techniques that utilize the existing network on chip with slight modifications to
allow dramatically increased barrier performance without paying the price of a dedi-
cated network. Our techniques allow us to achieve near-dedicated barrier performance
for minimal cost.
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