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ABSTRACT

Software-based path delay fault testing (SPDFT) has been used
to identify faulty chips that cannot meet timing constraints
due to gross delay defects. In this paper, we propose using
SPDFT for a new purpose — aggressively selecting the operat-
ing point of a variation-affected design. In order to use SPDFT
for this purpose, test routines must provide high coverage of
potentially-critical paths and must have low dynamic perfor-
mance overhead. We describe how to apply SPDFT for select-
ing an energy-efficient operating point for a variation-affected
processor and demonstrate that our test routines achieve ample
coverage and low overhead.

1. INTRODUCTION

Traditionally, processors have been designed and operated at
worst case operating points determined by static critical path
delays. This ensures timing safety under all circumstances, in-
cluding worst case process, voltage, and temperature (PVT)
variations, but also entails a significant energy overhead, since
worst case conditions are rare [5] and provisioning for the worst
case means operating at a much higher voltage and/or lower
frequency than required on average. In response to the en-
ergy overheads of conventional worst case design, designers have
sought more aggressive design styles that permit better-than-
worst-case (BTWC) operation [8, 5, 1, 6, 7, 22, 28, 29, 2, 16,
12]. For example, the BTWC design technique that has found
the most success in commercial processors is canary circuits [20,
7, 28]. A canary circuit is a protection circuit that attempts
to mimic the static critical path delay of a design and is built
to fail first in the event of an impending timing violation due
to an aggressive voltage or frequency setting caused by varia-
tions or by design. Thus, failure of a canary circuit indicates
the limit of safe operation (e.g., minimum voltage or maximum
frequency) for the static critical path in a processor.

Whereas previous BTWC design techniques have been based
on hardware mechanisms that measure slack in timing mar-
gins, we propose that testing for available timing slack can be
performed with software-based techniques (that may not even
require hardware changes to a processor). Software-based path
delay fault testing (SPDFT) is a technique that tests for gross
delay defects in a design to identify faulty chips that cannot
meet timing constraints. We propose to leverage SPDFT as
a software-based approach to BTWC operation by generating
software routines that test for timing slack on the potentially-
critical paths of a design and adapt the operating point to ex-
ploit available slack for improved energy efficiency. We call our
approach software canaries, since our software routines use the
potentially-critical paths of a processor as canary circuits.

This paper makes the following contributions.
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e We demonstrate the use of SPDFT to select a variation-
aware energy-efficient operating point for a design. To this
end, we propose a methodology for generating SPDFT routines
based on microrchitectural analysis. Since the distribution of
potentially-critical paths for an individual chip also depends on
variations, our test generation methodology accounts for the
potential impact of variations on the slack distribution. We
also present microarchitectural and system support for using
SPDFT to select an energy-efficient operating point.

e Using SPDFT to select an energy-efficient BTWC operat-
ing point requires software-based test routines that provide high
coverage of potentially-critical paths and incur low performance
overhead. We show that it is possible to generate test sequences
for a processor that achieve ample coverage (e.g., 96.4%) while
maintaining low performance overhead (e.g., < 1%). We also
present usage models for our test routines, including when they
are used in conjunction with hardware canary circuits to ensure
100% coverage of potentially-critical paths.

e We show that using SPDFT to select a BTWC operating
point can result in same or better energy efficiency as using
canary circuits. Average energy savings are 12% compared to
a hardware canary circuit-based design and 27% compared to
a conventionally guardbanded worst case design.

2. RELATED WORK

The closest related work is on software-based testing for path
delay faults that render a processor defective [4, 26, 11]. To the
best of our knowledge, this is the first work to use SPDFT to im-
prove energy efficiency by selecting a BTWC operating point in
a variation-affected design. Also, because we perform SPDFT
periodically during runtime, the test routines must have signif-
icantly lower overhead than typical delay fault testing routines.

We use SPDFT to test for timing slack on the potentially-
critical paths in a processor. Fine-grained hardware-based BTWC
mechanisms (e.g., timing speculation [5, 1]) can test for timing
slack on the critical paths of a processor but have considerable
static and dynamic overhead when all potentially-critical paths
are targeted (e.g., 256% [15] to 87% [9]), especially in the context
of microprocessors where a large fraction of timing paths are
potentially-critical [23, 14]. Note that it is possible to use tim-
ing speculation and SPDFT synergistically to maximize system
efficiency (see Section 3.6).

Another related body of work is on built-in self test (BIST) [21,
25, 30] and software-based self-test (SBST) [24, 4, 11]. A BIST
routine uses on-chip hardware to check for defects in logic by
exercising the logic and checking the test results. On the other
hand, SBST, like SPDFT, uses a processor’s instruction set to
perform at-speed defect testing. BIST and SBST focus on test-
ing for permanent defects that render a chip faulty. In contrast,
we focus on using SPDFT to improve the energy efficiency of a
processor through exploitation of timing slack in the presence
of static and dynamic variations.

for profit or commercial advantage and that copies bear this notice and the full cita3,  EXPLOITING TIMING SLACK IN SOFTWARE

tion on the first page. Copyrights for components of this work owned bgrstthan
ACM must be honored. Abstracting with credit is permitted. To copy otherwise-
publish, to post on servers or to redistribute to lists, requires priorfappermission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED’ 14, August 11-13, 2014, La Jolla, CA, USA.

Copyright 2014 ACM 978-1-4503-2975-0/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627369.2627646.

In this section, we describe a framework for deriving software
canaries — instruction sequences that test for path delay faults
on the potentially-critical paths in a given microarchitecture.
We follow with a description of system support required to
use SPDFT to dynamically select an energy-efficient operating
point for a design affected by static and dynamic variations.



3.1 Deriving Instruction Sequences to Test
Potentially-Critical Paths

Software canaries are instruction sequences that test for tim-
ing slack on the paths in a processor and produce outputs
that are checked against the known correct outputs for the in-
struction sequences. A valid test sequence must set up and
propagate a transition on a path from start to end. We design
instruction sequences in such a way that if there is insufficient
timing slack at the present operating point, SPDFT will gen-
erate an incorrect output or an exception, signaling that the
voltage of the processor must be increased. If correct outputs
are produced, the present operating voltage is safe, and there
may be additional timing slack that allows the voltage of the
processor to be reduced. For our objective of using SPDFT
to select a BTWC operating point, we focus testing on the
set of potentially-critical paths (i.e., the paths that might be-
come critical as the processor is affected by variations). We
distinguish between potentially-critical paths in a design and
the critical path in a design because as chips are affected by
variations it is possible for different chips to have different crit-
ical paths or for the critical paths of a chip to change over
time due to aging. If variations (e.g., local and global PVT
variations) can cause the delay of a path to change by up to
X%, then any path with delay that is within X% of the criti-
cal path delay is a potentially-critical path. By testing the
potentially-critical paths in a design for timing safety,
SPDFT can ensure timing safety for the entire design,
even the non-architectural state, since the absence of errors on
all potentially-critical paths indicates that all shorter paths are
also free of errors. Stated another way, if any shorter path
fails, one of the potentially-critical paths (tested exhaustively
by our test routines) must have failed as well, resulting in an
observable failure during testing.

Some approaches exist for generating SPDFT routines for a
processor [24, 4, 11], and approaches in previous work target
exhaustive path coverage. Since our objective is energy effi-
ciency, not identification of faulty chips, we target test routines
that provide ample coverage of potentially-critical paths and
have low performance overhead. Our approach for deriving
SPDFT routines for a given processor design involves (1) iden-
tifying the set of potentially-critical paths (i.e., all paths that
may become critical due to variations) and (2) formulating in-
struction sequences that test those paths with high coverage.
Providing coverage for all potentially-critical paths, rather than
only a few static critical paths, enables adaptation to local as
well as global variations. For example, within-die process vari-
ations caused by factors such as sub-wavelength lithographic
inaccuracies can cause the critical paths on different dies to
be different. By providing coverage for all potentially-critical
paths, we ensure that even if local variations change the
expected delay distribution of a design, SPDFT can
track available timing slack accurately.

To identify potentially-critical paths, we perform static tim-
ing analysis (STA) to identify which paths may become critical
as a result of variations. The potentially-critical paths identi-
fied by STA are the paths with delays that are within X% of the
critical path delay, where X% corresponds to the delay guard-
band for sources of trackable variations (see Section 4).

Since the number of potentially-critical paths in modern pro-

cessor designs can be large [23, 14], using conventional instruction-

based path delay test generation procedures that generate in-
struction pairs to test specific paths for delay defects may result
in very long test sequences [24, 4, 11]. Instead, we use mi-
croarchitectural analysis of potentially-critical paths to design
SPDFT routines. Our approach for test routine generation con-
sists of using microarchitectural analysis to formulate generator
templates that characterize instruction patterns that test for
path delay faults on the critical paths in a design, and expand-
ing the generator templates to create an instruction sequence
that exhibits high coverage for a particular microarchitecture.
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sw Rk ,X bne Ry ,$0,FAIL ori Rk ,$0,-1
1w Rk ,X bne Ry ,$0,FAIL addi Ri41,RK,1
Expansion: Expansion: Expansion:

insert sw R;_1,X
after sw R;,X

append bne Ry ,$0,FAIL
after addi R;41,R;, F1

Figure 1: Generator templates are instruction patterns that excite
transitions on critical paths in a logic stage and are expanded to
provide adequate coverage of potentially-critical paths.

We find that this approach satisfies our goals of ample coverage
and low overhead (see Section 5). Generalized automation of
test routine generation is a subject of ongoing work.

3.2 Derivation of Generator Templates

In this section, we describe the derivation of instruction se-
quences that create transitions on critical paths in a generic
superscalar processor [3]. The FabScalar processor is an open-
source, typical out-of-order pipeline that supports a range of
configurations, from a wide superscalar design to a narrow
scalar design. Thus, our work demonstrates the viability of
using SPDFT to select a BTWC operating point for a range
of simple to complex cores. Detailed evaluation of applying
SPDFT to set processor operating point in the context of other
microarchitectures is a subject of ongoing work.

For ease of exposition, we first explain how we use microar-
chitectural analysis to derive a SPDFT generator template for
the load-store unit, as several other pipeline stages in the Fab-
Scalar processor demonstrate similar criticality behavior.

Load-Store: The load-store unit (LSU) performs memory
disambiguation. This involves checking for dependences be-
tween loads and stores. Load disambiguation begins with a
search through the store queue address CAM to determine if
the load depends on any in-flight stores, followed by generation
of a mask vector that indicates all preceding in-flight stores in
program order. If there are matching entries from the CAM
search, they are filtered by the mask vector, and the latest re-
sulting entry accesses the store queue data RAM and forwards
its data to the load. If forwarding is not required, the mem-
ory request is forwarded to the memory subsystem. Paths that
perform load disambiguation involving store-to-load forward-
ing are critical paths in the LSU, and longer paths are exer-
cised when the in-flight dynamic dependence chain is longer.
Thus, a generator template for the LSU, shown in Figure 1(A),
consists of dependent instructions that necessitate store-to-load
forwarding. We observe that increasing the length of the de-
pendence chain increases critical path coverage. Thus, the gen-
erator template is expanded by adding dependent stores to the
chain until the resulting instruction sequence exhibits adequate
coverage of potentially-critical paths, as described in Figure 2.

Fetch: Next PC generation logic and priority selection be-
tween multiple branch targets constitute the most critical paths
in the fetch stage. Branches in the fetch group check the branch
target buffer, branch predictions are generated by the branch
prediction buffer, and the next PC is selected based on the
predicted branch outcome of the highest priority branch. The
critical paths are exercised when all the instructions in the fetch
group are branches. A generator template for the fetch stage
(Figure 1(B)) consists of back-to-back branches. Branch condi-
tions are written such that the branch outcomes are never mis-
predicted. We observe that expanding the template by append-
ing additional branches (up to the length of the fetch group)
increases coverage of potentially-critical paths.

Decode: For the RISC ISA implemented by FabScalar, de-
code logic has a regular structure. Several possible instruction
sequences exercise critical paths in the decode stage, includ-
ing the generator template for the RegisterRead, Execute, and
Writeback stages (described below, Figure 1(C)). We observe
that expanding the generator template (as described in Fig-
ure 2) increases coverage of potentially-critical paths.

Rename: A large number of critical paths in the rename
stage are exercised when a true dependence chain exists be-

append addi R;t2,Rit1,£1



// Identify potentially-critical paths
Use STA to identify potentially-critical paths Ppc
with delay within X% of the static critical path delay
// Expand generator templates
foreach(generator template GT)
do
Expand length of GT by one unit in test routine
Test coverage Cpc of Ppc
while(Cpc increases)
// Select test with highest Ppc coverage and lowest overhead
Select canary with maximum Cpc that has minimum length

Figure 2: Pseudocode for test routine generation.

tween the entire group of instructions for which register re-
naming is being performed. When the instructions enter the
rename stage, new tags are popped from the freelist for the
destination registers of the instructions. Comparators indicate
that one or more of the source operand(s) of the dependent
instructions are the destinations of the other instruction, so in-
stead of reading the source tags from the rename map table,
the tags popped from the freelist must be selected for the de-
pendent instructions’ sources. Finally, the rename map table is
also updated with the renamed register mappings. A generator
template for the rename stage (Figure 1(C)) consists of back-
to-back instructions that form a chain of true dependences. We
observe that expanding the chain length up to N for an N-wide
processor by adding dependent operations increases coverage of
potentially-critical paths.

Dispatch: The dispatch stage is the gateway between the
processor frontend and backend. It checks for free slots in the
re-order buffer, issue queue, and load-store queue, and dis-
patches instructions to free slots. Like decode, dispatch has
a regular structure. The generator template used for decode
also works well for dispatch.

Issue: The wakeup / select loop contributes the most critical
paths in the issue stage. This critical loop is exercised when
there is a true dependence chain between successive instruc-
tions, such that a source operand for each dependent instruc-
tion is the result of the preceding instruction. A newly awoken
instruction passes through selection logic, is read from the pay-
load RAM, and broadcasts its destination tag, which hits in
the wakeup CAM, closing the loop as the dependent instruc-
tion becomes ready. As with rename, the generator template
for issue consists of back-to-back dependent instructions that
can be expanded into a dependence chain. Thus, we observe
that the same generator template can generate test routines
that provide good coverage for both stages.

RegisterRead, Execute, Writeback: The critical paths
in the register read, execute, and writeback stages are also ex-
cited by back-to-back dependent instructions. In this case, one
or more source operands for each dependent instruction is ob-
tained from the bypass network from writeback rather than
from the physical register file. Critical paths in these stages
consist of reading the physical register file, navigating the MUX
logic joined to the bypass network, executing the instructions,
and writing back the results to the writeback latches and by-
pass network. Again, a generator template containing back-to-
back dependent instructions (Figure 1(C)) works well for these
stages. For the arithmetic operations in the chain, we ensure
(using gate-level simulation) that the operands selected will ex-
cite the static critical paths in the ALU.

3.3 SPDFT Test Generation

Based on the above analysis, we can generate test routines
that target the potentially-critical paths in all stages in the
pipeline using the three generator templates in Figure 1. The
generator templates are expanded into (A) a chain of depen-
dent memory operations that necessitate store-to-load forward-
ing, (B) a cluster of back-to-back branches, and (C) a chain of
dependent arithmetic operations and concatenated to create a
SPDFT routine for a particular processor.

Figure 2 describes the process of test generation. The test
generation procedure begins by using STA to produce a path

ori $2,$0,-1

addi $3,$2,1

addi $4,$3,-1 Read test routine pointer

addi $2,$4,1 Begin checkpoint and set watchdog
sw $4,20($30) Remove safety margin

sw $3,20($30) do

sw $2,20($30)

1w $4,20($30)

bne $4,$0,FAIL

bne $4,$0,FAIL

bne $4,$0,FAIL

bne $4,$0,FAIL
PASS: [test passed]
FAIL: [test failed]

Figure 3: SPDFT routine
that provides good cover-
age for a 4-wide super-
scalar processor.

Execute test routine at pointer
if (!FAIL)
Decrease voltage by one step
while(!FAIL)
if (recovery or timeout)
Revert checkpoint
Increase voltage by one step
Add safety margin
Reset watchdog
Return to normal execution

Figure 4: Pseudocode de-
scribing testing procedure.

timing distribution. Potentially critical paths are identified (us-
ing STA) as the subset of paths with delays that are within X%
of the critical path delay, where X% corresponds to the delay
guardband for sources of trackable variations.  Each of the
generator templates (described in Section 3.1) is expanded in
turn within the test routine while recording the resulting rou-
tine’s coverage of potentially-critical paths. For each generator
template, the length of the instruction chain is iteratively in-
creased by one step until the marginal increase in coverage is
negligible (coverage is maximized). Among test routines that
provide maximum coverage, we select the one that incurs the
least overhead (i.e., the shortest instruction sequence). Fig-
ure 3 shows an example of a generated test routine that pro-
vides good coverage of potentially-critical paths for a 4-wide
superscalar processor.

Compared to the traditional instruction sequences used in
SPDFT, which use instruction pairs that target PDFs on in-
dividual paths, the test sequences we generate may be more
efficient because they focus specifically on potentially-critical
paths and target large groups of potentially-critical paths rather
than individual paths. We show in Section 5 that our SPFDT
routines provide high coverage (96.4%) of potentially-critical
paths in our test design (FabScalar [3]), comparable to other
approaches for software-based path delay fault testing [24, 4,
11]. We also propose that potentially-critical paths not covered
by SPDFT can be covered using hardware canary circuits.

3.4 Microarchitectural and System Support for
Selecting an Energy-efficient BTWC Operating
Point Based on SPDFT

Using SPDFT to select a BTWC operating point involves us-
ing SPDFT routines to monitor availability of timing slack and
adapting a processor’s voltage to exploit available timing slack
that exists due to guardbanding for static and dynamic varia-
tions. Since some sources of variations (e.g., temperature, ag-
ing) change dynamically, SPDFT routines should be executed
periodically. The minimum interval between successive tests
that guarantees timing safety can be determined based on the
maximum rate of change of trackable variations. During normal
operation between testing intervals, a safety margin is added
to the operating voltage to protect against potential increase in
delay over a single interval due to trackable variations. For ex-
ample, if trackable variations can change delay at a maximum
rate of 1ns per 1ms of execution time, and the length of a test-
ing interval is 1us, then a guardband must be applied during
normal operation to protect against a potential 1ps increase in
delay during the interval between tests. Our results account
for this overhead, as well as all other power and performance
overheads introduced by our SPDFT execution framework (see
Section 4). We set the interval length and safety margin such
that performance degradation from periodic testing is
less than 1%. At each testing interval, the safety margin
that protects against delay drift is removed and testing is per-
formed to determine the minimum safe operating voltage for
the processor. If testing passes, there may be additional timing



slack available, and the processor may lower the supply volt-
age and perform testing again to check for safety at a lower
voltage. When testing fails (either at the original voltage or a
lower voltage), the voltage is increased by one increment plus
all required margins, and program execution resumes. Proper
selection of testing interval (Section 3.6) and intelligent testing
patterns [19] can be used to limit the number of voltage points
evaluated before arriving at the new optimal voltage. Perfor-
mance overhead of testing can potentially also be reduced by
scheduling testing when the processor is idle [25].

To protect the processor during testing, which may result in
errors, we use a checkpointing and recovery mechanism estab-
lished in prior work [25]. During testing, updates to registers
are buffered in a checkpoint memory and updates to memory
are buffered in the cache (marked as volatile). If a failed test
necessitates recovery, updated registers are reverted, volatile
cache lines are marked as invalid, the pipeline is flushed, and
execution resumes from the checkpointed state after increasing
the voltage to include required guardbands. We account for
the overhead introduced by recovery in our evaluations (see
Section 4). There are many possible frameworks that sup-
port checkpointing and recovery [25, 10], and processors that
support speculative execution (like the FabScalar architecture
we evaluate) already provide most of the necessary mecha-
nisms. We use the same fault-tolerant checkpointing and re-
covery mechanism as Bulletproof [25], which prevents any er-
roneous writes made during testing from being committed to
architectural state. We conservatively assume an area over-
head of 1.6% for implementing BulletProof, as quoted in [25].
However, since we only require the checkpointing and recovery
mechanisms of BulletProof (not the defect testing hardware),
overhead in our implementation should be less.

In addition to checkpointing and recovery mechanisms, we
include additional support to ensure that the processor can re-
cover from segmentation faults and hangs that might occur due
to timing violations during testing. Control errors caused by
incorrect branching may cause the processor to jump to an in-
correct location or to hang. We use a watchdog timer to protect
against control errors and hangs. Before testing, the watchdog
timer is set, and the last action of the test routine is to reset the
watchdog timer. If a control fault causes the processor to hang
or jump to an incorrect location, the watchdog timer expires,
and recovery is initiated. Incorrect R/W or O accesses can re-
sult in segmentation faults. However, since any segmentation
fault during testing can be attributed to a timing error, we
suppress normal handling of R/W/O segmentation faults and
instead treat them as error detections, which initiate recovery.
Context switches and external interrupts are delayed during
testing, as SPDFT routines are only a few instructions long.
The testing routine is stored in memory as an interrupt service
routine that executes at a periodic rate. Since the exact test
routine is small, deterministic, and executes at a known rate,
it can easily be prefetched just before testing. Figure 4 shows
pseudocode for the SPDFT execution framework.

3.5 The Impact of PVT Variations

Our SPDFT execution framework allows a processor to select
an energy-efficient operating point in face of process, voltage,
temperature (PVT), and aging-induced variations. Figure 5
estimates potential power savings for a FabScalar [3] proces-
sor implemented with 65nm technology if SPDFT can enable
operating point adaptation to all sources of PVT variations.
Results are nearly identical for an OpenSPARC [27] processor
implemented in the same technology. Power savings are mea-
sured by synthesizing, placing, and routing the processor design
at a worst case corner and evaluating the processor at the min-
imum safe voltage required to meet timing over the range of
worst, typical, and best case corners. The figure shows that
the power savings available from typical case and best case op-
eration could be up to 22% and 47%, respectively. These sav-
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BEST

Figure 5: SPDFT can allow a processor that experiences BTWC
variations to reduce power through supply voltage reduction. Addi-
tional power savings enabled by adapting to PVT variations can be
up to 22% under typical case conditions and up to 47% in the best
case if SPDTF allows adaptation to all sources of PVT variations.
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Figure 6: This figure breaks down the power consumption associated
with worst case guardbands for various types of variations. If any
source of variations can be tracked by SPDFT, the power associated
with that guardband can be reduced under BTWC conditions.

ings represent benefits from idealized BTWC operation under
typical case and best case conditions.

In reality, only a subset of these benefits may be possible
from SPDF'T, since test routines cannot track delay fluctuations
caused by all sources of variations. For example, fast-changing
variations, e.g., most global and local voltage variations, cannot
be tracked by SPDFT due to the latency of processor adap-
tation through voltage or frequency scaling and the interval
between successive tests, which is long relative to the rate of
change of fast-changing variations. Figure 6 breaks down the
power consumption associated with worst case guardbands for
various sources of variations. Note that actual design guard-
bands would be mostly in terms of operating frequency. How-
ever, since we use voltage scaling to target BTWC operating
points in this paper, Figure 6 quantifies how much power could
potentially be reduced by translating each design guardband
into a voltage reduction. The size of a segment correspond-
ing to a particular type of variations shows how much power
can potentially be reduced under best case conditions (fast cor-
ner) if a hardware or software testing can track delay changes
caused by that source of variations. For sources of variation
that can be tracked, design margins can be partially reduced,
depending on the actual amount of variations observed during
operation. In Section 5, we evaluate the potential energy sav-
ings enabled by SPDFT both with and without the additional
benefits enabled by adapting to a subset of PVT variations.

3.6 Other Implementation Considerations

Critical Path Coverage: SPDFT can allow adaptation to lo-
cal variations only if the canary routines test all the potentially-
critical paths that may become critical due to local variations [5].
Otherwise, guardbands must be used to protect against local
variations. In cases where SPDFT provides high but incom-
plete coverage of potentially-critical paths, it may be beneficial



to use hardware canaries synergistically with SPDFT, such that
hardware canaries (e.g., Razor II [5]) provide protection for any
potentially-critical paths not covered by SPDFT. Such an or-
ganization allows elimination of guardbands for slow-changing
local variations while keeping the hardware overhead intro-
duced by canary circuits low (since most paths are protected
by SPDFT). In Section 5, we evaluate the critical path cover-
age of SPDFT, as well as the potential benefits of a SPDFT +
hardware canary hybrid design.

Testing Interval Size and Number of Voltage Levels: The
interval between successive tests is determined by the maximum
rate of change of trackable variations, to balance the perfor-
mance overhead of testing (higher for a shorter interval) and
the cost of providing a safety margin to protect against the max-
imum drift of critical path delay due to dynamically changing
trackable variations in a single time interval (higher for a longer
interval). Note that if the interval size is selected properly (to
bound the maximum change in delay variation during an inter-
val), SPDFT routines should not need to be run for more than a
maximum of three voltages per interval (in the case when volt-
age step granularity is finest and the optimal voltage is lower
than the present operating voltage). In Section 5, we perform
analysis of SPDFT execution for different testing intervals and
numbers of voltage levels in order to determine appropriate
values for design parameters.

4. METHODOLOGY

To quantify the potential benefits of software canaries, we use
a detailed methodology to measure power, performance, timing,
and activity. Designs are implemented with the TSMC 65GP
library (65nm), using Synopsys Design Compiler for synthesis
and Cadence SoC Encounter for layout. To evaluate the power
and performance of designs at different voltages and design
corners, Cadence Library Characterizer was used to generate
libraries at each voltage (Viq) between 1.0V and 0.5V at 0.01V
intervals for worst, typical, and best case corners. Designs are
implemented at 500 MHz. Power, area, and timing analyses
are performed in Synopsys PrimeTime. Gate-level simulation
is performed with Cadence NC-Verilog to gather activity infor-
mation for the design, which is subsequently used for dynamic
power estimation and test coverage measurement. Evaluation
of potential energy savings is performed by implementing the
processor at the worst case corner (conventional design) and
evaluating the design at a BTWC corner (e.g., typical, best).

To measure the coverage achieved by our test routines, we
use PrimeTime STA to determine the set of paths that can
become critical when affected by worst case variations (Ppc).
We use Cadence NC-Verilog to execute our SPDFT routines on
the synthesized, placed, and routed netlist for the processor and
produce a VCD file which is used to trace toggled paths from
destination to source to determine the paths that are tested
by the test routines (Pspprr). Coverage is computed as the
cardinality of the set intersection between Pspprr and Ppc
divided by the cardinality of Ppc.

We perform evaluations for a collection of benchmarks from
the SPEC and EEMBC benchmark suites. Benchmarks are
executed on a synthesized, placed, and routed processor. SPEC
benchmarks are fast-forwarded to their Simpoints [13], while
EEMBC embedded benchmarks are run in their entirety.

4.1 Energy Impact of Dynamic Adaptation

To calculate the expected power of the processor, we use
parameters from the technology library to characterize the dis-
tribution of variations from best to worst, where the range from
best to worst covers six standard deviations (60). We take the
number of discrete voltage levels as an input and use Prime-
Time to measure the power of the placed and routed processor
at each voltage level. We then use the cumulative distribution

function (®(z) = 3[1+ erf(f/_ﬁ;‘)]), along with the delay vs.

voltage relationship of the processor to calculate the probabil-

ity that the variations are in the range corresponding to each
discrete voltage level (erf is the error function). Let us denote
the power at the voltage level corresponding to a certain devia-
tion of variations as Power(z). We then calculate the expected
value of power as E[Power| = Zf\;l O (x)|3iy, , - Power(z;).

We measure performance (IPC) for each benchmark by ex-
ecuting benchmarks on our processor RTL using NC-Verilog
and derate the performance based on the overheads imposed
by the dynamic execution framework. First, we calculate the
maximum number of voltage level changes per interval using
the maximum rate of change of trackable variations, the inter-
val length, and the number of voltage levels. We calculate the
maximum expected overhead of switching between voltage lev-
els based on the maximum number of level switches per interval
and the cost of switching voltage levels. The cost of switching
voltage levels depends on the size of the voltage step, which in
turn depends on the number of voltage levels. We perform eval-
uations for two different voltage regulators — an on-chip voltage
regulator that can scale the voltage at a rate of 1 V / 100 ns [18,
17] and an off-chip voltage regulator that is 1000 times slower
(1 V /100 ps) [18]. We calculate the performance overhead
for each execution of the test routines as the product of the
maximum number of times testing is applied per interval and
the number of cycles required to execute the test routines. The
maximum number of tests per interval is one more than the
maximum number of level switches. Recovery, when required,
incurs performance and power overheads for performing the re-
covery as well as performance lost due to flushing the pipeline.
To obtain the derated performance of a benchmark for SPDFT-
based execution, we derate the IPC observed during execution
of the benchmark based on the total number of overhead cy-
cles devoted to executing SPDFT routines, context switching,
switching voltage levels, and recovery. We calculate energy as
power divided by performance (W/IPC).

5. RESULTS

Using SPDFT as described in Section 3 can result in im-
proved energy efficiency for a variation-affected design. In prac-
tice, available energy savings depends on the extent of varia-
tions observed as well as the ability of SPDFT routines to track
delay changes due to those variations. Tracking of local vari-
ations is enabled only if test routines provide coverage for all
potentially-critical paths. Coverage analysis (described in Sec-
tion 4) reveals that our SPDFT routines provide coverage for
96.4% of potentially-critical paths. For the remaining 3.6% of
the potentially-critical timing paths, we have the option of us-
ing Razor II [5] as a canary circuit to provide coverage. Razor 11
is modeled following the methodology described in [15]. (Note
that Razor II [5] is different than Razor-based timing specu-
lation [8] and can be used as a canary circuit.) Due to the
high coverage of our SPDFT routines, adding canary circuits
for unprotected potentially-critical paths only adds 0.2% power
overhead. When Razor II is used as a canary circuit without
SPDFT, the overhead introduced by canary circuits is 7.5%.

As discussed in Section 3.5, SPDFT routines cannot track
changes in timing slack due to all types of variations. Lo-
cal and global voltage variations (such as Ldi/dt) can change
very quickly, and likely do not allow enough response time for
SPDFT routines to adapt the processor’s voltage. SPDFT for
fast-changing variations is a subject of ongoing work.

Since SPDFT cannot track all sources of variations (e.g.,
fast-changing voltage variations), SPDFT-based designs still
use worst case guardbands for untrackable variations. Table 1
quantifies the power savings afforded by SPDFT-based designs
that adapt to various sources of trackable variations and use
worst case guardbands for untrackable variations (denoted in
the first column). Results are shown for typical and best case
corners. The first row corresponds to a SPDFT-based design
that does not provide coverage for all potentially-critical paths.



Table 1: Power savings (%) for adapting to trackable variations.

Worst-Case Guardbands TYPICAL | BEST
Full Voltage, Local Temp and Aging 19.5 25.4
Full Voltage 27.4 38.1

Note that such a design cannot adapt to voltage, local temper-
ature, or aging variations because the coverage of potentially-
critical paths is less than 100%. The design can, however,
adapt to slow-changing and static global variations. The sec-
ond row of the table quantifies power savings for a synergistic
SPDFT + hardware canary-based design where adaptation to
slow-changing local aging and temperature variations is pos-
sible because the paths uncovered by SPDFT are covered us-
ing Razor II as a canary circuit. The results show that using
SPDFT to select a BTWC operating point may significantly
improve energy efficiency, with or without the synergistic use
of hardware canary circuits. Benefits are significantly higher
when a synergistic SPDFT + hardware canary-based approach
is used to provide coverage for all potentially-critical paths.

The next set of results quantifies the energy savings enabled
by SPDFT for a real execution framework that allows dynamic
adaptation to variations (details in Section 4.1). These results
consider all performance and power overheads for voltage scal-
ing, test routine execution, and error recovery. We quantify
energy savings with respect to both conventional and canary
circuit-based baselines. We explore the design space by vary-
ing the testing interval size and number of voltage levels.

Figure 7 shows energy savings over conventional and ca-
nary circuit-based designs averaged over our benchmark suite.
SPDFT achieves energy savings of up to 28% over conventional
design and 12% over canary circuit-based design. Energy sav-
ings enabled by our dynamic adaptation framework are 96%
of the ideal energy savings that could be achieved without any
power or performance overheads. Performance overhead intro-
duced by periodic testing and adaptation is low, ranging from
around 1% to 3% for different testing interval lengths.

From the results, we observe that testing interval size does
not affect energy savings much, though savings are greater for
a shorter interval because the cost of providing a larger safety
margin to protect against delay drift due to dynamically chang-
ing variations during a longer interval outweighs the cost of ad-
ditional testing incurred with a shorter interval. Energy savings
are 5% closer to ideal when 4 voltage levels are used instead
of 2. There is a small (2%) boost in energy savings from in-
creasing the number of voltage levels from 4 to 8, however, we
use 4 voltage levels for the remaining evaluations, since several
conventional voltage scaling designs have up to 4 voltage levels.

The results in Figure 7 assume an on-chip voltage regula-
tor that can scale the voltage at a rate of 1 V / 100 ns [18,
17], as described in Section 4.1. We also performed evaluations
for an off-chip voltage regulator that is 1000 times slower (1
V / 100 ps) [18] than the on-chip regulator. In this case, en-
ergy savings are 24% over conventional design, 10% over canary
circuit-based design, and 83% of the ideal energy savings that
assume no overheads.

6. CONCLUSION

In this paper, we propose using SPDFT to select an energy-
efficient operating point for a variation-affected design. We de-
scribe a procedure for generating software canaries — software-
based PDF tests with low performance overhead that provide
ample coverage of potentially-critical paths in a processor. We
also describe microarchitectural and system support for SPDFT-
based execution and show the potential for energy reduction
from using SPDFT to select an operating point in a variation-
affected design. Average energy reduction at a typical case
corner is 12% compared to a hardware canary circuit-based de-
sign and 27% compared to a conventionally guardbanded worst
case design.
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Figure 7: SPDFT in the context of a dynamic adaptation framework
achieve up to 28% energy savings over a conventional worst case
design and 12% energy savings over a canary circuit-based design.
To make results more conservative, we do not account any overhead
for canary circuits in the baseline design. Benefits are averaged over
all benchmarks in our suite.
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